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Drug hunting: How to identify the best candidate 
from 1060/1023 potential molecules?
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Leverage ML methods to augment medchem
teams
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Shiny headlines & big hopes

https://www.311institute.com/an-ai-designed-30000-drugs-in-21-days-and-came-up-

with-winners/

https://www.longevity.technology/ai-platform-accelerates-

drug-discovery-time-from-3-years-to-21-days/

https://www.broadinstitute.org/news/artificial-intelligence-yields-new-antibiotic

https://www.healthcareitnews.com/ai-powered-healthcare/ai-

model-yields-new-drug-overcome-antibiotic-resistance
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JAEGER – Hunting for Antimalarials with 

Generative Chemistry [3]

Beam Search for Automated Design and Scoring of 

Novel ROR Ligands with Machine Intelligence [2]

[1] Grisoni, F., Huisman, B. J., Button, A. L., Moret, M., Atz, K., Merk, D., & Schneider, G. 

(2021). Combining generative artificial intelligence and on-chip synthesis for de novo drug 

design. Science advances, 7(24), eabg3338.

[2] Moret, M., Helmstädter, M., Grisoni, F., Schneider, G., & Merk, D. (2021). Beam Search 

for Automated Design and Scoring of Novel ROR Ligands with Machine 

Intelligence. Angewandte Chemie International Edition.

[3] Godinez, W., Ma, E., Chao, A., Pei, L., Skewes-Cox, P., Canham, S., ... & Guiguemde, 

A. (2021). JAEGER–Hunting for Antimalarials with Generative Chemistry. Chemrxiv, DOI 

10.33774/chemrxiv-2021-5t5xx 

Combining generative artificial intelligence and on-

chip synthesis for de novo drug design [1]
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Generative chemistry
The principle
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First, computers need to learn chemistry!
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Why is this important?

• Generative chemistry is futile without generation of valid molecules.

• Enables constraints, such as keeping scaffold fixed.

Junction tree variational autoencoder for molecular graph generation. International Conference on Machine Learning, pp. 2323-2332. PMLR, 2018.
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Example generator models [1] Winter, R. et al. Chem. Sci. 10, 1692–

1701 (2019)

[2] Jin, W. et al. arXiv (2019). 

https://arxiv.org/pdf/1802.04364.pdf

[3] Maziarz, K. et al. arXiv (2021)

https://arxiv.org/pdf/2103.03864.pdf 

[4] Pikusa M, et al. bioarXiv (2022)

https://biorxiv.org/content/10.1101/2021.12.10

.472084v1
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String-based methods (e.g. CDDD1)

Graph-based methods (e.g. CGVAE2, MoLeR3) 
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Conditional generation using [signatures, profiles, sequences] (e.g. pqsar2cpd4) 

Many other approaches exist, and new ones appear very frequently (often w/ open-source). Major 

application approaches: 

- Exploration: distribution learning (reproduce sets of molecules)
- Exploitation: goal-directed generation (search latent space without full sampling)



MoLeR: a scaffold aware generator
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Maziarz, K. et al. arXiv (2021)

https://arxiv.org/pdf/2103.03864.pdf

Brown, N. et al. (2019). GuacaMol: benchmarking models 

for de novo molecular design. JCIM 59(3), 1096-1108. 

Combining an atom-by-atom with a motif-by-

motif build-up enables high exploration and 

chemically valid molecules
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De-novo generation as reverse phenotypic profiling
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pQSAR as reliable predicted activity profiles

J Chem Inf Model 59, 4450–4459 (2019).



pqsar2cpd – zero-sum game

• Conditional Generative Adversarial Networks (Goodfellow et al. 2014) → co-training of chemistry and profile (per 

project specificity)

• Generator tries to deceive the discriminator by creating samples that are hard to distinguish from real data
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Simplification of:

▪ Data preparation

▪ Comparison of molecular 

representations

▪ Comparison of ML models

▪ Evaluation and optimization 

of final models
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Predictive models for MPO
Standardizing model building and benchmarking –Example: the PREFER framework1

Molecular representation image source: Sanchez-Lengeling, B., & Aspuru-Guzik, A. Science, 361(6400), 360-365 (2018).

[1] Lanini, J. et al. Manuscript in preparation
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Multi-objective optimization (MPO)

▪ Pre-defined target property profile 

guides the search in the latent space

▪ Predictive models used to determine 

properties of a new point in the latent 

space

▪ Example methods: evolutionary 

algorithm (MSO), reinforcement 

learning, etc.

▪ Challenges:

– Reliable predictive models

– Contradicting properties

– Combination of optimization algorithm 

and generator model
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Multi-Objective Optimization Strategies
Using different strategies
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Different strategies are needed to explore 

different optimization task:

▪ Fast, interactive and local optimization:

▪ MSO (molecule swarm optimization)

▪ Global optimization with strong project-specific 

focus:

▪ Reinforcement Learning-based methods 

(REINVENT, ReLeaSE)

▪ Genetic algorithms (GA)

▪ MonteCarlo Tree Search (MCTS) 0.00 0.20 0.40 0.60 0.80 1.00

REINVENT Garau* 10k*

ReLeaSE Garau* 4k

ReLeaSE Popova 10k

MSO MoLeR

MSO CDDD

MSO (Winter)

SMILES-LSTM

Graph-GA

Graph-MCTS

SMILES-GA

Best-of-Data-Set

Average score over all tasks

Baselines taken from the Guacamol benchmark: Brown, N., et al.. 59(3), 1096-1108. (2019)
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Guacamol benchmark results



Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

Generative chemistry in NIBR
Enriching GenChem output with MedChem relevant information

PostProcessing

(Annotation)
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Postprocessing Workflow - Annotation
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Structure-based or Ligand-

based

Substructure Alerts

Global Property Models

Latent Space Property Models

Synthetisability evaluation
SA score & AiZynthfinder1

2D based descriptors

Similarity searches in public and internal compound DBs*

* Internal DBs (not shown): Novartis Corporate Archive & CAST ideas
[1] Genheden, S. et al. Journal of 

Cheminformatics 12, 70 (2020).
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GenChem in Action
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Real-world applications

▪ Public example – EGFR

▪ Observations from in house data sets
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GenChem application example: EGFR
EGFR is a tyrosine-kinase targeted in Non-Small Cell Lung Cancer
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* Sun et al. JCIM, 2017, 9, 17

* Prykhodko et al. JCIM, 2019, 11, 74

Drugs targeting EGFR with

amino-quinazoline core

Crystal structure of an amino-quinazoline

compound bound to EGFR (PDB: 5y25)
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Step 1: local model building

▪ EGFR model (ExCape dataset1, #5204 cmpds) 

▪ JNK3 model (ChEMBL dataset, #362 cmpds)

▪ High-quality EGFR model (AUC 0.92), medium 
quality JNK3 model (AUC 0.66)

Step 2: MPO and GenChem run set-up
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GenChem application example: EGFR
Set-up

Scaffold Seed compounds

Multi-parameter optimization reflecting MedChem design & prioritization
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[1] Sun, J.,  et al. (2017). ExCAPE-DB: an integrated large scale dataset facilitating Big Data 

analysis in chemogenomics. Journal of cheminformatics, 9(1), 1-9.



Runtime:

▪ 5 seeds, 40 particles, 50-100 steps, overall 

30’000 new molecules generated in <1h

▪ 2000 best molecules were kept (1000 per 

generative model)
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GenChem application example: EGFR
Quantitative results

Optimization steps

CDDD

Optimization steps

MoLeR

Score and quality evolution

Property distribution of 2000 best cmpds
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GenChem application example: EGFR
Qualitative results

EGFR chemical space (in gray) [1]

Increasing exploration level

CDDD

MoLeR[1] ExCape dataset, #5204 cmpds

Sun, J. et al. (2017). ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis 

in chemogenomics. Journal of cheminformatics, 9(1), 1-9.
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GenChem application example: EGFR
Post-processing outputs multiple ways to analyse results 
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▪ Other challenging aspects:

– Scientific

– Social

– Strategic

▪ Selection criteria: broad coverage of 
project stages, challenge level, data 
availability, MedChem team commitment,...

▪ Goal: Increase the benefit for both -
MedChem project teams and GenChem
enhancements

Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

MedChem project selection

Challenge level

Model feasibility

low high

Target-based

Ligand-based
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Exploration of 2 exit vectors:

– R2: very sharp SAR, team already 

identified good vectors here, covered 

by selecting a diverse set of seeds

– R1: main interest of the team

MPO definition: improve activity and lipophilicity

• Activity: 

• R1 activity regression model 

• Overall activity classification model

• Phys-chem properties: 

• lipophilicity regression model

• permeability classification model

• solubility model

• Chemical attractiveness: SA score, Heavy atom count, 

Rotatable bonds
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Project 1: setup

Cluster of highly active 

cmpds (including lead series)

Project cmpds



▪ Interesting exploitation of GenChem in areas between current series

▪ Different embeddings & settings provide different exploration profiles
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Project 1: Chemical space exploration

Cluster of highly 

active cmpds

(including lead 

series)

Project cmpds

GenChem results



Project 2 – more observations
Higher fitness and activity score  !=  more «realistic» molecules
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Project 3 – more observations

GenChem creates compounds (sometimes) outside our known chemistry space

→ 0 alert flags (internal SubStructure flags list) but still MedChemist «no-go’s»
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Repeating motifs (OH) Gremlins (large rings, 

reactive, ugly, ...)

→ Iterative optimization of the GenChem workflow

Very highly strained rings 

with ketone moiety



GenChem - Take home messages

▪ Do not expect magic but idea augmentation by ML methods

▪ Expecting surprises depends on the definition of your target property 

profile

▪ Generative methods are new and still in the evolution phase, we learn 

new ‘tricks’ with every project and every method

▪ Reliable property models are key in the MPO, uncertainty estimation 

is highly recommended to mitigate risk

▪ Diverse generators and optimization methods allow broader and 

complementary exploration of chemical space

▪ Seamless integration of GenChem in the daily project work will be key 

for success of the new method
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Manage 

expectations

Still in evolution

New scientific 

challenges

Good integration 

is key
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