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Closed-loop discovery & autonomous laboratories

e.g., small molecule hit-to-lead and lead optimization

Challenge: Molecular discovery is labor-intensive and heavily biased by human intuition. It takes
immense resources and many years to bring a single drug to market; materials often take decades.
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Overarching goal: Enable the "self-driving laboratory” through
data-informed decision making and information-centric discovery

1. Domain-tailored neural models 3. Data-driven predictive chemistry
2. Computer-aided molecular design 4. Robotics and laboratory automation
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Relevance of reactivity to molecular design

Synthesis constrains what we can access at all and influences what we can access easily

Coley, Trends Chem. 2021.

Virtual libraries are often “make-on-demand” Generative models produce new compounds
libraries enumerated using chemical for which we must plan synthetic routes
transformation rules we believe to be robust
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Predictive chemistry (reaction informatics) tasks

Primary learning objective for this talk: understand the basics of reaction datasets, representation
considerations (beyond molecular representation considerations), and the common learning tasks

Deployment
Retrosynthesis, reaction product prediction, classification/mapping

Development
Condition recommendation, condition optimization, scope assessment, catalyst design

Discovery
Mechanistic elucidation, new method development

Increasing degree of extrapolation

Introduction




Reactions as a data structure: important concepts

o)

HO\O Cl Quantitative aspects
_ (concentrations, temperature;
0 1.5 equiv. time; yield) and roles of agents

(o)
11
Nto_ 1 equiv. Fe(Cl0,); N‘lo_ are lost in line notations
iiln > [:::]0
X acetonitrile RDFiles are “most general” as
(0)

-10°C,1h extension of SDFiles, but
100 mM 899, additional data does not have a
° universal format

Reaction SMILES:

O=[N+]([0-])C1=CC=C(C=C1)/C=C/C2=CC=CC=C2>>[0-][N+](C(C=C1)=CC=C1[C@H]20[CREH]2C3=CC=CC=C3)=0

Reaction SMILES with conditions:

O=[N+]([0-])C1=CC=C(C=C1l)/C=C/C2=CC=CC=C2>C1C1=CC(C(00)=0)=CC=C1l.[0-]C1l(=0)(=0)=0.[0-]CL(=0)(=0)=0.[0-]C1(=0) (
=0)=0.[Fe+3].CC#N>[0-][N+](C(C=C1)=CC=C1[C@H]20[C@RH]2C3=CC=CC=C3)=0

Atom-mapped reaction SMILES:

[0:3]=[N+:2]([0-:4])[C:1]1=[CH:5][CH:6]=[C:7]([CH:16]=[CH:17]1)/[CH:8]=[CH:9]/[C:10]2=[CH:11][CH:12]=[CH:13][C
H:14]1=[CH:15]2>>[0-:3][N+:2]([C:1]([CH:5]=[CH:6]3)=[CH:17][CH:16]=[C:7]3[C@H:8]40[C@EH:9]14[C:10]5=[CH:15][CH:1
41=[CH:13][CH:12]=[CH:11]5)=[0:4]
Mir
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Reactions as a data structure: representations

How are reactions represented as inputs for learning algorithms? It can depend whether the product is
meant to be part of the input

1. Strings (i.e., reaction SM”_ES) Schwaller et al. Mach. Learn.: Sci. Technol. 2, 015016, 2021

2. Constituent molecular components

a. Concatenation of reactant molecules (if fixed # components in dataset)
b. Set of reactant molecules (if variable # components in dataset)

c. Reaction difference fingerprints schneider et al. JCIM 55(1) 39-53, 2015 Cl
3. Graphs & graph edits (edits require atom-mapping) coiey et a1 chem. sci 10, 370-377, 2019 no

Condensed graph of reaction (ignores spectators, requires atom-mapping)
Hoonakker et al. Int. J. Artif. Intell. Tools 20(2) 253-270, 2011; Heid and Green, J. Chem. Inf. Model. 62(9) 2101-2110, 2022

There is very little standardization in representing reaction conditions; often, the structures of catalysts,
reagents, solvents are added to the reactants

N N
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Relationship to molecular representations

Because reactions can always be represented by their constituent molecules, there is a very close
relationship between reaction representations and molecular representations

31p chemical shift
Jrn.p coupling

Max/Min cone angles
B,/Bs Sterimol parameters

The descriptor-based v. structure-based A. Expert-guided Representation: . .0 ork:
7 ” . . e atomic charge R’ !
debate” applies to reactions as well ) oo B <y - o tyon @
) . bond ord designed X
Descriptors for complex catalysts are still - T PR g B3 ations
. .. . ompu 5
very common, given the limitations of CPU-intensive, problem-specific Bl o a‘F‘L'.TLC. .Cn'l;"‘;?e
SMILES and graphS to describe Complex B. Machine learned Representation: .( WL e \/j v
catalysts or capture subtle aspects of structure O @ EEEn R
fusion chemical reactivity
Electronic features | Steric features %EEEEC? it o F:::tllcvtéonsilectlwty
' ' OB.min "
E ) j@: i ; V ‘: < \ Guan et al. Chem. Sci. 12, 2198-2208, 2021
12 ~ : g 3
+Rh_ Jp : g Bs
“Gif A-POEts Cu"‘,z*h/z " ciph
Rh-P : Cl c
Redox protential E - -

Gallegos et al. Acc. Chem. Res. 54(4) 827-836, 2021
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Reaction data sources (select examples)

Patents Literature High-throughput Experimentation

USPTO (CCO Iicensed) Daniel Lowe, https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873

Pistachio (Commercia|) NextMove Software, https://www.nextmovesoftware.com/pistachio.html

ReaxyS (CommerCial) Elsevier, https://www.reaxys.com/

CAS / SciFinder (Commercial) CAS, https://www.cas.org/cas-data/cas-reactions

Ahneman et al. Science 360(6385) 186-190, 2018 Merck’'s C-N coupling data

Perera et al. Science 359(6374) 429-434, 2018 Pfizer’'s Suzuki data

Open Reaction Database Kearnes et al. JACS 145(45) 18820-18826, 2021
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Detailed look at a Reaxys entry

concentrations | | reaction mechanisms
DI II’\ i"hf\f‘l Ff\f\f\‘l':f\h f\‘l‘ﬁ V\Ff\\lif‘lf\(\
byproducts | | minor products | | "failed” reactions
[ A "A 4 JVMIU A" | VI\rIVI LA 4 | A4 L\ "4 INGAT T T LA "4 I |

vessels | | orders of addition

Millions of tabulated reaction examples
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Aside on evaluation & well-posedness

Models are typically evaluated in terms of their ability to recapitulate literature/experimental data

Any recommender system proposing new reactions cannot be evaluated with full confidence, since we
cannot perfectly anticipate success/failure

One-step retrosynthetic analysis always has more than one right answer
o We do it anyway

Multi-step retrosynthetic analysis has many more than one right answer
o We (usually) evaluate models qualitatively, or in terms of their ability to find any pathway

Reaction outcome prediction is underspecified without full knowledge of reaction conditions
o We do it anyway

Yield prediction is similarly underspecified when using literature data
o We do it anyway
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Computer-aided retrosynthetic analysis

Input: product molecule; Output: =1 reactant molecule(s)

° ReaCtion temp|ateS can CrUdely COd|fy the “rUIGS Of ChemiStI'y" Many prior publications; Coley et al., J. Chem. Inf. Model. 59, 2019
o]

i 0
N30 N3,
J =0 i
Sh
(0]

0 Find core of transformation
9 Add generalized neighbors

)w)\:>\(\)\

e Extend to known func. groups

:‘:/§[c,N] *

=I[C.N] *—CFs 25 total
Q Canonicalize and record

[c:1]-[CH;@@;D3;+0:2]1-[0;HO;D2;+0]-
[CH;@;D3;+0:3]-1-[c:4]
>>
[c:1]/[CH;D2;+0:2]=[CH;D2;+0:3]/[c:4]

 After extracting a library of templates from a library of
reactions, a classification model can learn when to apply them
to new product molecules of interest segler and waller, Chem. Eur. J. 23, 2017

(0]
0]
H B(OH),
— /©/ N H
) LT,
F 1 2 3
l e
rules to 1
R 4 => p(r.|x)
Molecular
Descriptor most probable
(ECFP4) Deep Neural Network reaction rules

Low data approaches: Fortunato et al. JCIM 60(7) 3398-3407, 2020; Seidl et al. JCIM 62(9) 2111-2120, 2022
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Computer-aided retrosynthetic analysis: template-free

Input: product molecule; Output: =1 reactant molecule(s)

« There are many template-free formulations of the one-step retrosynthesis task, including
o SMILES-to-SMILES Liuetal, ACS Cent. Sci. 3, 2017; Schwaller et al. Chem. Sci. 11, 3316-3325, 2020; Lin et al., Chem. Sci. 12, 2020; etc.

o Graph-to-Graph shietal. /CVL2020; Ram et al. arxiv:2006.07038 2020; Sacha et al. arxiv:2006.15426 2020

A. Predict bond edits

————————————————————————————— R\
N "= \ g N= N\N\
— — | — —
N-N \_/ N \_7/ N—
\ \ __
............................. = A\ /
Product Synthons

B. Add leaving groups to synthons

>
N~N

———————————————————————————————

H/\>—© Br |\ Br

\ \ > \

N=— E \ N— \ \ N—
=\ 7 ) =\ /7 ST=\ 4
Synthons Reactants

N N
1"l

= bond selection

= graph completion
(or categorical prediction
of the leaving group)
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Computer-aided retrosynthetic analysis: template-free

Input: product molecule; Output: =1 reactant molecule(s)

« There are many template-free formulations of the one-step retrosynthesis task, including
o SMILES-to-SMILES Liuetal, ACS Cent. Sci. 3, 2017; Schwaller et al. Chem. Sci. 11, 3316-3325, 2020; Lin et al., Chem. Sci. 12, 2020; etc.

o Graph-to-Graph shictal, (VL 2020; Ram et al. arxiv:2006.07038 2020; Sacha et al. arxiv:2006.15426 2020

o) G ra p h 'tO'S M I L ES S ;/ Permutation invariant \\ i Autoregressive decoding

graph encoding

Product molecule B e Reactant molecules
Nl/i : features ,\’
Source SMILES RDKit CI)\N/ NH RDKlt K G AT Global Encoder decoder e Target SMILES
CIC1=NC=C(Br)C(NC2CCCC2)=N1 SMILES reader | featurizatlon attn. attention : NC1CCo01 CIc2eNC=CErC(C)

Atom representations Atom representatlons 1S «’Atom representations

(with local context) (with both local and \‘\‘ ! from encoder
global contexts) ! :
u i I ' , Helper Output

\ E E i @ _---E
B - g B H £ E L e e
dgigl | . Rl

Lo

Biow

D-GAT > Global

Atom features

—
1
|12

i i E I attn.
:2>3 g E

E 15516 | E E i i I E I E : Ef,
5 15->17 H E ! E : - __-_ )
| Bond features : ' oo - —={1]

] ! - 'Ec
01203 [ N A ' ! ¢ e 1
0 ; U B CIR rlrorl rj - i —e--- '___%
° 1 -1 Compute shortest 210..1 Embedding % T, ' !
MR M R T e M f : —
2 el by s 32110 oo rnr,r 1, 1, Graph-aware 5 \ Transformer
Tu and Coley, https://arxiv.org/abs/2110.09681 .. Adjacency Pairwise distance positional embedding - decoder
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U
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https://arxiv.org/abs/2110.09681

Computer-aided retrosynthetic analysis & evaluation

Input: product molecule; Output: =1 reactant molecule(s)

 Evaluation strategies focus on top-n accuracy, i.e., recapitulating literature examples

o Most evaluations have focused on the “USPTO_50k” dataset, which is small and covers 10 classes
o Some have looked at ca. 1M reactions from “USPTO _full”

Methods Top-n accuracy (%) Features / techniques used
1 10 Templ. Map. Aug.
RetroSim (Coley et al., 2017) 32.8 56.1 v v X
MEGAN (Sacha et al., 2021) 33.6 63.9 X v X
NeuralSym (Segler & Waller, 2017) 35.8 60.8 v v X
GLN (Dai et al., 2019a) 39.3 63.7 v v X
RetroPrime (Wang et al., 2021b) 44.1 68.5 X v e
Aug. Transformer (Tetko et al., 2020) 44.4 73.3 X X v
Graph2SMILES (D-GAT) (ours) 45.7 62.9 X X X
Graph2SMILES (D-GCN) (ours) 45.7 63.4 X X X
GTA (Seo et al., 2021) 46.6 70.4 X v v

Tu and Coley, https://arxiv.org/abs/2110.09681

« Other evaluation metrics introduce additional assumptions, e.g., roundtrip accuracy
Schwaller et al., ML4PhysicalScience @ NeurlPS 2019 https://ml4physicalsciences.github.io/2019/files/NeurlPS_ML4PS 2019 116.pdf

N N
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https://arxiv.org/abs/2110.09681

Multi-step planning

Input: product molecule; Output: synthetic pathway that terminates in buyable molecules

« Tree search strategies can perform recursive one-step expansion to connect complex molecules
back to purchasable compounds (e.g., Monte Carlo tree search, best-first, proof number search)

« Both data-driven and expert approaches have generated pathways that score well in blinded tests:

(o

a 3N-MCTS versus literature routes (test a)

MCTS preference ratio

0]1 0i3 Oi5 0.7 0.9

dseL
&)
|
True machine assignment rate

0 0.2 0.4 0.6 0.8

False machine assignment rate
Segler, Preuss, Waller Mikulak-Klucznik, Grzybowksi et al.
Nature 555, 604-610 (2018) Nature 588, 83-88 (2020)
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Major product prediction

Input: =1 reactant molecule(s) + 20 agent molecule(s); Output: product molecule

* Mostly the reverse of retrosynthesis, except we don’t have to create leaving groups from scratch

o We can use graph edit methods that just rearrange bonds
. - Col t al. ACS Cent. Sci 3(5) 2017;
. Template-free methods do not offer good coverage and generalizability oy o welor Chom for 1 25, 2017

« There are also many template-free formulations of the forward prediction task, including
o SMILES-to-SMILES schwalleretal., Chem. Sci. 9, 2018; Schwaller et al., ACS Cent. Sci. 5, 2019

O Graph-to-Graph Jin et al. NeurIPS 2017, Coley et al., Chem. Sci. 10, 2019; Sacha et al. JCIM 61(7), 2021; Bradshaw et al. ICLR 2019; ...

o Graph-to-SMILES

input KOH output (0]
EtOH, HZO S X
S

@? W@@

N N
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https://arxiv.org/abs/2110.09681

Classification & atom mapping

Input: =1 reactant molecule(s), =1 product molecule(s); Output: reaction type classification or atom-to-atom map

 Classically, these are rule-based or heuristic

o E.g., maximum common substructures for performing atom mapping

o E.g., NextMove Software’s NameRXN is a set of SMARTS patterns that define reaction types

« Both tasks can be trained through supervised learning (reaction fingerprint, or even unsupervised

learning from language models)

0

HO HO ci HO

NH, + . >

I Va il oy ; el
Reaction fingerprint

N EER B NEEER EEN
\ 4

I ||
Reaction type:
10000 training ’H» 50-class » 2.1.2

reactions

ML model Carboxylic acid
+ Amine reaction

Schneider et al. JCIM 55(1) 39-53, 2015

Schwaller et al. Sci. Adv. 7(15) 2021

A Dataset of reaction SMILES

BrC(Br)(Br)Br.CC...>>...
CO.Nclcccc([N+]...>>...
CC(=0)O[BH-]...>>...
(0OC(C)=0)0C(C)=0..>>...

precursors>>products
without atom-mapping

Discovery & utilization

Head

« Transformers 12345678

Unsupervised training on dataset (without labels)

Transformer
model

Unboxing-trained transformer model

capture the hidden !
grammar of chemical :
reactions. g 2
’
9
0

Layel

« Reactions follow
consistent rules
« Atom rearrangements .

can be extracted from e
model —» RXNMapper Atom-mappin

signal

Deployment

ﬁCC(C)S.CN(C)C=0.Fclcccnch.0=C(N)M.M_M»CC(C)Sclnccccliﬂ
1] 1111111 J
WYY

> —

lCC(C)S.CN(C)C:O.lclcccnch‘0=C(M)W.M.M»CC(C)SclncccchW

Heads learn different functionalities
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Reaction condition recommendation

Input: =1 reactant molecule(s), =21 product molecule(s); Output: varies

« Reaction conditions are essential for reaction execution; models to predict suitable conditions a
priori can be trained on published data to “fill in the blank” above the arrow

« The modest number (thousands) of distinct reagents, catalysts, and solvents means that we can get
away with a classification formulation rather than generation

106}

......................... [<RXD

-
LI | M=~ Rt e 1)

RGT>tetrak|s(tr|phenylphosph|ne) palladlum<sup>(0)</sup>

IDVOD. DT

rpalladlum d|hydr0X|de

105}

Lplatlnum(IV) OXIde

104 L

103

102

Number of reaction instances

I L[

fbls(trlcyclohexyl\\osph|neﬂJenzyI|MUthenlum(IV) dlchlorlde

S ................. e e e (Copper(l) Iodlde

| nickel

.I'i triphen phosphine-palladium(ll) chlorlde
N *‘ palladium diacetate |

— | Lindlar's catalyst

rethylamino)pyridine

| palladlum

4-(N,N=

(palladuﬁl‘(‘)mactwated carbon |

<RXD.RGTxtris- (dl\b@hd\\ne{etoWd|um<sup>(0)</sup>

i, blwhenylah’sWerrocene)\nagum(ll) dichloride |

| toluene-4-sulfonic acid

i [dlchloro(l 5 bls(d|phenylphosphanyI)ferrocene)palladlum(lI) ] romethane adduct
: ‘ Grubb s 2nd g}e(atlon catalyst
100 i ; : ; 1_lrosmlum(VIII) oxide |
10° 10! 102 10° 104 10° 10°6
Rank

Number of reaction instances

107F ; 7 dichloromethane |
: 7| tetrahydrofuran

6 = : methanol
TOO L sovsmsmasrmassmmmi N T o e e s siater

NRd meth |-formamide

toluene
acetonitrile
diethyl ether
RXD. RGT>
fom
hexane
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acetone
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i ethjgl sulfoxide

(1] -
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103 oneseld : : o . LT
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\chloroformw
; ‘ : : acetic acid
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Reaction condition recommendation

Input: =1 reactant molecule(s), =21 product molecule(s); Output: varies

« Reaction conditions are essential for reaction execution; models to predict suitable conditions a
priori can be trained on published data to “fill in the blank” above the arrow

« The modest number (thousands) of distinct reagents, catalysts, and solvents means that we can get
away with a classification formulation rather than generation

oe—0

« Multiple formulations have been pursued for data-driven condition prediction

o Predict 1 catalyst, 1-2 solvents, 1-2 reagents, and temperature for “any” organic reaction as input
Gao et al. ACS Cent. Sci. 4(11) 1465-1476, 2018

o Predict compounds for specific aspects of reaction conditions, for one reaction type at a time
(e.g., metal, ligand, base, solvent, additive for Suzuki waser et al. Jciv 61(1) 156-166, 2021

o Predict reagent-dependent yields and perform an in silico screen Nielsen et al. JACS 140(15) 5004-5008, 2018

I n =
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Model-guided reaction condition optimization

Input: =1 reactant molecule(s), 21 product molecule(s); detailed quantitative conditions Output: yield/performance

« If we have access to new experimental results for feedback, we can use surrogate model-guided
optimization to propose improved concentrations, temperature, catalysts, etc.

* This is an old problem

REACTOR ANALYZER

v

~

COMPUTER =~
PDP 11/RSTS

$

TrY

Fig. 1. Closed-loop system for automated chemical synthesis.

CHEMICAL PROCESS OPTIMIZATION BY COMPUTER — A SELF-
DIRECTED CHEMICAL SYNTHESIS SYSTEM

H. WINICOV ,* J. SCHAINBAUM, J. BUCKLEY, G. LONGINO, J. HILL and

C. E. BERKOFF
Research and Development Division, Smith Kline and French Laboratories, Philcdelphia,

Pa. (US.A.)
(Received 3rd May 1978)

« More recent work by Ley, Jensen, Lapkin, Doyle, Bourne, etc. _ Regression
follows the same model-guided optimization workflow using . ?
a surrogate model to predict performance (e.g., yield) G
Design space & Exspeelgcr:?iirr]mtal
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Substrate scope assessment & yield prediction

Input: hypothetical substrate; Output: yield or Boolean

« These models try to answer the question: “What substrates will work with my reaction?” Or,

equivalently, “What substrates will lead to a good yield?”

« HTE provides a rich source of information where most aspects of the reaction are held constant

Ahneman et al. Science 360(6385) 186-190, 2018

Pd catalyst (10 mol %)
additive (1 equiv)

base (1.5 equiv)
DMSO (0.1 M), 60 °C, 16 h

H
N RS
I R
Me

N

Q, <

Aryl Halides (15)

e

RS 7

Additives (23)

MTBD
R
O O ABu MeN N
NH, R PR, )NL Lol
i - MeoN—7 <5\~ NMe
Pd L i-Pr i-Pr MezN NMe2 raele N }\jMez 2
] l BTMG P,Et
Pd Catalysts 4) T Bases (3)
i
I I I | I Development

Experimental yield [%]

Random Forest

R?=0.92
RMSE =7.8

25 0 25 50 75

Predicted yield [%]

100
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Substrate scope assessment & yield prediction

Input: hypothetical substrate; Output: yield or Boolean

« These models try to answer the question: “What substrates will work with my reaction?” Or,
equivalently, “What substrates will lead to a good yield?”

« HTE provides a rich source of information where most aspects of the reaction are held constant
Ahneman et al. Science 360(6385) 186-190, 2018

Descriptors

<&

additive aryl halide base ligand Random Forest
< | R2=0.92
= RMSE=7.8
Q
>
X = R2772>< 120 i 2772% 1 C_U
train Yifain ¢ R =
O
£
— ©
o
>
LL
Xiosy € RIEEX120 Yrest & R 25 0 25 S50 75 100
Predicted yield [%]
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Model-guided catalyst/ligand design

Input: hypothetical catalyst/ligand structure or descriptors; Output: yield/selectivity/etc.

* Model-guided molecular design relies on models that look just like QSAR/QSPR: need to correlate
structure to function, then we can virtually screen new (hypothetical) structures

Descriptor-based example
Reid & Sigman Nature 571, 343-348, 2019

o”gﬂo

Structure-based example
Zahrt et al. Science 363(6424) 2019
Zahrt et al. Chem. Rev. 120(3), 1620-1689, 2020

a
0 « RSN Catalyst B c )
Additives ’ 3 EuTllsllbrary
Concentrations L
Input: Temperatirs Output: R TﬁjLo X s
reported data Solvent enantioselectivity P
/f‘\/ﬁl\,_('
a AAG* = 0.42 + 0.29s0l - 0.90NBO,, - 0.75NBO, L [LE L o B
] +0.33L, + 0.63H-X-CNu + 0.20L ,,
34
Difference in ol ¢ 5
. T. 24 ]
energy barrier S 3
. | .o 3 14 1 *Testset
(enantlose eCt|V|ty) g +Training set AAG (kcal/mol)
predicted by a *%: 04 s 7] Ig%§3
linear free energy g _ | g 2 HER ST 0ers
. , S . 5.5 R 092625
relationship (LFER) 3 : z . e Sl
g -2 e :’:. 3 ' 152375
2 - 18225
® Training set 2.12125
-3 4 % Validation set >242

T3 3 6753
Measured AAG* (kcal mol™)

-1 ' AAG (Observed)
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Mechanistic elucidation from reaction data

Input: ?; Output: mechanistic understanding

* Not a lot here yet!

« Models trained to think pseudo-mechanistically aren’t actually learning mechanisms & adshaw et al. 117 2019

target

R

reactant 1 reactant 2 reagent

“target

o

Li*

product 1 product 2

(vBr

mmmm 1st Choice
mmmm 2nd Choice
3rd Choice

« Post hoc analysis of learned relationships (e.g., Sigman-esque LFERS) can reveal descriptor
importance; in rare cases, univariate relationships can provide mechanistic clues i f

Newman-Stonebraker et al. Science 374(6565) 301-3098, 2021
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New method development and reaction discovery

Input: ?; Output: novel reaction, not just novel substrate

 Also not a lot here — but what is a “new method” or “new reaction” anyway?

New combinations of known half reactions Generation of new reaction centers or environments
Segler and Waller Chem. Eur. J. 23(25) 6118-6128, 2017 Bort et al. Sci. Rep. 11, 3718, 2021
_____ 1
1. 4 NO \\ Oxidant
1 v 2 [ d l
m b A '\ O, : i R L Autoencoder .
1 bl okl Chemical
6a,b da:;nblac:e D Latent variables
2 oy ’ ',No_? 1 2;:\:03 N (CGR/SMILES) » D D ‘ Nesivenicticns
(L7 i~ — ) = | 5
0 ) o Vo
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Reminder: Predictive chemistry tasks

Primary learning objective for this talk: understand the basics of reaction datasets, representation
considerations (beyond molecular representation considerations), and the common learning tasks

Deployment
Retrosynthesis, reaction product prediction, classification/mapping

Development
Condition recommendation, condition optimization, scope assessment, catalyst design

Discovery
Mechanistic elucidation, new method development

Increasing degree of extrapolation
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Investing in the future of predictive chemistry with the
Open Reaction Database https://open-reaction-database.org/

Kearnes et al. JACS 145(45) 18820-18826, 2021

« Building predictive models for chemistry relies on the availability of structured reaction data

« The ORD is an initiative to "support machine learning and related efforts in reaction prediction,
chemical synthesis planning, and experiment design”

1. Provide a structured data format for chemical reaction data
2. Provide an interface for easy browsing and downloading of data
3. Make reaction data freely and publicly available for anyone to use

4. Encourage sharing of precompetitive proprietary data

Governing Committee
Connor Coley (MIT)

Abby Doyle (UCLA, C-CAS)
Spencer Dreher (Merck)
Joel Hawkins (Pfizer)

Klavs Jensen (MIT)

Steven Kearnes (Relay)

Contributors

Anton Kast (Google)
Brian Lee (Google)
lan Pendleton (Relay)

Advisory Board

Juan Alvarez (Merck)

Alan Aspuru-Guzik (Toronto, MADNESS)
Tim Cernak (Michigan, Entos)

Lucy Colwell (Cambridge, SynTech, Google)
Werngard Czechtizky (AstraZeneca)

JW Feng (Google)

Matthew Gaunt (Cambridge, SynTech)
Alex Godfrey (NCATS)

Mimi Hii (Imperial, ROAR)

Greg Landrum (T5 Informatics)

Fabio Lima (Novartis)

Christos Nicolaou (Lilly)

Sarah Reisman (Caltech)

Francesco Rianjongdee (GSK)

Matthew Sigman (Utah, C-CAS)

Jay Stevens (BMS)

Sarah Trice (Entos)

Huimin Zhao (UIUC, MMLI)
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Information sources affect method development

. High-throughput experimentation

@ Fublished literature
@ Fublished patents

diversity of (categorical) conditions

diversity of substrates and reaction types

« Currently absent from databases: order of addition, addition speed, ambient temperature and
humidity, reagent purity, chemical vendor, ...

o Missing from literature, and no variation within an HTE dataset

 Diversity of concentrations and reaction times is poor in HTE, even if reagent/catalyst identity varies

| B |
HIT .




Misc. comments on reaction informatics

Chemists in industry do use predictive chemistry tools routinely for route scouting

1.
2.

Discovery chemists using routes as proposed, process chemists using for idea generation
Data-driven methods can be retrained easily on the most recent reaction data

Data-driven predictive chemistry tools can accelerate chemical development, but they are not

1.

o kW

Providing precise suggestions that are immediately actionable (e.g., using robotics)
Expanding synthetically-accessible chemical space by inventing new synthetic methods
Removing the need for expert chemist expertise

Helping with complex natural product synthesis

Perfectly generalizing from very small datasets

Operating at the mechanistic level (except Baldi and coworkers)
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