
Connor W. Coley
Assistant Professor
MIT Chemical Engineering
MIT Electrical Engineering and Computer Science 

Cheminformatics Strasbourg Summer School
June 28, 2022

Learning patterns of chemical reactivity 
from experimental data

ccoley@mit.edu | coley.mit.edu | @cwcoley

Priyanka Raghavan Wenhao Gao Keir Adams Tianyi JinItai Levin Zhengkai Tu

Sam Goldman Rebecca NeeserThijs Stuyver Guangqi Wu Rocío Mercado John Bradshaw David Graff

Mingrou XieJenna Fromer

Data
CAS, Pistachio, Reaxys

Funding
MLPDS, DARPA, ONR, NIH, 

NSF, Takeda, Nanite Bio, 
J-Clinic, MIT-IBM Watson AI Lab

Advising
Entos, Galixir, Dow, 

Revela, Kebotix, Anagenex

Klavs Jensen
William Green 

Regina Barzilay
Tommi Jaakkola

Chris Voigt
Daniela Rus

Sangeeta Bhatia
Timothy Jamison 

Lucky Pattanaik
Hanyu Gao
Yanfei Guan

Thomas Struble

Vignesh Ram
Ava Soleimany

Alexander Amini
Natalie Eyke

Wengong Jin
Mike Fortunato
Pieter Plehiers
John Schreck
Xiaoxue Wang

Yiming Mo

Dale Thomas
Justin Lummiss

Luke Rogers
Jon Jaworski
Chris Breen

Victor Schultz

Tianfan Fu
Jimeng Sun + Saul Vega Sauceda, Janet Li, Divya Nori, Chanwoo Yoon, Ron Shprints

There’s a lot to cover! Don’t worry about 

writing down references; email me and 

I’ll send you a copy of the slides!



2

Overarching goal: Enable the "self-driving laboratory” through 
data-informed decision making and information-centric discovery

(a) Formalize the use of prior and new information for decision-making in chemical discovery
(b) Improve the accuracy, robustness, and data requirements of neural models for (bio)chemistry
(c) Enhance understanding of underlying chemical or physical processes through interpretable machine learning
(d) Model and expand the synthetic toolbox to accelerate the synthesis of novel functional molecules
(e) Enable development of autonomous experimental platforms and R&D workflows

Closed-loop discovery & autonomous laboratories
e.g., small molecule hit-to-lead and lead optimization

SynthesisDesign Validation

Understanding Modeling

Goal Definition Functional 
Molecules

Information

1. Domain-tailored neural models
2. Computer-aided molecular design

3. Data-driven predictive chemistry
4. Robotics and laboratory automation

Challenge: Molecular discovery is labor-intensive and heavily biased by human intuition. It takes 
immense resources and many years to bring a single drug to market; materials often take decades. 

Introduction Data & Representations Deployment Development Discovery Summary
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Coley, Trends Chem. 2021. 

Virtual libraries are often “make-on-demand” 
libraries enumerated using chemical 

transformation rules we believe to be robust

Generative models produce new compounds 
for which we must plan synthetic routes
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Synthesis constrains what we can access at all and influences what we can access easily

Relevance of reactivity to molecular design
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Predictive chemistry (reaction informatics) tasks

4Introduction Data & Representations Deployment Development Discovery Summary

Primary learning objective for this talk: understand the basics of reaction datasets, representation 
considerations (beyond molecular representation considerations), and the common learning tasks
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Retrosynthesis, reaction product prediction, classification/mapping

Condition recommendation, condition optimization, scope assessment, catalyst design

Mechanistic elucidation, new method development



Reactions as a data structure: important concepts

Reaction SMILES:

Reaction SMILES with conditions:

Atom-mapped reaction SMILES:
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[O:3]=[N+:2]([O-:4])[C:1]1=[CH:5][CH:6]=[C:7]([CH:16]=[CH:17]1)/[CH:8]=[CH:9]/[C:10]2=[CH:11][CH:12]=[CH:13][C
H:14]=[CH:15]2>>[O-:3][N+:2]([C:1]([CH:5]=[CH:6]3)=[CH:17][CH:16]=[C:7]3[C@H:8]4O[C@@H:9]4[C:10]5=[CH:15][CH:1

4]=[CH:13][CH:12]=[CH:11]5)=[O:4]

O=[N+]([O-])C1=CC=C(C=C1)/C=C/C2=CC=CC=C2>>[O-][N+](C(C=C1)=CC=C1[C@H]2O[C@@H]2C3=CC=CC=C3)=O

O=[N+]([O-])C1=CC=C(C=C1)/C=C/C2=CC=CC=C2>ClC1=CC(C(OO)=O)=CC=C1.[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(
=O)=O.[Fe+3].CC#N>[O-][N+](C(C=C1)=CC=C1[C@H]2O[C@@H]2C3=CC=CC=C3)=O

N+
O

O-

O

N+
O-

O

acetonitrile
-10 ℃, 1 h

100 mM

1.5 equiv.

82%

Cl
O

O
HO

Fe(ClO4)31 equiv.

Quantitative aspects 
(concentrations, temperature; 
time; yield) and roles of agents 

are lost in line notations

RDFiles are “most general” as 
extension of SDFiles, but 

additional data does not have a 
universal format
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Reactions as a data structure: representations
How are reactions represented as inputs for learning algorithms? It can depend whether the product is 
meant to be part of the input

1. Strings (i.e., reaction SMILES)
2. Constituent molecular components

a. Concatenation of reactant molecules (if fixed # components in dataset)
b. Set of reactant molecules (if variable # components in dataset)
c. Reaction difference fingerprints 

3. Graphs & graph edits (edits require atom-mapping)
4. Condensed graph of reaction (ignores spectators, requires atom-mapping)

There is very little standardization in representing reaction conditions; often, the structures of catalysts, 
reagents, solvents are added to the reactants
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Hoonakker et al. Int. J. Artif. Intell. Tools 20(2) 253-270, 2011; Heid and Green, J. Chem. Inf. Model. 62(9) 2101-2110, 2022

Schwaller et al. Mach. Learn.: Sci. Technol. 2, 015016, 2021

Coley et al. Chem. Sci. 10, 370-377, 2019 N+
O

O-

Cl

OO
O

Introduction Data & Representations Deployment Development Discovery Summary

Schneider et al. JCIM 55(1) 39-53, 2015



Relationship to molecular representations

• Because reactions can always be represented by their constituent molecules, there is a very close 
relationship between reaction representations and molecular representations

• The descriptor-based v. structure-based
“debate” applies to reactions as well

• Descriptors for complex catalysts are still 
very common, given the limitations of
SMILES and graphs to describe complex
catalysts or capture subtle aspects of structure

7

Guan et al. Chem. Sci. 12, 2198-2208, 2021

Gallegos et al. Acc. Chem. Res. 54(4) 827-836, 2021
Introduction Data & Representations Deployment Development Discovery Summary



Reaction data sources (select examples)
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LiteraturePatents High-throughput Experimentation

USPTO (CC0 licensed)

Pistachio (commercial)

Reaxys (commercial)

CAS / SciFinder (commercial)

Merck’s C-N coupling data

Pfizer’s Suzuki data

…

Open Reaction Database Kearnes et al. JACS 145(45) 18820-18826, 2021

Daniel Lowe, https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873

NextMove Software, https://www.nextmovesoftware.com/pistachio.html

Elsevier, https://www.reaxys.com/

CAS, https://www.cas.org/cas-data/cas-reactions

Ahneman et al. Science 360(6385) 186-190, 2018

Perera et al. Science 359(6374) 429-434, 2018



Detailed look at a Reaxys entry
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Published reaction data provides 
200+ years of experience to learn from

Millions of tabulated reaction examples

reactants major product

reagent(s)
catalyst(s)

solvent(s)
temperature

time
yield provenance

concentrations reaction mechanisms

byproducts minor products ”failed” reactions

vessels orders of addition

Introduction Data & Representations Deployment Development Discovery Summary



Aside on evaluation & well-posedness

Models are typically evaluated in terms of their ability to recapitulate literature/experimental data
Any recommender system proposing new reactions cannot be evaluated with full confidence, since we 
cannot perfectly anticipate success/failure

• One-step retrosynthetic analysis always has more than one right answer
o We do it anyway

• Multi-step retrosynthetic analysis has many more than one right answer
o We (usually) evaluate models qualitatively, or in terms of their ability to find any pathway

• Reaction outcome prediction is underspecified without full knowledge of reaction conditions
o We do it anyway

• Yield prediction is similarly underspecified when using literature data
o We do it anyway

10Introduction Data & Representations Deployment Development Discovery Summary



Computer-aided retrosynthetic analysis

• Reaction templates can crudely codify the “rules of chemistry”

11Introduction Data & Representations Deployment Development Discovery Summary

N+
O

O-

O

N+
O-

O

Find core of transformation1

* *
O

* *

Add generalized neighbors2

O

*

*

*

*
*

*

*

*

Extend to known func. groups3
[OH,Cl,I,Br,F]

[O,S]

* [N]

[O,S]

* [O]
B

*

[O]

[C,N]* [C,N]*

a!c

**

*

CF3* 25 total

[c:1]-[CH;@@;D3;+0:2]1-[O;H0;D2;+0]-
[CH;@;D3;+0:3]-1-[c:4]

>>
[c:1]/[CH;D2;+0:2]=[CH;D2;+0:3]/[c:4]

Canonicalize and record4

Many prior publications; Coley et al., J. Chem. Inf. Model. 59, 2019

• After extracting a library of templates from a library of 
reactions, a classification model can learn when to apply them 
to new product molecules of interest

Input: product molecule; Output: ≥1 reactant molecule(s)

Segler and Waller, Chem. Eur. J. 23, 2017

Low data approaches: Fortunato et al. JCIM 60(7) 3398-3407, 2020; Seidl et al. JCIM 62(9) 2111-2120, 2022



Computer-aided retrosynthetic analysis: template-free

• There are many template-free formulations of the one-step retrosynthesis task, including
o SMILES-to-SMILES
o Graph-to-Graph

12Introduction Data & Representations Deployment Development Discovery Summary

Input: product molecule; Output: ≥1 reactant molecule(s)

Liu et al., ACS Cent. Sci. 3, 2017; Schwaller et al. Chem. Sci. 11, 3316-3325, 2020; Lin et al., Chem. Sci. 12, 2020; etc.

Shi et al., ICML 2020; Ram et al. arxiv:2006.07038 2020; Sacha et al. arxiv:2006.15426 2020
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Computer-aided retrosynthetic analysis: template-free

• There are many template-free formulations of the one-step retrosynthesis task, including
o SMILES-to-SMILES
o Graph-to-Graph
o Graph-to-SMILES

13Introduction Data & Representations Deployment Development Discovery Summary

Input: product molecule; Output: ≥1 reactant molecule(s)

Liu et al., ACS Cent. Sci. 3, 2017; Schwaller et al. Chem. Sci. 11, 3316-3325, 2020; Lin et al., Chem. Sci. 12, 2020; etc.

Shi et al., ICML 2020; Ram et al. arxiv:2006.07038 2020; Sacha et al. arxiv:2006.15426 2020

NH

N

NCl

Br

ClC1=NC=C(Br)C(NC2CCCC2)=N1 NC1CCCC1.ClC2=NC=C(Br)C(Cl)=N2

Product molecule Reactant molecules

Tu and Coley, https://arxiv.org/abs/2110.09681

https://arxiv.org/abs/2110.09681


Computer-aided retrosynthetic analysis & evaluation

• Evaluation strategies focus on top-n accuracy, i.e., recapitulating literature examples
o Most evaluations have focused on the “USPTO_50k” dataset, which is small and covers 10 classes
o Some have looked at ca. 1M reactions from “USPTO_full”

• Other evaluation metrics introduce additional assumptions, e.g., roundtrip accuracy

14Introduction Data & Representations Deployment Development Discovery Summary

Input: product molecule; Output: ≥1 reactant molecule(s)

Tu and Coley, https://arxiv.org/abs/2110.09681

Schwaller et al., ML4PhysicalScience @ NeurIPS 2019 https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_116.pdf

https://arxiv.org/abs/2110.09681


Multi-step planning

• Tree search strategies can perform recursive one-step expansion to connect complex molecules 
back to purchasable compounds (e.g., Monte Carlo tree search, best-first, proof number search)

• Both data-driven and expert approaches have generated pathways that score well in blinded tests:

15Introduction Data & Representations Deployment Development Discovery Summary

Input: product molecule; Output: synthetic pathway that terminates in buyable molecules

Segler, Preuss, Waller
Nature 555, 604-610 (2018)

Mikulak-Klucznik, Grzybowksi et al.
Nature 588, 83-88 (2020)



Major product prediction

• Mostly the reverse of retrosynthesis, except we don’t have to create leaving groups from scratch
o We can use graph edit methods that just rearrange bonds

• Template-free methods do not offer good coverage and generalizability
• There are also many template-free formulations of the forward prediction task, including

o SMILES-to-SMILES
o Graph-to-Graph
o Graph-to-SMILES

16Introduction Data & Representations Deployment Development Discovery Summary

Input: ≥1 reactant molecule(s) + ≥0 agent molecule(s); Output: product molecule

Coley et al. ACS Cent. Sci  3(5) 2017;
Segler and Waller, Chem. Eur. J. 23, 2017

Schwaller et al., Chem. Sci. 9, 2018; Schwaller et al., ACS Cent. Sci. 5, 2019

Jin et al. NeurIPS 2017; Coley et al., Chem. Sci. 10, 2019; Sacha et al. JCIM 61(7), 2021; Bradshaw et al. ICLR 2019; …

Tu and Coley, https://arxiv.org/abs/2110.09681

Clemens Isert

https://arxiv.org/abs/2110.09681


Classification & atom mapping

• Classically, these are rule-based or heuristic 
o E.g., maximum common substructures for performing atom mapping
o E.g., NextMove Software’s NameRXN is a set of SMARTS patterns that define reaction types

• Both tasks can be trained through supervised learning (reaction fingerprint, or even unsupervised 
learning from language models)

17Introduction Data & Representations Deployment Development Discovery Summary

Input: ≥1 reactant molecule(s), ≥1 product molecule(s); Output: reaction type classification or atom-to-atom map

Schneider et al. JCIM 55(1) 39-53, 2015

Schwaller et al. Sci. Adv. 7(15) 2021



Reaction condition recommendation

• Reaction conditions are essential for reaction execution; models to predict suitable conditions a 
priori can be trained on published data to “fill in the blank” above the arrow

• The modest number (thousands) of distinct reagents, catalysts, and solvents means that we can get 
away with a classification formulation rather than generation 

18Introduction Data & Representations Deployment Development Discovery Summary

Input: ≥1 reactant molecule(s), ≥1 product molecule(s); Output: varies



Reaction condition recommendation

• Reaction conditions are essential for reaction execution; models to predict suitable conditions a 
priori can be trained on published data to “fill in the blank” above the arrow

• The modest number (thousands) of distinct reagents, catalysts, and solvents means that we can get 
away with a classification formulation rather than generation 

• Multiple formulations have been pursued for data-driven condition prediction
o Predict 1 catalyst, 1-2 solvents, 1-2 reagents, and temperature for “any” organic reaction as input

o Predict compounds for specific aspects of reaction conditions, for one reaction type at a time
(e.g., metal, ligand, base, solvent, additive for Suzuki

o Predict reagent-dependent yields and perform an in silico screen

19Introduction Data & Representations Deployment Development Discovery Summary

Input: ≥1 reactant molecule(s), ≥1 product molecule(s); Output: varies

Maser et al. JCIM 61(1) 156-166, 2021

Gao et al. ACS Cent. Sci. 4(11) 1465-1476, 2018

Nielsen et al. JACS 140(15) 5004-5008, 2018

AB C+ ?



Model-guided reaction condition optimization

• If we have access to new experimental results for feedback, we can use surrogate model-guided 
optimization to propose improved concentrations, temperature, catalysts, etc.

• This is an old problem

• More recent work by Ley, Jensen, Lapkin, Doyle, Bourne, etc. 
follows the same model-guided optimization workflow using
a surrogate model to predict performance (e.g., yield)

20Introduction Data & Representations Deployment Development Discovery Summary

Input: ≥1 reactant molecule(s), ≥1 product molecule(s); detailed quantitative conditions Output: yield/performance

Design space

?
Regression

Experimental
selection



Substrate scope assessment & yield prediction

• These models try to answer the question: “What substrates will work with my reaction?” Or, 
equivalently, “What substrates will lead to a good yield?”

• HTE provides a rich source of information where most aspects of the reaction are held constant

21Introduction Data & Representations Deployment Development Discovery Summary

Input: hypothetical substrate; Output: yield or Boolean

Predicted yield [%]
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]

Ahneman et al. Science 360(6385) 186-190, 2018



Substrate scope assessment & yield prediction

• These models try to answer the question: “What substrates will work with my reaction?” Or, 
equivalently, “What substrates will lead to a good yield?”

• HTE provides a rich source of information where most aspects of the reaction are held constant

22Introduction Data & Representations Deployment Development Discovery Summary

Input: hypothetical substrate; Output: yield or Boolean

Ahneman et al. Science 360(6385) 186-190, 2018

Predicted yield [%]
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Model-guided catalyst/ligand design

• Model-guided molecular design relies on models that look just like QSAR/QSPR: need to correlate 
structure to function, then we can virtually screen new (hypothetical) structures

23Introduction Data & Representations Deployment Development Discovery Summary

Input: hypothetical catalyst/ligand structure or descriptors; Output: yield/selectivity/etc.

Descriptor-based example Structure-based example

Difference in 
energy barrier 
(enantioselectivity) 
predicted by a 
linear free energy 
relationship (LFER)

Reid & Sigman Nature 571, 343-348, 2019 Zahrt et al. Science 363(6424) 2019
Zahrt et al. Chem. Rev. 120(3), 1620-1689, 2020

See also: Corminboeuf’s NaviCatGA



Mechanistic elucidation from reaction data

• Not a lot here yet!
• Models trained to think pseudo-mechanistically aren’t actually learning mechanisms

• Post hoc analysis of learned relationships (e.g., Sigman-esque LFERs) can reveal descriptor 
importance; in rare cases, univariate relationships can provide mechanistic clues

24Introduction Data & Representations Deployment Development Discovery Summary

Input: ?; Output: mechanistic understanding

Bradshaw et al. ICLR 2019

Newman-Stonebraker et al. Science 374(6565) 301-3098, 2021



New method development and reaction discovery

• Also not a lot here – but what is a “new method” or “new reaction” anyway?

25

Input: ?; Output: novel reaction, not just novel substrate

New combinations of known half reactions
Segler and Waller Chem. Eur. J. 23(25) 6118-6128, 2017

Generation of new reaction centers or environments
Bort et al. Sci. Rep. 11, 3718, 2021

Introduction Data & Representations Deployment Development Discovery Summary



Reminder: Predictive chemistry tasks

26

Primary learning objective for this talk: understand the basics of reaction datasets, representation 
considerations (beyond molecular representation considerations), and the common learning tasks
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Retrosynthesis, reaction product prediction, classification/mapping

Condition recommendation, condition optimization, scope assessment, catalyst design

Mechanistic elucidation, new method development
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Investing in the future of predictive chemistry with the 
Open Reaction Database https://open-reaction-database.org/
• Building predictive models for chemistry relies on the availability of structured reaction data
• The ORD is an initiative to "support machine learning and related efforts in reaction prediction, 

chemical synthesis planning, and experiment design”

Kearnes et al. JACS 145(45) 18820-18826, 2021
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Governing Committee
Connor Coley (MIT)
Abby Doyle (UCLA, C-CAS)
Spencer Dreher (Merck)
Joel Hawkins (Pfizer)
Klavs Jensen (MIT)
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Advisory Board
Juan Alvarez (Merck)
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Jay Stevens (BMS)
Sarah Trice (Entos)
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Contributors
Anton Kast (Google)
Brian Lee (Google)
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1. Provide a structured data format for chemical reaction data
2. Provide an interface for easy browsing and downloading of data
3. Make reaction data freely and publicly available for anyone to use
4. Encourage sharing of precompetitive proprietary data
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Information sources affect method development
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diversity of substrates and reaction types
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High-throughput experimentation

Published literature
Published patents

Needed for 

building better 

models?

• Currently absent from databases: order of addition, addition speed, ambient temperature and 
humidity, reagent purity, chemical vendor, …
o Missing from literature, and no variation within an HTE dataset

• Diversity of concentrations and reaction times is poor in HTE, even if reagent/catalyst identity varies
Introduction Data & Representations Deployment Development Discovery Summary
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Chemists in industry do use predictive chemistry tools routinely for route scouting
1. Discovery chemists using routes as proposed, process chemists using for idea generation
2. Data-driven methods can be retrained easily on the most recent reaction data

Data-driven predictive chemistry tools can accelerate chemical development, but they are not
1. Providing precise suggestions that are immediately actionable (e.g., using robotics)
2. Expanding synthetically-accessible chemical space by inventing new synthetic methods
3. Removing the need for expert chemist expertise
4. Helping with complex natural product synthesis
5. Perfectly generalizing from very small datasets
6. Operating at the mechanistic level (except Baldi and coworkers)

Misc. comments on reaction informatics
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