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g Peptide therapeutics

Around 80 peptide drugs on the global market
More than 150 peptides in clinical development

400-600 peptides undergoing preclinical studies

Some limitations:
90% of all peptide drugs are delivered by injection

lack of oral bioavailability remains the major limiting
barrier in peptide drug development

Most peptide drugs modulate peripheral extracellular
targets
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Number of Peptides

Peptides are heterogeneous by their size and type

Length of peptides entering clinical development, by decade.
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Lau, J. L., & Dunn, M. K. (2018). Bioorganic & medicinal chemistry, 26(10), 2700-2707.
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Fuentes-Lemus, E., et. al. (2021). Molecules, 27(1), 15.
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Overview of well-validated chemical modifications used in peptide drug
development to increase metabolic stability and bioavailability
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Muttenthaler, M. et al. Trends in peptide drug discovery. Nat Rev Drug Discov 20, 309-325 (2021)
Types of crosslinks Examples

-Disulfides
-Sulfilimine

Types of reactions
Sulfur-containing  —

One electron i
(radical-radical) ~Glutathionylated products
-Di-tyrosine
Carbon-carbon —— -Di-tryptophan
~Tyrosine-tryptophan

Radical-molecule ——

-Lysyl pyridine and pyrrole species
-Lysine-histidine
-Arginine-histidine
-Histidine-histidine

Carbon-nitrogen ——

Two electron

-Iso-di-tyrosine

Carbon-oxygen —»
-Vinyl ethers



g Objective
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Build and evaluate predictive and generative models for peptides

Take into account complex peptides, including modified amino-acids, crosslink, linkers, terminal modifications,
etc...
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Peptides A matter of representation...

Classical representations for small molecules

Many machine learning models for small molecules rely on vectorial representations. Two categories have been heavily used:

ECFP / Morgan fingerprints are a way to represent molecules as mathematical
objects. They are computed from the atomic representation of molecules.

Starting From the atomic graph of molecules, the algorithms takes place in two

physical-chemical descriptors (logP, TPSA, HBA, HBD, MW, etc...)
molecular fingerprints

main steps :

Typical atom invariants :
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Initial integer identifier to each non-hydrogen atom (invariant) of the input

molecule

A number of iterations are performed to combine the initial atom identifiers with
identifiers of neighboring atoms until a specified diameter is reached

atomic number

number of "heavy" (non-hydrogen) neighbor atoms
number of attached hydrogens (both implicit and explicit)

formal charge

additional property that indicates whether the atom is part of at least one ring
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https://docs.chemaxon.com/display/docs/extended-connectivity-fingerprint-ecfp.md#src-1806333-extendedconnecti

vityfingerprintecfp-introduction
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Peptides A matter of representation...
"

g Graph representation of peptides
"L
We introduced new graph representation of peptides at the different levels

1- Simple Peptide Graph - W T\ _

\dNMePhe NMeGly

It is the basic graph representation for peptides and the most intuitive. o o

Each node of the graph corresponds to an amino-acid. 0 i

Can deal with natural and modified amino acid, cyclic, crosslinks, linkers, v @/

terminal modifications, etc... 8

@ - 2

2- BBSC Peptide graph (backbone and side chain) o v ""\‘
In this representation, each amino acid node is splitted into a backbone node \&g@ L \
and a side-chain node. 8 : & ey

G .

Detection of amino-acids is made using Proteax (PLN format)
These graphs are then converted in a vectorial representation using the Morgan algorithm
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Peptides

@ A matter of representation

Definition of invariants for peptides

We tested two different invariants to represent each node in the graph:

Amino acid names (tokens)

Amino acid descriptors

NMeAla

Dhb

1

Given a list of descriptors with their thresholds, descriptor values are computed on each node
then binned into intervals. (Descriptors and Number of intervals depends on user given input)
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Peptides A matter of representation ...

g Peptide fingerprints
"L

Each type of graph combined with invariant, and using morgan fingerprints algorithm, we could build 4

different Peptide fingerprints representations computed on peptide graph.

Representation name Type of peptide graph Type of node attributes

AA_tokens SIMPLE Tokens

AA_descriptors SIMPLE Descriptors (Different List of
descriptors and thresholds)

BB-SC_tokens BB-SC Tokens

BB-SC_descriptors BB-SC Descriptors (Different lists of

descriptors and thresholds)

Next step: compare these representations with morgan on atomic level and with
molecular descriptors for classification tasks
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Peptides prediction
=

O) Dataset 1
ll

We worked in collaboration with a pharmaceutical company on predicting activity of a series of peptides on two targets.
Objective was to be able to generate peptides achieving activity on target| and selectivity on target 2.

Given dataset was composed of 189 small linear peptides with their measured target| and target2 PIC50. Peptides of the
dataset include modified amino acids and other specific components used to enhance peptide stability and permeability.

Target 1 distribution Target 2 distribution

Matching Criteria Not Matching Criteria Matching Criteria Not Matching Criteria

www.iktos.ai —© Iktos 2022 12 | I I( T@ S
Artificial Intelligence for new drug design - confidential and proprietary material e



O
L

Peptides prediction

Prediction results (Random Forest)

Target 1 AUC scores
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Stratified Singlé Linkage SPLIT

== Morgan
Molecular descriptors
AA_tokens
AA_descriptors

m=n BB-SC_tokens

mm BB-SC_descriptors

w=m BB-SC_descriptors_2

- confidential and proprietary material
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Peptides

Dataset 2

We worked in collaboration with a second pharma company on predicting peptides permeability.

Given dataset is composed of 5339 peptides ( Linear and cyclic peptides ) with their measured permeability value in PIC50.

Peptides of the dataset include modified amino acids.
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Peptide Type Distribution of Dataset.
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Peptides prediction
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Prediction results (Random Forest)

AUC on different train/test splits

== Morgan
e Molecular descriptors
_ - AA_tokens
| | AA_descriptors
i _ == BB-SC_tokens
0.8 - mm BB-SC_descriptors
== BB-SC_descriptors_2
0.6 -
0.4 -
0.2
0.0-

Random Split Cyclic=>Linear Linear=>Cyclic
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Small=>Large

Large=>Small length6=>length7
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Peptides generation Peptide generation at Iktos

LSTM generation optimized with reinforcement

Generative Al

Reinforcement learning (Al)

Generative model

small molecule: CN1C=NC2=C1C(=0)N(C(=0)N2C)C

peptide: Nter [STyr] W P H W [NMePhe] Cter
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Peptide database

Sampled database of peptides
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1.

Peptides are
generated

Policy gradient

Reinforcement

learning

3.

2.

Peptides are scored
by the multi-objective
fitness function

The weights of the model are adjusted to maximize the probability
of generating peptides similar to those maximizing the global score

using a policy gradient algorithm

Predictors

Machine learning

Local models
Global (generic) models

Internal scores
Metrics: similarity score,

Quality Score, Confidence
Score.

1H|KT@5



o)
"L

Peptides generation

Peptides Generation using predictors trained on project 1

Evolution of scores of generated peptides shows that step by step we are able to optimise different scores of generated peptides.

Target 1 predicted SCORE evolution by step
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Example use case

0J Peptides Generation
L

Initial Dataset (actives)

Most Frequent Amino Acids
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Peptides generation

OJ) Peptides Generation using predictors trained on project 2

| i Generation of 62000 peptides satisfying constraints. (Target activity prediction > 0.8, Quality scores)

Different scores evolution by steps of optimization.
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Example use case

g Peptides Generation
"L

Amino acid distribution:

Most Frequent Amino Acids
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g Conclusion
.l

We introduced new graph representation of peptides at different levels
e These graphs are then converted in a vectorial representation using the Morgan algorithm

e We compared these new representations with classical morgan fingerprint on atomic graph and with molecular descriptors on
classification tasks

e We obtained promising results on two different datasets, depending on the splitting scheme

e  We used these predictors to generate new peptide with optimized predicted properties
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Deep Generative Chemistry for de novo drug design

| i | |

What molecules should | make next?

Multi-parameter optimization

Multiple different goal-oriented modes
Compatible with external tools
Incorporate IP awareness

Take advantage of structural knowledge:

/
v 0 AR

GENERATOR DOCKING
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\ spaya.ai

Data-driven Retrosynthesis Analysis
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How can | make these new molecules?

Find novel synthesis routes for diverse applications
Explore, share, and collaborate within a team

Find reference information for all proposed reactions
Incorporate internal knowledge into synthesis planning Al
Ensure you are always working with realistic, synthesizable
compounds

Try it, it’s free !
WWW.spaya.ai
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