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1. Introduction 
 
The tutorial aims at presenting the Generative Topographic Mapping (GTM) algorithm[1]. The 
GTM is an unsupervised method to map high dimensional data to a two-dimensional 
representation. In the process, the GTM builds a probabilistic model of the data that can be 
exploited for data characterization, comparison or classification and regression model 
building. The GTM approach will be used to analyze a dataset of flavors and to explore 
structure-flavor relationships. It will be the occasion to get some deeper insight into the 
method with a particular focus on the effects of the GTM parameterization on the obtained 
map. 
 

1.1. Software and Files 
 
The tutorial is based on three pieces of software: 
xGTMapTool: a graphical user interface frontend for the preparation of a GTM. 
xGTMview: an application to link the GTM trained on chemical data and the chemical 
structures. 
xGTMmanifold: an application illustrating the concept of GTM manifold and data space. 
 
The directory FDB contains the following files: 

• train.sdf and test.sdf: the chemical structure annotated with flavor descriptions, 
separated into a training and a test set. 

• FLAVOR_DB_OK.sdf: This file groups the training and test structural data for 
convenience. 

• train.svm and test.svm: the ISIDA IIAB(2-5) fragment descriptors of the 
corresponding chemical structures. These data are also provided in arff format. 

• train.hdr and test.hdr: the labels of ISIDA IIAB(2-5) fragment descriptors. 
• train_Freq_01.svm and test_Freq_01.svm: the “essential” ISIDA IIAB(2-5) 

fragment descriptors of the corresponding chemical structures, monitoring only the 
90% more frequent fragments (the descriptor vector elements corresponding to 
“exotic” fragments appearing in at most 10% of the structures are now discarded). 
These data are also provided in arff format. 

• train_Freq_01.hdr and test_Freq_01.hdr: the labels of the “essential” ISIDA 
IIAB(2-5) fragment descriptors. 

The directories Exo1, Exo2, Exo3, Exo4 and Exo5 contain examples files obtained during the 
tutorial. 
 

1.2. Licence 
 
The software are licensed by the University of Strasbourg. The license file is called licence.dat 
and is situated in the OS specific directories: Windows, Mac and Linux. The licence file must 
be installed in a proper location to be found. 
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• On Windows: create the directory AppData\local\ISIDAGTM2018 directory at the root 
of your home directory and copy the file license.dat in it. The absolute path of the file 
should be similar to this one: 

C:\Users\username\AppData\local\ISIDAGTM2018\licence.dat 
 The file and the directory should have read and write permissions. 
 

• On Mac: create the directory .config/ISIDAGTM2018 directory at the root of your 
home directory and copy the file license.dat in it. The absolute path of the file should 
be similar to this one: 

/Users/username/.config/ISIDAGTM2018/licence.dat 
 

• On Linux: create the directory .config/ISIDAGTM2018 directory at the root of your 
home directory and copy the file license.dat in it. The absolute path of the file should 
be similar to this one: 

/home/username/.config/ISIDAGTM2018/licence.dat 
 

1.3. The flavor dataset 
 
The tutorial uses a dataset of organoleptic compounds mined (in February 2018) from the 
FlavorDB database[2]. The database is aggregating information from many existing sources: 
FooDB[3], BitterDB[4], SuperSweet[5], SuperScent[6], FlavorNet[7], Fenaroli’s Handbook of Flavor 
Ingredients[8] among others. 
 
The sweet-like annotation from the SuperSweet database, was removed because, as stated by 
the authors[5], “the sweet tasting molecules were extracted from the literature and publicly 
available databases like Pubchem, the PDB and MonoSaccharideDB and were filtered using 
different terms like ‘sweetening agents’. In the next step the data set was extended by using 
similarity search methods.” The sweet-like annotation refers to those compounds found by 
similarity and therefore their sweetening properties are only presumed. 
 
A second problem with the SuperSweet database is the lack of information to support the 
labels. Most entries do not identify a source in support to the categorization of a substance as 
sweet. For this reason, an additional source of information on sweetening agents was 
incorporated: the dataset used by Todeschini et al[9]. Then all references originating from the 
SuperSweet database were removed unless they were confirmed by a second source. 
 
This initial dataset followed a standardization process. Entries featuring stereoisomers were 
merged because the molecular descriptors used in this tutorial do not distinguish 
stereoisomers. Finally, after standardization of the chemical structures, duplicate structures 
were merged. The merging concerned all fields associated to chemical structures: the flavor 
descriptions, bibliographic sources, etc. 
 
There are 70 mixtures in total in the dataset. These are substances with a flavor profile that 
are described as the constituents of the mixture as, for instance, bretylium tosylate. There are 
also ionic substances such as sodium chloride. Ionic forms were kept when the nature of one 
ion did change the perception of the substance. For instance, sulfate is sour, magnesium 
sulfate is bitter, iron sulfate is metallic and ammonium sulfate is astringent. However, if a 
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compound appeared as a component of several salts but the organoleptic description did not 
change with the counter-ion, then all the entries were merged and the counter-ions were 
deleted from the structure. 
 
Then, the dataset was reviewed manually to disambiguate some entries when possible. For 
instance, the structures of santalene, santalol and santalyl acetate had to be homogenized 
over the different sources providing their structure. Some entries remain suspicious although 
there is no clear evidence that their chemical structure are wrong. This is the case of oxo-
carboxylic acids glycerides, because they can be easily confused with precursors of 
triglycerides. Some entries were discarded because they were described as polymers, such as 
cellulose and the chemical structure could be properly rendered by the monomer represented 
in the entries. 
 
Overall, the dataset contains 3438 substances, which is a substantial reduction from the 25595 
entries in the FooDB database. Most of the removed compounds were filtered out following 
the filters based on the SuperSweet database. The dataset size, finally, is smaller but of the 
same order of magnitude to the less accessible but renown Lefingwell database[10]. 
 
The flavor labels also require a substantial amount of attention. Some of the flavors are 
described using natural language using qualifiers such as “weak” or “very strong”. Although 
important for the precision of the description they weaken the statistical analysis because 
they are much rarer than the noun they are qualifying. For instance “very sweet” is rare 
compared to “sweet” and we preferred to requalify these compounds as “sweet” rather then 
create a new and ill-defined category. The same logic applied to adjectives based on a noun 
or a noun used as an adjective. In such situation as “grassy” and “grass” the term “grassy” was 
preferred and all concerned items were grouped under the label “grass”. The noun was 
sometime preferred because it seemed more used, for instance “sweet” was preferred over 
“sweety”. In total, this required 132 rule. This procedure is rather conservative, by contrast to 
more systematical natural language processing analysis[11]. 
 
The files FLAVOR_DB_OK.sdf, train.sdf and test.sdf contain chemical structures and 
annotations of the dataset. The available fields are the following: 
• REFERENCES: a string consisting of URLs to the data repository where the compounds and 

labels originated from 
• FLAVOR PROFILE: the description of the flavor of the compound using a dictionary of 

566 terms 
• FLAVOR-TERM: if a flavor term is present in the flavor profile, this information is repeated 

as separate SDF fields. It is more easy to analyze the flavor profile in this format. 
 
The file FLAVOR_DB_OK.sdf is split into equal sized training and test sets. ISIDA Molecular 
Fragment Descriptors of type IIAB(2-5) were computed on these datasets. The descriptor set 
was limited to the 99% most frequent fragments, in order to increase the robustness of 
models and the speed of the calculations for the tutorial. 
 
The training and test sets are stored in the format LibSVM and ARFF, ready to be processed 
with machine learning tools. 
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1.4. The Generative Topographic Mapping algorithm 
 
The GTM consists into fitting a finite 2D surface, termed the “manifold”, onto a dataset 
embedded in a high dimensional space, the input space (IS), defined by the molecular 
descriptor vector. The surface is described by a Generalized Linear Regression (GLR), using as 
basis functions, a set of m Radial Basis Functions (RBF) of width w homogeneously distributed 
over the surface. The surface is the center of a normal probability distribution, with a 
predefined set of k locations of the manifold. These ones are called the nodes of the GTM. The 
resulting distributions are used to compute a probability for each element of the IS. It is 
therefore possible to estimate the probability of the dataset (the so-called likelihood) 
considering a particular geometry of the surface in the IS. The GLR is used to optimize the 
likelihood under the constraint of a regulation term, of intensity controlled by a parameter l.  
As a result, the contribution of each node to the likelihood of a compound can be computed. 
This quantity is termed the responsibility. Therefore, a compound n appears on the GTM as 
pattern of responsibilities Rnk, representing its relative degrees of association, or “residence” 
within every node k. It is common practice to compute an average position on the map based 
on the responsibilities of a compound. The corresponding (x,y) position is termed the 
projection of the compound on the map. Responsibilities are a key ingredient: they are used 
to locate instances on the map, represent the density of the chemical space, or build SAR and 
QSAR models. 
 

Ø Pre-processing of the descriptors 

 
Since GTM manifold construction is a non-linear process, its outcome is sensitive to the 
numerical ranges covered by each descriptor element. It may be helpful to therefore make 
sure that all descriptor elements undergo specific rescaling/recentering in order to fit into a 
same final range of values. The most common pre-processing steps of the molecular 
descriptor sets are supported by the GTM software. The first option, of course, is to not use 
any pre-processing. In that case, the molecular descriptors are not transformed. 
The other options are the following, considering the value 𝑥"# of the jth molecular descriptor of 
the molecule i: 

• Standardize: the average value 𝑚"  and the standard deviation 𝑠" of the molecular 
descriptor j are estimated, then the standardize value is 𝑥&'(,"# = (𝑥"# − 𝑚") 𝑠". . 

• Center: the average 𝑚"	value is removed from the descriptor value: 𝑥0'1,"# = 𝑥"# − 𝑚"  
• Normalize: the molecular descriptors are confined in the range [-1,1], using 𝑥2#3,"#  and 

𝑥245,"# , the min and max values of the descriptor: 𝑥312,"# =
56
78
(59:;,6
7 <597=,6
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>
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• Normalize and center: the molecular descriptors are confined in the range [-1,1] then 
they are centered. As a result, a descriptor element is no longer confined in the range 
[-1,1], but the range of value still covers 2 units. Using the same notations, the 

modified value of the descriptor is:	𝑥0'3,"# =
56
7826
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All these transformations follow the general formula: 𝑥'143@A12B(,"# =
56
78C6

D6
. The data are 

shifted by a constant 𝑀" and scaled by another constant 𝑆". 



 6 

 

2. Step by step instructions 
 
The exercises are developed as an introduction to the GTM approach. They start with the 
generation of a GTM (Exercise 1) and using it on new data (Exercise 2). Then the results are 
visualized (Exercise 3). In the next step, the convergence of the algorithm (Exercise 4) and the 
parameterization of the GTM are scrutinized (Exercise 5). 
 

2.1. Exercise 1. Train a GTM. 
 

Instructions Comments 
Open the xGTMapTool software The interface of the software appears 

(Figure 1). 
Click the button to the right of the Input 
label (Figure 1, area 1) and select the file 
train_Freq_0.1.svm. 

This is the selection of the datafile used to 
train the GTM model. An automatically 
generated output base name is proposed by 
the soft unless explicitly set up by the user. 
The output base name will be used to name 
all the files produced by the software. All 
those files will be in the path specified in this 
field. The generated files will differ by their 
terminations only. 

As a preprocessing option (Figure 1, area 2), 
use the standardize option. 

An important aspect of the training of the 
GTM model is the pre-processing. The initial 
state of the manifold is a flat surface fitted 
to the two first principal component of the 
dataset. Therefore, the dataset must be 
centered. Furthermore, if there are some 
large differences in variance between the 
descriptors, this will bias the manifold 
toward the ones covering a wider numeric 
range. A reasonable choice to avoid these 
pitfalls is to standardize the dataset.  

Set the Number of traits value to 9 
(Figure 1, area 3) then click on the button OK 
(Figure 1, area 6). 

The other parameters of the method are set 
to default values. These values are visible in 
the log window (Figure 1, area 5 and Figure 
2). The width of the RBFs are set to two times 
the distance between two neighboring RBF 
on the latent space plane. The number of 
node is 25 times the number of traits and the 
regularization parameter is set to 1. 
While the calculations are running, the log 
window displays information (Figure 3) 
about the current state of the process: 

• a warning in case previous results are 
affected by the current run; 
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• a reminder about key parameters 
setup; 

• the number of instances to process; 
• a first guess of the likelihood of the 

dataset. 
At each step, the log line gives: 

• the expectation-maximization 
iteration count; 

• the current value of the likelihood; 
• the variation of likelihood since the 

previous step; 
• the percentage of variation of the log 

likelihood compared to the present 
value of the log likelihood; 

• the largest variation of a value in the 
weight matrix defining the manifold; 

• the same number as a percentage. 
At the end of the calculations a message 
(Figure 4) informs that the process 
terminated successfully and the last 
iteration is informative about the log 
likelihood of the studied dataset. 

Edit the file train_Freq_01.xml. The process generated an XML file 
containing the GTM model. 

 
The GTM model is stored as an XML file, based on the following tags. 

• GTM, it is the main node of the XML model file. It supports the attributes 
o D, specifying the dimensionality of the input space (ie the number of molecular 

descriptors), 
o N is the number of instances used to train the GTM, 
o Type indicates which particular GTM algorithm is used, 
o nIter is the number of training iterations, 
o Preprocess indicating which kind of preprocessing was used. 

• Mean, is the shift value on each molecular descriptor. It is the actual mean of the 
molecular descriptors if the preprocessing is a Standardization. 

• SD, is the scaling value on each molecular descriptor. It is the actual standard deviation 
of the molecular descriptors if the preprocessing is a Standardization. 

• PC123, are the coordinates of the approximated first three principal components of 
the dataset. 

• Manifold, contains the values of the weight matrix defining the manifold. It needs 
the following attributes: 

o D, the dimension of the input space; 
o K, the number of nodes; 
o M, the number of RBFs; 
o sigma, the width of the RBFs; 
o alpha, the value of the regularization parameter; 
o beta, the standard deviation of the normal distribution around the manifold. 
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Therefore, this node is the core of the GTM model. 
• LatentSamples, the 2D coordinates of the nodes on the latent space. 
• LatentTraits, the 2D coordinates of the RBFs on the latent space. 

 
Conclusion 

In this exercise, the training set file train_Freq_01.svm is used to train a GTM model using 
mostly default parameter values. The resulting model is stored as an XML file. The training 
algorithm is an expectation-maximization, that can be assimilated to a gradient descent. 
Therefore, the likelihood shall evolve in a monotonic manner, here it is increasing at each step 
up to convergence. The likelihood itself is supposed to be a negative value. In some cases the 
value can be observed positive, but it is usually pathological and indicates that something 
wrong is happening. Generally, it is due to an unwise choice of the pre-processing. 
 

 
Figure 1. The interface of the xGTMapTool application. The file management is operated in the region (1) of the interface. The 
preprocessing is taken care of in (2) and the parameterization of the model is performed in (3). The use of the interface to 
train or apply a GTM model is controlled in (4). The log of the calculations are written in (5) and launching the calculations is 
performed in (6). 
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Figure 2. Default parameter values when the only user setting is the number of traits equal to 9. 

 
Figure 3. State messages during the GTM model training. It starts with warning in case previous results are affected by the 
current run, reminders about key parameters setup, reviewing the number of instances to process and a first guess of the 
likelihood of the dataset. Then at each step, the line give the step count, the current value of the likelihood, the variation of 
likelihood since the previous step, the same number as a percentage, the largest variation of the weight matrix defining the 
manifold and the same number as a percentage. 

 
Figure 4. Last iteration of the training of the GTM. 

 
2.2. Exercise 2. Apply the GTM model 

Instructions Comments 
Use the xGTMapTool interface. Reopen it if 
it was closed. Then chose the use model 
option (Figure 1, area 4). 

In this mode, parameters of the GTM 
algorithm are no longer available. 
Simultaneously, the interface to select a 
GTM model becomes available. Indeed, the 
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parameters of the GTM are included into the 
model definition. 

Set up the input for the training set (Figure 
1, area 1). 

• Choose as input the file 
train_Freq_01.svm. 

• Choose as Model (XML) the file 
train_Freq_01.xml. 

• Check if the Save full 
information box is not ticked. 
Untick if needed. 

• Click the OK button. 

The log file of the calculation contains the 
parameter values of the GTM and an and 
estimates the likelihood of the dataset to -
103.47, which is the same obtained at the 
end of the training stage (Figure 5). 
During this procedure the training set is 
projected on the GTM. The software will 
generate two files: train_Freq_01R.svm 
and train_Freq_01Prj.mat. 
The train_Freq_01R.svm file contains 
the responsibilities computed for each 
molecule in the libsvm format. The first 
column is the likelihood of each compound 
Then, each pair of column separated values 
represent first the identifier of a node on the 
map and the responsibility of this node to 
the molecule. 
The train_Freq_01Prj.mat file is a two 
column file containing the (x,y) coordinates 
of the projections of the molecules on the 
manifold. These coordinates are weighted 
average of the coordinates of each node of 
the GTM with the associated 
responsibilities. 

Set up the input for the test set (Figure 1, 
area 1). 

• Choose as input the file 
test_Freq_01.svm. 

• Choose as Model (XML) the file 
train_Freq_01.xml. 

• Untick the Save full 
information box if needed. 

• Click the OK button. 

During this process, the test set is projected 
on the GTM manifold. The likelihood of this 
test set is estimated to -104.08 (Figure 6). 
The value is smaller than the training set 
likelihood: the test set is a bit less well 
explained by the GTM model than the 
training set. This is a classical situation with 
machine learning methods. 
The software produces two new files: a 
responsibility file (test_Freq_01R.mat) 
and a projection file 
(test_Freq_01Prj.mat), as in the 
previous step. 

 
Conclusion 

In this exercise, the previously build GTM model was used to project data on it. Two categories 
of information are reported. First, the files named using the scheme <base name>R.svm 
contains the likelihood of each compound and the responsibility of each node for each 
compound. Second, the files named using the scheme <base name>Prj.svm report the 
projections of each molecules on the map. Usually, new data are less explained than the data 
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used to train the GTM. This is expected and if the likelihood differences between training and 
test data increases, it can be symptomatic of overfitting situations. 
 

 
Figure 5. Log of the mapping of the training set on the GTM model. 
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Figure 6. Log of the mapping of the test set on the GTM model. 

 
2.3. Exercise 3. Visualize the projected data 

 
Instructions Comments 
Open the application xGTMView The interface should look as illustrated in the 

Figure 7. The software aims at connecting 
the chemical content of the GTM with some 
plots of the GTM itself. Input is managed in 
(1). Navigation of the chemical structure file 
is performed using the controls in (2) and 
chemical structures are displayed in (5). The 
GTM data are plotted in (3) and the content 
of the plots are controlled in (4). The log are 
written in (6). The plot processing is 
launched in (7). 

Setup the input files to process (Figure 7, 
area 1). 

• Click the GTM Model (XML 
format) button and chose the file 
train_Freq_01.xml. 

• If needed, click the Projection 
coordinates (MAT format) 

At this step, the GTM model file is processed. 
The information about how the training/test 
data set are projected on the map is 
contained in the responsibility files 
generated during the previous exercise. 
When the GTM Model (XML format) 
interface is setup, the software will guess if 
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button and chose the file 
train_Freq_01Prj.mat. 

• Check also that the corresponding 
train_Freq_01R.svm file is 
selected as the Responsibility 
file (SVM format). Otherwise 
click the corresponding button to 
choose this file. 

• Open the file chooser dialog of the 
Molecular structure file 
(SDF format) to locate and select 
the file train.sdf. 

• Click the OK button. 

there exist some relevant projection and 
responsibility files. In the current situation, 
we will focus on the projection of the 
training data. 
The file train.sdf is connected to these 
data. The order of the molecules in these 
different files is assumed to be the same. In 
other words, molecules must appear in the 
SDF file in the same order as in the molecular 
descriptor file projected on the GTM. In turn, 
the GTM output will preserve the same 
order. In case of discrepancies between the 
files, the results might be meaningless and 
eventually, the application may crash. 

Tick the Traits box (Figure 7, area 4). The plot (Figure 7, area 3) displays the 
localization of the RBF on the latent space 
(Figure 8). The term trait is often used in the 
GTM literature, but in the context of these 
exercises it is a synonym for the RBFs. 
Here, the RBFs are shaping the manifold: the 
more they are, the more flexible it is. In 
other types of GTM algorithm, a trait will 
term other degrees of freedom of the 
model. 
Another observation is that the RBFs are 
distributed in a pseudo-regular way. This 
allows to compute GTM with an arbitrary 
number of traits. 

• Untick the Traits box 
• Tick the Samples box 

This configuration plots the positions of the 
nodes of the GTM (Figure 9). The nodes are 
also termed samples because they are the 
points of the manifold on which the 
probability density is estimated. In a sense, 
they are sampling the density. 
They are also distributed in a pseudo-regular 
way, which might not coincide with any RBF 
center. 
For each compound, the responsibility of 
every node is computed. Therefore, these 
responsibilities can be summed up on the 
nodes. The larger is the sum, the denser is 
chemical space described by this node. This 
is represented by the size of the circles 
representing each node: the larger is a circle, 
the more populate is the corresponding 
region of the chemical space.  
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• Untick the Samples box 
• Tick the Projections box 
• In the area 2, select from the list of 

available SDF fields, the sweet key. 
• Optional: if the plotted points are too 

small, you can use the slide bar at the 
bottom right hand corner of the 
plotting area and validate with the 
OK button. 

The plot represents the location of each 
molecule on the map (Figure 10). The map 
itself is interactive. First, the points are 
colored according to the values of the SDF 
fields. Thus, selecting the field “sweet” in the 
area (2) of the interface, compounds 
described as having a sweet taste are 
indicated as black dots. 
When browsing molecules, their location is 
highlighted by a blue dot. When clicking on a 
dot, it is highlighted and the chemical 
structure is drawn in (5). 
It is then easy to notice a large “sweet way” 
across the chemical space and to notice that 
they are carbohydrates of increasing 
complexity. 

• Go to the compound 118 using the 
SDF navigation bar (Figure 7, area 2). 

• Untick the Projection box 
• Tick the Responsibility box 

From time to time, a compound can appear 
dissimilar to its neighbors. One explanation 
can be found by deeper looking into the 
responsibility pattern of the compound (see 
for instance the responsibility pattern of the 
molecule 118, Figure 11). 
In fact, the compound is located on the map 
at the “center of mass” of its responsibility 
pattern. Most compounds are mono-modal: 
they almost exclusively reside in a single 
node, and their (x,y) projection will match 
the node coordinates. But some compounds 
are delocalized over several nodes. This 
means that the compound shares some 
structural characteristics with different 
chemotypes in the dataset. From the point 
of view of the dataset those compounds are 
some kind of chimera. 

Load the test_Freq_01Prj.mat file as 
the Projection coordinates. 
Load the test_Freq_01R.svm file if 
needed as the Responsibility file. 
Load the test.sdf file as Molecular 
structure file. 
Click the OK button. 

During this step, the test set projection is 
loaded in the interface. As previously 
mentioned, the software expects the 
chemical structures, the projection and 
responsibility files to follow the same order. 
The same analysis can be repeated. But the 
main observation is that the organization of 
the chemical space differs very little 
considering the training data and the test 
data. This is expected if the model is not too 
overfitted. 

Conclusion 
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This exercise, illustrates the analysis of the GTM model and its application to the training and 
to the test data. It illustrated the key concepts of the GTM model: the traits, the nodes, the 
responsibilities, the projection. 
 

 
Figure 7. Interface of the xGTMView software. Input management is take care in (1). Navigation in the chemical structure file 
is performed in (2) and chemical structures are displayed in (5). The GTM data are plotted in (3) and controlled in (4). The log 
are written in (6) and the calculation are launched in (7). 
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Figure 8. Position of the RBF centers (the traits) on the 2D manifold. The traits are positioned in a pseudo-regular way. 
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Figure 9. Positions of the sampling points of the manifold. These are the points were the density probability are estimated. 
The size of the circle around a sample point is proportional to the density of the chemical space region it is located in. 



 18 

 
Figure 10. Projection of the training dataset on the GTM. Each point corresponds to a molecule. The black points are those 
compounds associated to the sweet taste. The cross and the emphasized point correspond to the selection of a particular 
molecule. The selected molecule is drawn in the region (5) of the interface (Figure 7). 
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Figure 11. An example of an extended responsibility pattern. The corresponding molecule 118 is in the red frame. The 
molecules 537 is localized on the top of the responsibility pattern while the molecule 66 is localized near the bottom. 

 
2.4. Exercise 4. Convergence of GTM fitting, visualization of the manifold 

 
Instructions Comments 

• Open, if needed, the xGTMapTool 
application. 

• Choose the use model option 
(Figure 1, area 4). 

• Set up the input for the training set 
(Figure 1, area 1). 

o Choose as input the file 
train_Freq_01.svm. 

o Choose as Model (XML) the 
file train_Freq_01.xml. 

We will use the xGTMapTool application to 
generate additional information about the 
GTM manifold. More precisely, we search an 
alternative view to monitor the fit of the 
manifold to the dataset. The solution 
proposed is to visualize it in the 3D 
coordinates defined by the first three 
principal components[12] of the dataset. 
The software generates many additional 
files. 
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o Tick the Save full 
information box. 

• Click the OK button. 

train_Freq_PC123.mat: a three column 
file with the coordinates of the three first 
approximate principal component of the 
training set. These coordinates are used to 
initialize the GTM algorithm. 
train_Freq_01Z.mat: It contains the 
modified values of the molecular descriptors 
resulting from the pre-processing for each 
molecule projected on the GTM. 
train_Freq_01Z3D.mat: a three column 
file recording the coordinates of each 
molecule projected on the GTM, in the three 
first principal components coordinates 
system. 
train_Freq_01WPhi: Contains the 
coordinates of the manifold in the system of 
coordinates of the pre-processed molecular 
descriptors 
train_Freq_01WPhi3D: Contains the 
coordinates of the manifold in the system of 
coordinates of the three first principal 
component system. 

• Open the GTMmanifold software 
(Figure 12). 

• Load the file 
train_Freq_01Z3D.mat in the 
top text box. 

• Load the file 
train_Freq_01WPhi3D.mat in 
the middle text box. 

• Load the file train_Freq_01.xml 
in the bottom text box. 

• Click the OK button. 
• Optional: if the plotted points are too 

small, you can use the slide bar at the 
bottom right hand corner of the 
plotting area. 

 

The files train_Freq_01Z3D.mat and the 
train_Freq_01WPhi3D.mat are in theory 
sufficient to plot at the same time the 
manifold and the dataset in the same 
principal component coordinates system. 
However, in order to plot the surface using a 
tessellation rendering, it is needed to 
identify which nodes are members of the 
same triangle, which is an easy task using 
their coordinate on the manifold. This 
information is located in the model file 
train_Freq_01.xml. 
The picture illustrates how the manifold has 
twisted in order to accommodate the 
dataset. However, the picture is only 
approximative because the first three 
components are explaining less than 40% of 
the data. Besides, the manifold has a width 
corresponding to the standard deviation of 
the probability distribution that is not 
represented here. However, this is sufficient 
to monitor the training of the GTM and 
understand how it converges. 

• Create a folder named Converge. The following calculations will generate 
many files. It is wise to manipulate them in a 
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• Copy to this folder the file 
train_Freq_01.svm. 

dedicated folder to keep the working space 
clean. 

• Use the xGTMapTool application. 
• Choose the train model mode 

(Figure 1, area 4). 
• Set up the input for the training set 

(Figure 1, area 1). 
o Choose as input the file 

train_Freq_01.svm. 
o Choose as output the name 

conv1. 
o Set the Preprocessing to 

standardize. 
o Set the value Number of 

traits to 9 
o Set the Max. Number of 

Iterations to 1. 
Click the OK button. 

This setup will create a GTM model that will 
optimized during a single expectation-
maximization step. 

Repeat the previous procedure varying the 
number of iterations to 10, 20 ,30 ,40 and 50. 
Take care to changing the following values: 

o Set the Max. Number of 
Iterations to 10, 20, 30, 
40 and 50. 

o output shall be set to 
conv10, conv20, conv30, 
conv40, conv50., 
respectively. 

 

This will create a set of GTM models 
optimized over 10, 20, 30, 40 and 50 
iterations of expectation-maximization.  

Repeat the procedure of projection of the 
training data for each of the GTM models call 
conv1.xml, conv10.xml, conv20.xml, 
conv30.xml and conv50.xml. 

• Use the xGTMapTool application in 
the use model mode (Figure 1, area 
4). 

• Tick the Save full information 
box. 

• Setup the input to the file 
train_Freq_01.svm. 

• For each of the GTM model files, set 
up the Model (XML) to the 
corresponding XML file. Then click 
the OK button. 

To monitor the evolution of the manifold, it 
is now needed to apply each of the GTM 
models to the training data. The full 
information must be recorded to generate 
the files with the coordinates of the objects 
in the three dimensional coordinate system 
of the three first principal components. 

• Report the likelihood as a function of 
the number of iterations of 
optimization steps. 

The convergence of the likelihood is 
represented with more details in (Figure 13). 
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• Open with the GTMmanifold 
software the generated manifolds. 

The corresponding shapes of the manifold 
should look as in Figure 14. 
The shape of the manifold is already 
stabilized after 30 iterations corresponding 
to a variation of the likelihood between two 
consecutive steps of about 0.01 units. 
Therefore, the default value of 0.001 of the 
parameter Convergence: likelihood 
difference seems sufficient. If the likelihood 
does not change more than this threshold 
during one optimization step, the 
optimization can be stopped. 

 
Figure 12. Interface of the GTMmanifold application. The zone (1) is used to load the 3D coordinates files illustrating the 
dataset and the manifold of the GTM. They are plotted in the area (2). 
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Figure 13. Evolution of the Likelihood with the increasing number of optimization steps of the GTM model. 

      
1 iteration 10 iterations 20 iterations 30 iterations 40 iterations 50 iterations 

Figure 14. Evolution of the shape of the manifold over the increasing number of optimization steps of the GTM model. 

Conclusion 

This exercise offered the opportunity to take a closer look to the manifold at the heart of the 
GTM model. As the optimization process goes on, the manifold is tweaked towards the data 
points. The whole process is a balance between increasing the standard deviation of the of 
the normal distribution around the manifold and moving the RBF centers over the chemical 
space to improve the explanation of the dataset. 
The optimization finishes when the likelihood change between two consecutive optimization 
steps is lower than a threshold value. The default value of this threshold, 0.001, seems 
relevant at least qualitatively. 
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2.5. Exercise 5. Optimization of parameters. 
In the preceding exercises the number of RBF was set to 9 and all other parameters were left 
to default. In this exercise the question of optimal parameter choices will be asked. 

Instructions Comments 
• Create a folder named M. 
• Copy to this folder the file 

train_Freq_01.svm and 
test_Freq_01.svm 

As before, these systematic calculations are 
generating many files. It is wise to store 
them in dedicated folders to keep the 
working space tidy. 

• Use the xGTMapTool application. 
• Choose the train model mode 

(Figure 1, area 4). 
• Set up the input for the training set 

(Figure 1, area 1). 
o Choose as input the file 

train_Freq_01.svm. 
o Choose as output the name 

M1. 
o Set the Preprocessing to 

standardize. 
o Set the value Number of 

traits to 1 
o Set the Max. Number of 

Iterations to 100. 
• Click the OK button. 
• Record in a spreadsheet the value of 

the likelihood of the last step of 
optimization (the value right to the 
word LLmap in the log window 
Figure 1, area 5). 

This will generate a GTM using only one RBF 
to define the manifold. 
The likelihood value during the last step of 
the optimization is estimating the likelihood 
of the training set according to the 
generated GTM model. 

• Repeat the procedure to change 
systematically the number of RBF 
center from 5 to 15 by step of 2. 

o Set the value Number of 
traits to 5, 7, 9, 11, 13 and 
15 

• Change as output accordingly to M5, 
M7, M9, M11, M13, M15, respectively. 

• Record the likelihood values of each 
the last step of optimization (the 
value right to the word LLmap in the 
log window Figure 1, area 5). 

A set of GTM models with varying number of 
traits is generated and the likelihood of the  
training set is stored. 

• Choose the use model option 
(Figure 1, area 4). 

• Optionally, tick the Save full 
information box. 

The likelihood increases systematically with 
the number of RBF centers. This is an 
expected behavior: the more they are, the 
more flexible becomes the manifold. It fits to 
the data more easily. 
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• Choose as input the file 
test_Freq_01.svm. 

• Apply all the GTM models generated 
so far. Set the input Model (XML) 
to M1.xml, M5.xml, M7.xml, M9.xml, 
M11.xml, M13.xml and M15.xml 
(Figure 1, area 1). 

• Record in a spreadsheet, the values 
of the likelihood. 

However, when doing so, the difference of 
likelihood between the test set and the 
training set increases. This is symptomatic of 
overfitting. 
The results of a larger scale study on the 
same data are reproduced in Figure 15. It 
illustrate the situation. While the training set 
likelihood continues to increase, the test set 
is increasing at a lower rate. 
The choice of 9 RBFs in the previous 
exercises resulted from a choice to fit the 
training set and the test set approximately as 
well. 

• Create a folder named W. 
Copy to this folder the file 
train_Freq_01.svm and 
test_Freq_01.svm 

The next step is a systematic study of the 
influence of the width of the RBFs. This step 
will also generate a number of files and it is 
wise to keep them in separate place. 

Using the xGTMapTool application. 
• Choose the train model mode 

(Figure 1, area 4). 
• Set up the input for the training set 

(Figure 1, area 1). 
o Choose as input the file 

train_Freq_01.svm. 
o Set the Number of traits 

to 9 
o Choose as output the name 

W1_3. 
o Set the Preprocessing to 

standardize. 
o Set the value of RBF width 

to 1.3 
• Click the OK button. 

Record in a spreadsheet the value of the 
likelihood of the last step of optimization 
(the value right to the word LLmap in the log 
window Figure 1, area 5). 

The default value of the RBF width is two 
times the average distance between two 
neighboring RBF centers. The manifold is a 
square extending into the range [-1,1]x[-
1,1]. Its surface is therefore 4 squared units. 
Thus with 9 RBF, the default value of the RBF 
width is approximately 1.3. 
The current setup is close to the default.  

• Repeat the procedure to change 
systematically the RBF width. 

o Set the value RBF width to 
10, 1.0, 0.1, 0.01, and 0.001 

• Change as output accordingly to 
W10, W1, W0_1, W_01, W0_001, 
respectively. 

• Record the likelihood values of each 
last step of optimization (the value 

A set of GTM models using 9 RBF of varying 
width is generated and the likelihood of the 
training set is stored. 
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right to the word LLmap in the log 
window Figure 1, area 5). 

• Choose the use model option 
(Figure 1, area 4). 

• Optionally, tick the Save full 
information box. 

• Choose as input the file 
test_Freq_01.svm. 

• Apply all the GTM models generated 
so far with various RBF width. Set the 
input Model (XML) to W10.xml, 
W1.xml, W0_1.xml, W0_01.xml, and 
W0_001.xml (Figure 1, area 1). 

• Record in a spreadsheet, the values 
of the likelihood. 

The coupling between the RBFs on the GTM 
is governed by their width. As the value 
increases, the coupling is stronger and the 
manifold cannot fit to the data. When the 
coupling disappears, the RBF are migrating 
freely and the notion of map is lost. At the 
same time, they tend to migrate over the 
center of the training set and the model 
globally loses its ability to explain the 
dataset. 
This explains the presence of a rather large 
optimum range of values of the RBF width, 
as illustrated in Figure 16.  
Here, it seems that setting the value of the 
width to 0.1 is beneficial. 

• Create a folder named L. 
Copy to this folder the file 
train_Freq_01.svm and 
test_Freq_01.svm 

Then, impact of the regularization 
parameter is scrutinized. As before, the 
study is realized in its own dedicated folder. 

In the xGTMapTool application. 
• Choose the train model mode 

(Figure 1, area 4). 
• Set up the input for the training set 

(Figure 1, area 1). 
o Choose as input the file 

train_Freq_01.svm. 
o Set the Number of traits 

to 9 
o Set the value of RBF width 

to 0.1 
o Set the Preprocessing to 

standardize. 
• Explore systematically the values of 

the regularization parameter 
o Set the value of 

Regularization to 100, 
10, 1, 0.1, 0.01. 

o Set the output name to L100, 
L10, L1, L0_1, L0_01 
respectively. 

o Click the OK button after each 
complete setup. 

Record the likelihood values of each last step 
of optimization (the right handed value to 

This step generates a collection of GTM 
models varying the value of the 
regularization parameter. 
The smaller the value of this parameter, the 
more free are the coefficients of the matrix 
defining the coordinates of the manifold. On 
contrary, large values of regularization will 
stiffen the manifold an prevent it to be 
deformed: it will stay flat. 
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the word LLmap in the log window Figure 1, 
area 5). 

• Choose the use model option 
(Figure 1, area 4). 

• Optionally, tick the Save full 
information box. 

• Choose as input the file 
test_Freq_01.svm. 

• Apply all the GTM models generated 
so far with various regularization 
values. Set the input Model (XML) 
to L100.xml, L10.xml, L1.xml, 
L0_01.xml and L0_001.xml (Figure 1, 
area 1). 

Record in a spreadsheet, the values of the 
likelihood. 

The collected likelihood should follow a 
trend similar to Figure 17. At large values of 
the regularization, the manifold is stiff and it 
hardly differs from its initialization state. 
Upon decreasing he regularization value, the 
training set likelihood increases slowly and 
decreases slowly on the test set. An 
optimum value is located at a regularization 
value of 1. 

• Create a folder named K. 
Copy to this folder the file 
train_Freq_01.svm and 
test_Freq_01.svm 

The last part of the exercise will focus on the 
number of nodes in a GTM. 

In the xGTMapTool application. 
• Choose the train model mode 

(Figure 1, area 4). 
• Set up the input for the training set 

(Figure 1, area 1). 
o Choose as input the file 

train_Freq_01.svm. 
o Set the Number of traits 

to 9 
o Set the value of RBF width 

to 0.1 
o Set the Regularization 

value to 1.0 
o Set the Preprocessing to 

standardize. 
• Explore some values for the number 

of node 
o Set the value of Number of 

samples to 200, 300, 400, 
500. 

o Set the output name to K200, 
K300, K400, and K500 
respectively. 

o Click the OK button after each 
complete setup. 

Record the likelihood values of each last step 
of optimization (the right handed value to 

This step generates a collection of GTM 
models varying the number of nodes. 
The number of nodes is the least important 
parameter of a GTM. It is introduced in 
theory as a prior distribution over the 
manifold. Technically, it can also be 
interpreted as a numeric integration over 
the manifold to estimate the normal 
probability density around the manifold. 
Therefore, modifying its value is merely a 
change in the precision of this numerical 
integration. 
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the word LLmap in the log window Figure 1, 
area 5). 

• Choose the use model option 
(Figure 1, area 4). 

• Optionally, tick the Save full 
information box. 

• Choose as input the file 
test_Freq_01.svm. 

• Apply all the GTM models generated 
so far with various regularization 
values. Set the input Model (XML) 
to K200.xml, K300.xml, K400.xml, 
K500.xml (Figure 1, area 1). 

Record in a spreadsheet, the values of the 
likelihood. 

As expected the number of nodes has a 
limited impact over the final estimation of 
the likelihood, for the training as well as for 
the test set. 
It is recommended to ensure a reasonable 
number of nodes for each RBF. In this 
implementation of the algorithm, the choice 
was to assign 25 nodes for each RBF. 

 
Conclusion 

 
The optimization of the parameters of the GTM can lead to very different pictures (Figure 18 
and Figure 19). However, this is easily explained by diminishing the value of the RBF width. 
The manifold becomes very flexible and can eventually intersect itself. Therefore, the 
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responsibility patterns are redistributed. At the same time, the structural consistency of 
smaller clusters of compounds is improved. 
 

 
Figure 15. Evolution of the log likelyhood of the training set (violet line) and test set (green line) with the number of traits. A 
zoom on the lower values of the number of RBF is located on the right hand bottom corner. 
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Figure 16. Evolution of the log likelyhood with the width of the RBF. 
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Figure 17. Evolution of the likelyhood with various values of the regularization. 
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Figure 18. Optimized manifold with 9 RBFs of width 0.1, 500 nodes and a regularization coefficient of 1. 
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Figure 19. Projection of test compounds on the optimized GTM 

3. Conclusion 
 
The study of flavors is certainly a very fuzzy challenge. The flavor descriptions are for a large 
part subjective and therefore, the flavors labelling tend to be very noisy. Nonetheless, the 
rationality behind flavors has been demonstrated several times, illustrated by successful QSPR 
studies able to discriminate the sweet or the bitter taste with high performances. 
However, unsupervised methods can be very relevant in this context, because they are not 
affected by the labels of the compounds and by the difficulties of curation of flavor labels. For 
this reason, the GTM approach is particularly suited. This illustrated in the beginning of the 
tutorial. 
However, getting a meaningful picture of the chemical space of flavors requires some 
investigation about the algorithm itself. The exercises illustrated the generation and analysis 
of GTM and propose an optimization procedure. Although the procedure is tedious, the main 
results is that the number of RBF is the most important parameter to set in a GTM. For all 
others, the heuristics implemented make sense. Typically, the width of the RBF is set to cover 
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two times the typical distance between two RBF centers on the manifold, thus ensuring a 
reasonable stiffness of the manifold and reducing the chances of overfitting. At the same time, 
the regularization parameters can be set to 1 corresponding to a situation where each element 
of the GLR describing the manifold follows a standard distribution. Finally, the number of 
node, is rather a modification of the resolution of the map. It can be set to low value in an 
exploratory phase, then to large values, in order to produce better quality visualizations. 
Thus, with only one important parameter to set, the GTM can be considered as rather simple 
method to visualize the chemical space. 
Finally, an important aspect of the GTM through visualization, is the freedom of 
representation of the data. All steps of the calculations are generating files that are easy to 
read and to plot. The end user shall have the choice of the software and the tools to create 
custom representation, emphasizing the features of the map to support its observations. 
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