Tutorial on Generative Topographic Mapping

G. MARCOU, D. HORVATH, O. KLIMCHUK, F. BONACHERA and A. VARNEK

1. Int	roduction	2
1.1.	Software and Files	2
1.2.	Licence	2
1.3.	The flavor dataset	3
1.4.	The Generative Topographic Mapping algorithm	5
2. Ste	p by step instructions	6
2.1.	Exercise 1. Train a GTM.	6
2.2.	Exercise 2. Apply the GTM model	9
2.3.	Exercise 3. Visualize the projected data	12
2.4.	Exercise 4. Convergence of GTM fitting, visualization of the manifold	19
2.5.	Exercise 5. Optimization of parameters	24
3. Сог	nclusion	33
4. Bib	liography	34

1. Introduction

The tutorial aims at presenting the Generative Topographic Mapping (GTM) algorithm^[1]. The GTM is an unsupervised method to map high dimensional data to a two-dimensional representation. In the process, the GTM builds a probabilistic model of the data that can be exploited for data characterization, comparison or classification and regression model building. The GTM approach will be used to analyze a dataset of flavors and to explore structure-flavor relationships. It will be the occasion to get some deeper insight into the method with a particular focus on the effects of the GTM parameterization on the obtained map.

1.1. Software and Files

The tutorial is based on three pieces of software:

xGTMapTool: a graphical user interface frontend for the preparation of a GTM.

xGTMview: an application to link the GTM trained on chemical data and the chemical structures.

xGTMmanifold: an application illustrating the concept of GTM manifold and data space.

The directory FDB contains the following files:

- train.sdf and test.sdf: the chemical structure annotated with flavor descriptions, separated into a training and a test set.
- FLAVOR_DB_OK.sdf: This file groups the training and test structural data for convenience.
- train.svm and test.svm: the ISIDA IIAB(2-5) fragment descriptors of the corresponding chemical structures. These data are also provided in arff format.
- train.hdr and test.hdr: the labels of ISIDA IIAB(2-5) fragment descriptors.
- train_Freq_01.svm and test_Freq_01.svm: the "essential" ISIDA IIAB(2-5) fragment descriptors of the corresponding chemical structures, monitoring only the 90% more frequent fragments (the descriptor vector elements corresponding to "exotic" fragments appearing in at most 10% of the structures are now discarded). These data are also provided in arff format.
- train_Freq_01.hdr and test_Freq_01.hdr: the labels of the "essential" ISIDA IIAB(2-5) fragment descriptors.

The directories Exo1, Exo2, Exo3, Exo4 and Exo5 contain examples files obtained during the tutorial.

1.2. Licence

The software are licensed by the University of Strasbourg. The license file is called licence.dat and is situated in the OS specific directories: Windows, Mac and Linux. The licence file must be installed in a proper location to be found.

On Windows: create the directory AppData\local\ISIDAGTM2018 directory at the root
of your home directory and copy the file license.dat in it. The absolute path of the file
should be similar to this one:

C:\Users\username\AppData\local\ISIDAGTM2018\licence.dat The file and the directory should have read and write permissions.

• On Mac: create the directory .config/ISIDAGTM2018 directory at the root of your home directory and copy the file license.dat in it. The absolute path of the file should be similar to this one:

/Users/username/.config/ISIDAGTM2018/licence.dat

• On Linux: create the directory .config/ISIDAGTM2018 directory at the root of your home directory and copy the file license.dat in it. The absolute path of the file should be similar to this one:

/home/username/.config/ISIDAGTM2018/licence.dat

1.3. The flavor dataset

The tutorial uses a dataset of organoleptic compounds mined (in February 2018) from the FlavorDB database^[2]. The database is aggregating information from many existing sources: FooDB^[3], BitterDB^[4], SuperSweet^[5], SuperScent^[6], FlavorNet^[7], Fenaroli's Handbook of Flavor Ingredients^[8] among others.

The *sweet-like* annotation from the SuperSweet database, was removed because, as stated by the authors^[5], "the sweet tasting molecules were extracted from the literature and publicly available databases like Pubchem, the PDB and MonoSaccharideDB and were filtered using different terms like 'sweetening agents'. In the next step the data set was extended by using similarity search methods." The *sweet-like* annotation refers to those compounds found by similarity and therefore their sweetening properties are only presumed.

A second problem with the SuperSweet database is the lack of information to support the labels. Most entries do not identify a source in support to the categorization of a substance as sweet. For this reason, an additional source of information on sweetening agents was incorporated: the dataset used by Todeschini et al^[9]. Then all references originating from the SuperSweet database were removed unless they were confirmed by a second source.

This initial dataset followed a standardization process. Entries featuring stereoisomers were merged because the molecular descriptors used in this tutorial do not distinguish stereoisomers. Finally, after standardization of the chemical structures, duplicate structures were merged. The merging concerned all fields associated to chemical structures: the flavor descriptions, bibliographic sources, etc.

There are 70 mixtures in total in the dataset. These are substances with a flavor profile that are described as the constituents of the mixture as, for instance, bretylium tosylate. There are also ionic substances such as sodium chloride. Ionic forms were kept when the nature of one ion did change the perception of the substance. For instance, sulfate is sour, magnesium sulfate is bitter, iron sulfate is metallic and ammonium sulfate is astringent. However, if a

compound appeared as a component of several salts but the organoleptic description did not change with the counter-ion, then all the entries were merged and the counter-ions were deleted from the structure.

Then, the dataset was reviewed manually to disambiguate some entries when possible. For instance, the structures of santalene, santalol and santalyl acetate had to be homogenized over the different sources providing their structure. Some entries remain suspicious although there is no clear evidence that their chemical structure are wrong. This is the case of oxo-carboxylic acids glycerides, because they can be easily confused with precursors of triglycerides. Some entries were discarded because they were described as polymers, such as cellulose and the chemical structure could be properly rendered by the monomer represented in the entries.

Overall, the dataset contains 3438 substances, which is a substantial reduction from the 25595 entries in the FooDB database. Most of the removed compounds were filtered out following the filters based on the SuperSweet database. The dataset size, finally, is smaller but of the same order of magnitude to the less accessible but renown Lefingwell database^[10].

The flavor labels also require a substantial amount of attention. Some of the flavors are described using natural language using qualifiers such as "weak" or "very strong". Although important for the precision of the description they weaken the statistical analysis because they are much rarer than the noun they are qualifying. For instance "very sweet" is rare compared to "sweet" and we preferred to requalify these compounds as "sweet" rather then create a new and ill-defined category. The same logic applied to adjectives based on a noun or a noun used as an adjective. In such situation as "grassy" and "grass" the term "grassy" was preferred and all concerned items were grouped under the label "grass". The noun was sometime preferred because it seemed more used, for instance "sweet" was preferred over "sweety". In total, this required 132 rule. This procedure is rather conservative, by contrast to more systematical natural language processing analysis^[11].

The files FLAVOR_DB_OK.sdf, train.sdf and test.sdf contain chemical structures and annotations of the dataset. The available fields are the following:

- REFERENCES: a string consisting of URLs to the data repository where the compounds and labels originated from
- FLAVOR PROFILE: the description of the flavor of the compound using a dictionary of 566 terms
- FLAVOR TERM: if a flavor term is present in the flavor profile, this information is repeated as separate SDF fields. It is more easy to analyze the flavor profile in this format.

The file FLAVOR_DB_OK.sdf is split into equal sized training and test sets. ISIDA Molecular Fragment Descriptors of type IIAB(2-5) were computed on these datasets. The descriptor set was limited to the 99% most frequent fragments, in order to increase the robustness of models and the speed of the calculations for the tutorial.

The training and test sets are stored in the format LibSVM and ARFF, ready to be processed with machine learning tools.

1.4. The Generative Topographic Mapping algorithm

The GTM consists into fitting a finite 2D surface, termed the "manifold", onto a dataset embedded in a high dimensional space, the input space (IS), defined by the molecular descriptor vector. The surface is described by a Generalized Linear Regression (GLR), using as basis functions, a set of m Radial Basis Functions (RBF) of width w homogeneously distributed over the surface. The surface is the center of a normal probability distribution, with a predefined set of k locations of the manifold. These ones are called the nodes of the GTM. The resulting distributions are used to compute a probability for each element of the IS. It is therefore possible to estimate the probability of the dataset (the so-called likelihood) considering a particular geometry of the surface in the IS. The GLR is used to optimize the likelihood under the constraint of a regulation term, of intensity controlled by a parameter *I*. As a result, the contribution of each node to the likelihood of a compound can be computed. This quantity is termed the responsibility. Therefore, a compound *n* appears on the GTM as pattern of responsibilities R_{nk} , representing its relative degrees of association, or "residence" within every node k. It is common practice to compute an average position on the map based on the responsibilities of a compound. The corresponding (x,y) position is termed the projection of the compound on the map. Responsibilities are a key ingredient: they are used to locate instances on the map, represent the density of the chemical space, or build SAR and QSAR models.

Pre-processing of the descriptors

Since GTM manifold construction is a non-linear process, its outcome is sensitive to the numerical ranges covered by each descriptor element. It may be helpful to therefore make sure that all descriptor elements undergo specific rescaling/recentering in order to fit into a same final range of values. The most common pre-processing steps of the molecular descriptor sets are supported by the GTM software. The first option, of course, is to not use any pre-processing. In that case, the molecular descriptors are not transformed.

The other options are the following, considering the value x_j^i of the j^{th} molecular descriptor of the molecule *i*:

- Standardize: the average value m_j and the standard deviation s_j of the molecular descriptor j are estimated, then the standardize value is $x_{std,j}^i = (x_j^i m_j)/s_j$.
- Center: the average m_j value is removed from the descriptor value: $x_{ctr,j}^i = x_j^i m_j$
- Normalize: the molecular descriptors are confined in the range [-1,1], using $x_{min,j}^i$ and

 $x_{max,j}^{i}$, the min and max values of the descriptor: $x_{nrm,j}^{i} = \frac{x_{j}^{i} - \frac{(x_{max,j}^{i} + x_{min,j}^{i})}{(x_{max,j}^{i} - x_{min,j}^{i})/2}$

• Normalize and center: the molecular descriptors are confined in the range [-1,1] then they are centered. As a result, a descriptor element is no longer confined in the range [-1,1], but the range of value still covers 2 units. Using the same notations, the modified value of the descriptor is: $x_{ctn,j}^i = \frac{x_j^i - m_j}{(x_{max,j}^i - x_{min,j}^i)/2}$

All these transformations follow the general formula: $x_{tranformed,j}^{i} = \frac{x_{j}^{i} - M_{j}}{S_{j}}$. The data are shifted by a constant M_{j} and scaled by another constant S_{j} .

2. Step by step instructions

The exercises are developed as an introduction to the GTM approach. They start with the generation of a GTM (Exercise 1) and using it on new data (Exercise 2). Then the results are visualized (Exercise 3). In the next step, the convergence of the algorithm (Exercise 4) and the parameterization of the GTM are scrutinized (Exercise 5).

2.1. Exercise 1. Train a GTM.

Instructions	Comments
Open the xGTMapTool software	The interface of the software appears (Figure 1).
Click the button to the right of the Input label (Figure 1, area 1) and select the file train_Freq_0.1.svm.	This is the selection of the datafile used to train the GTM model. An automatically generated output base name is proposed by the soft unless explicitly set up by the user. The output base name will be used to name all the files produced by the software. All those files will be in the path specified in this field. The generated files will differ by their terminations only.
As a preprocessing option (Figure 1, area 2), use the standardize option.	An important aspect of the training of the GTM model is the pre-processing. The initial state of the manifold is a flat surface fitted to the two first principal component of the dataset. Therefore, the dataset must be centered. Furthermore, if there are some large differences in variance between the descriptors, this will bias the manifold toward the ones covering a wider numeric range. A reasonable choice to avoid these pitfalls is to standardize the dataset.
Set the Number of traits value to 9 (Figure 1, area 3) then click on the button OK (Figure 1, area 6).	The other parameters of the method are set to default values. These values are visible in the log window (Figure 1, area 5 and Figure 2). The width of the RBFs are set to two times the distance between two neighboring RBF on the latent space plane. The number of node is 25 times the number of traits and the regularization parameter is set to 1. While the calculations are running, the log window displays information (Figure 3) about the current state of the process: • a warning in case previous results are affected by the current run;

	 a reminder about key parameters setup: 	
	• the number of instances to process:	
	• the number of instances to process,	
	 a first guess of the likelihood of the 	
	dataset.	
	At each step, the log line gives:	
	 the expectation-maximization 	
	iteration count;	
	 the current value of the likelihood; 	
	 the variation of likelihood since the 	
	previous step;	
	 the percentage of variation of the log 	
	likelihood compared to the present	
	value of the log likelihood:	
	 the largest variation of a value in the 	
	woight matrix defining the manifold:	
	• the same number as a percentage.	
	At the end of the calculations a message	
	(Figure 4) informs that the process	
	terminated successfully and the last	
	iteration is informative about the log	
	likelihood of the studied dataset.	
Edit the file train_Freq_01.xml.	The process generated an XML file	
	containing the GTM model.	

The GTM model is stored as an XML file, based on the following tags.

- GTM, it is the main node of the XML model file. It supports the attributes
 - **D**, specifying the dimensionality of the input space (*ie* the number of molecular descriptors),
 - **N** is the number of instances used to train the GTM,
 - **Type** indicates which particular GTM algorithm is used,
 - o **nIter** is the number of training iterations,
 - **Preprocess** indicating which kind of preprocessing was used.
- **Mean**, is the shift value on each molecular descriptor. It is the actual mean of the molecular descriptors if the preprocessing is a Standardization.
- **SD**, is the scaling value on each molecular descriptor. It is the actual standard deviation of the molecular descriptors if the preprocessing is a Standardization.
- **PC123**, are the coordinates of the approximated first three principal components of the dataset.
- **Manifold**, contains the values of the weight matrix defining the manifold. It needs the following attributes:
 - **D**, the dimension of the input space;
 - **K**, the number of nodes;
 - **M**, the number of RBFs;
 - **sigma**, the width of the RBFs;
 - o **alpha**, the value of the regularization parameter;
 - **beta**, the standard deviation of the normal distribution around the manifold.

Therefore, this node is the core of the GTM model.

- LatentSamples, the 2D coordinates of the nodes on the latent space.
- LatentTraits, the 2D coordinates of the RBFs on the latent space.

Conclusion

In this exercise, the training set file train_Freq_01.svm is used to train a GTM model using mostly default parameter values. The resulting model is stored as an XML file. The training algorithm is an expectation-maximization, that can be assimilated to a gradient descent. Therefore, the likelihood shall evolve in a monotonic manner, here it is increasing at each step up to convergence. The likelihood itself is supposed to be a negative value. In some cases the value can be observed positive, but it is usually pathological and indicates that something wrong is happening. Generally, it is due to an unwise choice of the pre-processing.

		xGTMapTool	
	Input	Input file (SVM Format)	
Train model	Output 1	Output base name	
4	Model (XML)	Output base name	
O Use model			
Save full informations			
Root of number of samples	-1	Select a pre-processing 2	
Root of number of traits	1		
RBF width	-1 3		
Regularization	-1		
Max. number of iterations	100		
welcome ISIDA/xGTMapTo	**************************************	****	
a graphical front end to GT	м.		
H. Gaspar, A. Varnek, D. Ho P.Sidorov, A. Lin, G. Marcou	orvath, I	5	- 1
Université de Strasbourg Faculté de Chimie			
2017	*****	***	
		6 ок	Quit
			14

Figure 1. The interface of the xGTMapTool application. The file management is operated in the region (1) of the interface. The preprocessing is taken care of in (2) and the parameterization of the model is performed in (3). The use of the interface to train or apply a GTM model is controlled in (4). The log of the calculations are written in (5) and launching the calculations is performed in (6).

Classical GTM

************INPUT AND OUTPUT PATHS*********

Input file: /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9I2u5/train_Freq_01.svm Output file: /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9I2u5/train_Freq_01

*******BASIC ALGORITHM PARAMETERS*********

********NORMAL ALGORITHM PARAMETERS******** Regularization coefficient: 1 Input attributes are standardized.

Figure 2. Default parameter values when the only user setting is the number of traits equal to 9.

Number of training instances: 1719 First LLt=-169.933773986627 Iter.: 1 LLmap=-115.98053 Iter.: 2 LLmap=-109.66583 DLLmap=6.31470 %DLLmap=5.44462 DW=4.19294 %DW=0.54810 Iter.: 3 LLmap=-107.48498 DLLmap=2.18085 %DLLmap=1.98863 DW=3.41660 %DW=0.44661 Iter.: 4 LLmap=-106.74759 DLLmap=0.73739 %DLLmap=0.68604 DW=1.72880 %DW=0.22599 Iter.: 5 LLmap=-106.36303 DLLmap=0.38456 %DLLmap=0.36026 DW=1.09941 %DW=0.14371 Iter.: 6 LLmap=-106.09003 DLLmap=0.27300 %DLLmap=0.25667 DW=0.94138 %DW=0.12306 Iter.: 7 LLmap=-105.87716 DLLmap=0.21287 %DLLmap=0.20065 DW=0.83908 %DW=0.10968 Iter.: 8 LLmap=-105.68304 DLLmap=0.19412 %DLLmap=0.18334 DW=0.79294 %DW=0.10365 Iter.: 9 LLmap=-105.43344 DLLmap=0.24960 %DLLmap=0.23618 DW=1.25572 %DW=0.16415 Iter.: 10 LLmap=-105.13051 DLLmap=0.30293 %DLLmap=0.28731 DW=1.49925 %DW=0.19598

Figure 3. State messages during the GTM model training. It starts with warning in case previous results are affected by the current run, reminders about key parameters setup, reviewing the number of instances to process and a first guess of the likelihood of the dataset. Then at each step, the line give the step count, the current value of the likelihood, the variation of likelihood since the previous step, the same number as a percentage, the largest variation of the weight matrix defining the manifold and the same number as a percentage.

```
Iter.: 66 LLmap=-103.47416 DLLmap=0.00104 %DLLmap=0.00100 DW=0.03754 %DW=0.00491
Iter.: 67 LLmap=-103.47320 DLLmap=0.00096 %DLLmap=0.00093 DW=0.03594 %DW=0.00470
***All calculations finished successfully!***
```

Figure 4. Last iteration of the training of the GTM.

2.2. Exercise 2. Apply the GTM model

Instructions	Comments
Use the xGTMapTool interface. Reopen it if	In this mode, parameters of the GTM
it was closed. Then chose the use model	algorithm are no longer available.
option (Figure 1, area 4).	Simultaneously, the interface to select a
	GTM model becomes available. Indeed, the

	parameters of the GTM are included into the model definition
<pre>Set up the input for the training set (Figure 1, area 1). Choose as input the file train_Freq_01.svm. Choose as Model (XML) the file train_Freq_01.xml. Check if the Save full information box is not ticked. Untick if needed. Click the OK button.</pre>	The log file of the calculation contains the parameter values of the GTM and an and estimates the likelihood of the dataset to - 103.47, which is the same obtained at the end of the training stage (Figure 5). During this procedure the training set is projected on the GTM. The software will generate two files: train_Freq_01R.svm and train_Freq_01Prj.mat. The train_Freq_01R.svm file contains the responsibilities computed for each molecule in the libsvm format. The first column is the likelihood of each compound Then, each pair of column separated values represent first the identifier of a node on the map and the responsibility of this node to the molecule. The train_Freq_01Prj.mat file is a two column file containing the (x,y) coordinates of the projections of the molecules on the manifold. These coordinates are weighted average of the coordinates of each node of the GTM with the associated
 Set up the input for the test set (Figure 1, area 1). Choose as input the file test_Freq_01.svm. Choose as Model (XML) the file train_Freq_01.xml. Untick the Save full information box if needed. Click the OK button. 	During this process, the test set is projected on the GTM manifold. The likelihood of this test set is estimated to -104.08 (Figure 6). The value is smaller than the training set likelihood: the test set is a bit less well explained by the GTM model than the training set. This is a classical situation with machine learning methods. The software produces two new files: a responsibility file (test_Freq_01R.mat) and a projection file (test_Freq_01Prj.mat), as in the previous step.

Conclusion

In this exercise, the previously build GTM model was used to project data on it. Two categories of information are reported. First, the files named using the scheme <base name>R.svm contains the likelihood of each compound and the responsibility of each node for each compound. Second, the files named using the scheme <base name>Prj.svm report the projections of each molecules on the map. Usually, new data are less explained than the data

used to train the GTM. This is expected and if the likelihood differences between training and test data increases, it can be symptomatic of overfitting situations.

Load model file: /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/train_Freq_01.xml Classical GTM ***********INPUT AND OUTPUT PATHS********** Input file: Output file: /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/train_Freq_01 Projection of data from file: /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/train_Freq_01.svm ***** *******BASIC ALGORITHM PARAMETERS******** Width of rbf: 1.33333 Number of traits of the latent probability distribution (e.g. rbf centers): 9 Number of samples of the probability distribution: 225 Maximum number of iterations: 100 Convergence precision: +/- 0.001 ***** ********NORMAL ALGORITHM PARAMETERS******** Regularization coefficient: 1 Input attributes are standardized.

WARNING: File /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/train_Freq_01R.svm is deleted WARNING: File /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/train_Freq_01Prj.mat is deleted Likelyhood of projected data: -103.47322 ***All calculations finished successfully!***

Figure 5. Log of the mapping of the training set on the GTM model.

******* Load model file: /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/train_Freq_01.xml Classical GTM Input file: Output file: /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/test_Freq_01 Projection of data from file: /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/test_Freq_01.svm ********BASIC ALGORITHM PARAMETERS******** Width of rbf: 1.33333 Number of traits of the latent probability distribution (e.g. rbf centers): 9 Number of samples of the probability distribution: 225 Maximum number of iterations: 100 Convergence precision: +/- 0.001 *******NORMAL ALGORITHM PARAMETERS******** Regularization coefficient: 1 Input attributes are standardized. ***** *****

WARNING: File /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/test_Freq_01R.svm is deleted WARNING: File /Users/marcou/Documents/CS3-2018/FDB2/CVIter1Fold1/t9l2u5/test_Freq_01Prj.mat is deleted Likelyhood of projected data: -104.08266 ***All calculations finished successfully!*** Figure 6. Log of the mapping of the test set on the GTM model.

Instructions	Comments
Open the application xGTMView	The interface should look as illustrated in the
	Figure 7. The software aims at connecting
	the chemical content of the GTM with some
	plots of the GTM itself. Input is managed in
	(1). Navigation of the chemical structure file
	is performed using the controls in (2) and
	chemical structures are displayed in (5). The
	GTM data are plotted in (3) and the content
	of the plots are controlled in (4). The log are
	written in (6). The plot processing is
	launched in (7).
Setup the input files to process (Figure 7,	At this step, the GTM model file is processed.
area 1).	The information about how the training/test
• Click the GTM Model (XML	data set are projected on the map is
format) button and chose the file	contained in the responsibility files
<pre>train_Freq_01.xml.</pre>	generated during the previous exercise.
• If needed, click the Projection	When the GTM Model (XML format)
coordinates (MAT format)	interface is setup, the software will guess if

2.3. Exercise 3. Visualize the projected data

button and chose the file	there exist some relevant projection and
train_Freq_01Prj.mat.	responsibility files. In the current situation,
• Check also that the corresponding	we will focus on the projection of the
train_Freq_01R.svm file is	training data.
selected as the Responsibility	The file train.sdf is connected to these
file (SVM format). Otherwise	data. The order of the molecules in these
click the corresponding button to	different files is assumed to be the same. In
choose this file.	other words, molecules must appear in the
• Open the file chooser dialog of the	SDF file in the same order as in the molecular
Molecular structure file	descriptor file projected on the GTM. In turn,
(SDF format) to locate and select	the GTM output will preserve the same
the file train.sdf.	order. In case of discrepancies between the
Click the OK button.	files, the results might be meaningless and
	eventually, the application may crash.
Tick the Traits box (Figure 7, area 4).	The plot (Figure 7, area 3) displays the localization of the RBF on the latent space (Figure 8). The term trait is often used in the GTM literature, but in the context of these exercises it is a synonym for the RBFs.
	Here, the RBFs are shaping the manifold: the
	more they are, the more flexible it is. In
	other types of GTM algorithm, a trait will
	term other degrees of freedom of the model.
	Another observation is that the RBFs are
	distributed in a pseudo-regular way. This
	allows to compute GTM with an arbitrary
	number of traits.
 Untick the Traits box 	This configuration plots the positions of the
 Tick the Samples box 	nodes of the GTM (Figure 9). The nodes are
	also termed samples because they are the
	points of the manifold on which the
	probability density is estimated. In a sense,
	they are sampling the density.
	They are also distributed in a pseudo-regular
	way, which might not coincide with any RBF
	center.
	For each compound, the responsibility of
	every node is computed. Therefore, these
	responsibilities can be summed up on the
	nodes. The larger is the sum, the denser is
	chemical space described by this node. This
	is represented by the size of the circles
	representing each node: the larger is a circle,
	the more populate is the corresponding
	region of the chemical space.

•	Untick the Samples box	The plot represents the location of each
•	Tick the Projections box	molecule on the map (Figure 10). The map
•	In the area 2, select from the list of	itself is interactive. First, the points are
	available SDF fields, the sweet key.	colored according to the values of the SDF
•	Optional: if the plotted points are too	fields. Thus, selecting the field "sweet" in the
	small, you can use the slide bar at the	area (2) of the interface, compounds
	bottom right hand corner of the	described as having a sweet taste are
	plotting area and validate with the	indicated as black dots.
	OK button.	When browsing molecules, their location is
		nignighted by a blue dot. when clicking on a
		dot, it is nightighted and the chemical structure is drawn in (5)
		It is then easy to notice a large "sweet way"
		across the chemical space and to notice that
		they are carbohydrates of increasing
		complexity.
•	Go to the compound 118 using the	From time to time, a compound can appear
	SDF navigation bar (Figure 7, area 2).	dissimilar to its neighbors. One explanation
•	Untick the Projection box	can be found by deeper looking into the
•	Tick the Responsibility box	responsibility pattern of the compound (see
		for instance the responsibility pattern of the
		molecule 118, Figure 11).
		In fact, the compound is located on the map
		at the "center of mass" of its responsibility
		pattern. Most compounds are mono-modal:
		node, and their (x, y) projection will match
		the node coordinates. But some compounds
		are delocalized over several nodes. This
		means that the compound shares some
		structural characteristics with different
		chemotypes in the dataset. From the point
		of view of the dataset those compounds are
		some kind of chimera.
Load t	he test_Freq_01Prj.mat file as	During this step, the test set projection is
the Projection coordinates.		loaded in the interface. As previously
Load the test_Freq_01R.svm file if		mentioned, the software expects the
needed as the Responsibility file .		chemical structures, the projection and
Load the test.sdf file as Molecular		The same analysis can be repeated. But the
Click the OK button		main observation is that the organization of
chex the UK button.		the chemical space differs very little
		considering the training data and the test
		data. This is expected if the model is not too
		overfitted.

Conclusion

This exercise, illustrates the analysis of the GTM model and its application to the training and to the test data. It illustrated the key concepts of the GTM model: the traits, the nodes, the responsibilities, the projection.

Figure 7. Interface of the xGTMView software. Input management is take care in (1). Navigation in the chemical structure file is performed in (2) and chemical structures are displayed in (5). The GTM data are plotted in (3) and controlled in (4). The log are written in (6) and the calculation are launched in (7).

Figure 8. Position of the RBF centers (the traits) on the 2D manifold. The traits are positioned in a pseudo-regular way.

Figure 9. Positions of the sampling points of the manifold. These are the points were the density probability are estimated. The size of the circle around a sample point is proportional to the density of the chemical space region it is located in.

-1-0.950.90.850.80.750.70.650.60.550.50.450.40.350.30.250.20.150.10.050 0.050.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.90.95 1 Figure 10. Projection of the training dataset on the GTM. Each point corresponds to a molecule. The black points are those compounds associated to the sweet taste. The cross and the emphasized point correspond to the selection of a particular molecule. The selected molecule is drawn in the region (5) of the interface (Figure 7).

Figure 11. An example of an extended responsibility pattern. The corresponding molecule 118 is in the red frame. The molecules 537 is localized on the top of the responsibility pattern while the molecule 66 is localized near the bottom.

2.4. Exercise 4. Convergence of GTM fitting, visualization of the manifold

Instructions		Comments
• Op	en, if needed, the xGTMapTool	We will use the xGTMapTool application to
ар	plication.	generate additional information about the
• Ch	oose the use model option	GTM manifold. More precisely, we search an
(Fig	gure 1, area 4).	alternative view to monitor the fit of the
 Set 	t up the input for the training set	manifold to the dataset. The solution
(Fi	gure 1, area 1).	proposed is to visualize it in the 3D
	\circ Choose as $input$ the file	coordinates defined by the first three
	train_Freq_01.svm.	principal components ^[12] of the dataset.
	 Choose as Model (XML) the 	The software generates many additional
	file train_Freq_01.xml.	files.

 Tick the Save full 	<pre>train_Freq_PC123.mat: a three column</pre>
<pre>information box.</pre>	file with the coordinates of the three first
• Click the OK button.	approximate principal component of the
	training set. These coordinates are used to
	initialize the GTM algorithm.
	train_Freq_01Z.mat: It contains the
	modified values of the molecular descriptors
	resulting from the pre-processing for each
	molecule projected on the GTM.
	train_Freq_01Z3D.mat: a three column
	file recording the coordinates of each
	molecule projected on the GTM, in the three
	first principal components coordinates
	system.
	train_Freq_01WPn1: Contains the
	coordinates of the manifold in the system of
	descriptors
	train Erec 01WPhi3D: Contains the
	coordinates of the manifold in the system of
	coordinates of the three first principal
	component system.
• Open the GTMmanifold software	The files train Freq 01Z3D.mat and the
(Figure 12).	train Freq 01WPhi3D.mat are in theory
• Load the file	sufficient to plot at the same time the
train Freq 01Z3D.mat in the	manifold and the dataset in the same
top text box.	principal component coordinates system.
• Load the file	However, in order to plot the surface using a
train_Freq_01WPhi3D.mat in	tessellation rendering, it is needed to
the middle text box.	identify which nodes are members of the
 Load the file train_Freq_01.xml 	same triangle, which is an easy task using
in the bottom text box.	their coordinate on the manifold. This
• Click the OK button.	information is located in the model file
• Optional: if the plotted points are too	train_Freq_01.xml.
small, you can use the slide bar at the	The picture illustrates how the manifold has
bottom right hand corner of the	twisted in order to accommodate the
plotting area.	dataset. However, the picture is only
	approximative because the first three
	the data Resides the manifold has a width
	corresponding to the standard deviation of
	the probability distribution that is not
	represented here. However, this is sufficient
	to monitor the training of the GTM and
	understand how it converges.
Create a folder named Converge.	The following calculations will generate
	many files. It is wise to manipulate them in a

Copy to this folder the file train From 01 sum	dedicated folder to keep the working space
tialin_Freq_01.svin.	This sotup will croate a GTM model that will
• Choose the train model model	ontimized during a single expectation-
(Figure 1 area 4)	maximization sten
(Figure 1, area 4).	
(Figure 1, area 1)	
\bigcirc Choose as input the file	
train Freq 01 sym	
\circ Choose as output the name	
conv1.	
\circ Set the Preprocessing to	
standardize.	
\circ Set the value Number of	
traits to 9	
\circ Set the Max. Number of	
Iterations to 1.	
Click the OK button.	
Repeat the previous procedure varying the	This will create a set of GTM models
number of iterations to 10, 20, 30, 40 and 50.	optimized over 10, 20, 30, 40 and 50
Take care to changing the following values:	iterations of expectation-maximization.
o set the Max. Number of	
40 and 50	
\circ output shall be set to	
conv10. conv20. conv30.	
conv40, conv50.,	
respectively.	
Repeat the procedure of projection of the	To monitor the evolution of the manifold, it
training data for each of the GTM models call	is now needed to apply each of the GTM
conv1.xml, conv10.xml, conv20.xml,	models to the training data. The full
conv30.xml and conv50.xml.	information must be recorded to generate
• Use the xGTMapTool application in	the files with the coordinates of the objects
the use model mode (Figure 1, area	in the three dimensional coordinate system
	of the three first principal components.
• Tick the Save tull information	
DOX.	
• Setup the input to the file	
Eor asch of the GTM model files set	
up the Model (YML) to the	
corresponding XMI file Then click	
the OK button.	
Report the likelihood as a function of	The convergence of the likelihood is
the number of iterations of	represented with more details in (Figure 13).
ontimization stens	

					1							
٠	Open	with	the	GTMmanifold	The c	orresp	ondi	ing sh	napes o	of th	ie mar	nifold
	softwa	re the g	enerat	ted manifolds.	shoul	d look	as in	Figu	re 14.			
					The	shape	of	the	manif	old	is alr	eady
					stabili	ized af	fter 3	30 ite	rations	s cor	respor	nding
					to a v	ariatio	n of	the li	kelihoo	od be	etweer	n two
					conse	cutive	step	os of a	bout 0	.01 ι	units.	
					There	fore, t	he d	efaul	t value	of C).001 c	of the
					param	neter	C	Conve	rgence	:	likeli	hood
					differ	ence s	eem	s suff	icient.	lf th	e likeli	hood
					does	not ch	nange	e mo	re thar	n thi	s thre	shold
					during	g on	ne	optin	nizatio	n	step,	the
					optim	izatior	n can	ı be st	topped	•		
				ISIDA/GTMManifoldView								

Figure 12. Interface of the GTM manifold application. The zone (1) is used to load the 3D coordinates files illustrating the dataset and the manifold of the GTM. They are plotted in the area (2).

Figure 13. Evolution of the Likelihood with the increasing number of optimization steps of the GTM model.

1 iteration **10** iterations **20** iterations **30** iterations **40** iterations **50** iterations *Figure 14. Evolution of the shape of the manifold over the increasing number of optimization steps of the GTM model.*

Conclusion

This exercise offered the opportunity to take a closer look to the manifold at the heart of the GTM model. As the optimization process goes on, the manifold is tweaked towards the data points. The whole process is a balance between increasing the standard deviation of the of the normal distribution around the manifold and moving the RBF centers over the chemical space to improve the explanation of the dataset.

The optimization finishes when the likelihood change between two consecutive optimization steps is lower than a threshold value. The default value of this threshold, 0.001, seems relevant at least qualitatively.

2.5. Exercise 5. Optimization of parameters.

In the preceding exercises the number of RBF was set to 9 and all other parameters were left to default. In this exercise the question of optimal parameter choices will be asked.

Instructions	Comments		
Create a folder named M.	As before, these systematic calculations are		
• Copy to this folder the file	generating many files. It is wise to store		
train_Freq_01.svm and	them in dedicated folders to keep the		
test_Freq_01.svm	working space tidy.		
• Use the xGTMapTool application.	This will generate a GTM using only one RBF		
• Choose the train model mode	to define the manifold.		
(Figure 1, area 4).	The likelihood value during the last step of		
• Set up the input for the training set	the optimization is estimating the likelihood		
(Figure 1, area 1).	of the training set according to the		
\circ Choose as input the file	generated GTM model.		
train_Freq_01.svm.			
• Choose as output the name			
M1.			
 Set the Preprocessing to 			
standardize.			
\circ Set the value Number of			
traits to 1			
• Set the Max. Number of			
Iterations to 100.			
Click the OK button.			
Record in a spreadsheet the value of			
the likelihood of the last step of			
optimization (the value right to the			
word LLmap in the log window			
Figure 1, area 5).			
Repeat the procedure to change	A set of G I VI models with varying number of		
systematically the number of RBF	traits is generated and the likelihood of the		
center from 5 to 15 by step of 2.	training set is stored.		
o Set the value Number of			
• Change as output accordingly to M5			
M7 M9 M11 M13 M15 respectively			
 Becord the likelihood values of each 			
the last step of optimization (the			
value right to the word I I man in the			
log window Figure 1 area 5)			
Choose the use model ontion	The likelihood increases systematically with		
(Figure 1, area 4).	the number of RBF centers. This is an		
• Optionally, tick the Save full	expected behavior: the more they are. the		
information box	more flexible becomes the manifold. It fits to		
	the data more easily.		

• Choose as input the file	However, when doing so, the difference of
test_Freq_01.svm.	likelihood between the test set and the
 Apply all the GTM models generated 	training set increases. This is symptomatic of
so far. Set the input Model (XML)	overfitting.
to M1.xml, M5.xml, M7.xml, M9.xml,	The results of a larger scale study on the
M11.xml, M13.xml and M15.xml	same data are reproduced in Figure 15. It
(Figure 1, area 1).	illustrate the situation. While the training set
• Record in a spreadsheet, the values	likelihood continues to increase, the test set
of the likelihood.	is increasing at a lower rate.
	The choice of 9 RBFs in the previous
	exercises resulted from a choice to fit the
	training set and the test set approximately as
	well.
• Create a folder named W.	The next step is a systematic study of the
Copy to this folder the file	influence of the width of the RBFs. This step
train Freq 01.svm and	will also generate a number of files and it is
test Freq 01.svm	wise to keep them in separate place.
Using the xGTMapTool application.	The default value of the RBF width is two
 Choose the train model mode 	times the average distance between two
(Figure 1. area 4).	neighboring RBF centers. The manifold is a
 Set up the input for the training set 	square extending into the range [-1,1]x[-
(Figure 1, area 1).	1,1]. Its surface is therefore 4 squared units.
\circ Choose as input the file	Thus with 9 RBF. the default value of the RBF
train Freq 01.svm	width is approximately 1.3.
\circ Set the Number of traits	The current setup is close to the default.
	···· · · · · · · · · · · · · · · · · ·
 Choose as output the name 	
W1 3	
 Set the Prennocessing to 	
standardize	
 Set the value of RBF width 	
to 1 3	
 Click the OK button 	
Record in a spreadsheet the value of the	
likelihood of the last step of optimization	
(the value right to the word LI man in the log	
window Figure 1 area 5)	
Popost the procedure to change	A set of GTM models using 9 BBE of varying
 Repeat the procedure to change systematically the RBE width 	width is generated and the likelihood of the
\sim Set the value PRE width.	training set is stored
$0 \text{Jet the value NDF} \text{wull to} \\ 10 1 0 0 1 0 01 \text{and} 0 01 0 01 0 01 0 01 0 0$	
• Change as output accordingly to	
$W_{10}, W_{1}, W_{0}, W_{0}, W_{0}, W_{0}$	
 Decord the likelihood values of each 	
 Record the likelihood values of each last stop of antimization (the value) 	
last step of optimization (the value	

right to the word LLmap in the log	
window Figure 1, area 5).	
• Choose the use model option (Figure 1, area 4).	The coupling between the RBFs on the GTM is governed by their width. As the value
 Optionally, tick the Save full information box. 	increases, the coupling is stronger and the manifold cannot fit to the data. When the
 Choose as input the file test Freq 01.svm. 	coupling disappears, the RBF are migrating freely and the notion of map is lost. At the
 Apply all the GTM models generated so far with various RBF width. Set the input Model (XML) to W10.xml, W1.xml, W0_1.xml, W0_01.xml, and W0 001.xml (Figure 1, area 1). 	same time, they tend to migrate over the center of the training set and the model globally loses its ability to explain the dataset. This explains the presence of a rather large
 Record in a spreadsheet, the values of the likelihood. 	optimum range of values of the RBF width, as illustrated in Figure 16. Here, it seems that setting the value of the width to 0.1 is beneficial.
Create a folder named L.	Then, impact of the regularization
Copy to this folder the file	parameter is scrutinized. As before, the
train_Freq_01.svm and	study is realized in its own dedicated folder.
test_Freq_01.svm	
In the xGTMapTool application.	This step generates a collection of GTM
• Choose the train model mode	models varying the value of the
(Figure 1, area 4).	regularization parameter.
• Set up the input for the training set	The smaller the value of this parameter, the
(Figure 1, area 1).	more free are the coefficients of the matrix
• Choose as input the file	contrary large values of regularization will
train_Freq_01.SVM.	stiffen the manifold an prevent it to be
o Set the Number of traits	deformed: it will stay flat
\sim Set the value of RBE width	acionnea. It win stay nat.
to 0.1	
• Set the Preprocessing to	
standardize.	
• Explore systematically the values of	
the regularization parameter	
o Set the value of	
Regularization to 100,	
10, 1, 0.1, 0.01.	
 Set the output name to L100, 	
L10, L1, L0_1, L0_01	
respectively.	
• Click the OK button after each	
complete setup.	
Record the likelihood values of each last step	
of optimization (the right handed value to	

the word LLmap in the log window Figure 1,	
area 5).	
 Choose the use model option (Figure 1, area 4). Optionally, tick the Save full information box. Choose as input the file test_Freq_01.svm. Apply all the GTM models generated so far with various regularization values. Set the input Model (XML) to L100.xml, L10.xml, L1.xml, L0_01.xml and L0_001.xml (Figure 1, area 1). Record in a spreadsheet. the values of the 	The collected likelihood should follow a trend similar to Figure 17. At large values of the regularization, the manifold is stiff and it hardly differs from its initialization state. Upon decreasing he regularization value, the training set likelihood increases slowly and decreases slowly on the test set. An optimum value is located at a regularization value of 1.
likelihood.	
 Create a folder named K. Copy to this folder the file train_Freq_01.svm and test Freq 01.svm 	The last part of the exercise will focus on the number of nodes in a GTM.
In the xGTMapTool application.	This step generates a collection of GTM
 Choose the train model mode (Figure 1, area 4). Set up the input for the training set (Figure 1, area 1). Choose as input the file train_Freq_01.svm. Set the Number of traits to 9 Set the value of RBF width to 0.1 Set the Regularization value to 1.0 Set the Preprocessing to standardize. 	models varying the number of nodes. The number of nodes is the least important parameter of a GTM. It is introduced in theory as a prior distribution over the manifold. Technically, it can also be interpreted as a numeric integration over the manifold to estimate the normal probability density around the manifold. Therefore, modifying its value is merely a change in the precision of this numerical integration.
Explore some values for the number	
 of node Set the value of Number of samples to 200, 300, 400, 500. Set the output name to K200, K300, K400, and K500 respectively. Click the OK button after each complete setup. Record the likelihood values of each last step of optimization (the right handed value to 	

the word LLmap in the log window Figure 1, area 5)	
 Choose the use model option (Figure 1, area 4). Optionally, tick the Save full information box. Choose as input the file test_Freq_01.svm. Apply all the GTM models generated so far with various regularization values. Set the input Model (XML) to K200.xml, K300.xml, K400.xml, K500.xml (Figure 1, area 1). Record in a spreadsheet, the values of the likelihood. 	As expected the number of nodes has a limited impact over the final estimation of the likelihood, for the training as well as for the test set. It is recommended to ensure a reasonable number of nodes for each RBF. In this implementation of the algorithm, the choice was to assign 25 nodes for each RBF.

Conclusion

The optimization of the parameters of the GTM can lead to very different pictures (Figure 18 and Figure 19). However, this is easily explained by diminishing the value of the RBF width. The manifold becomes very flexible and can eventually intersect itself. Therefore, the

responsibility patterns are redistributed. At the same time, the structural consistency of smaller clusters of compounds is improved.

Figure 15. Evolution of the log likelyhood of the training set (violet line) and test set (green line) with the number of traits. A zoom on the lower values of the number of RBF is located on the right hand bottom corner.

Figure 16. Evolution of the log likelyhood with the width of the RBF.

Figure 17. Evolution of the likelyhood with various values of the regularization.

Figure 18. Optimized manifold with 9 RBFs of width 0.1, 500 nodes and a regularization coefficient of 1.

Figure 19. Projection of test compounds on the optimized GTM

3. Conclusion

The study of flavors is certainly a very fuzzy challenge. The flavor descriptions are for a large part subjective and therefore, the flavors labelling tend to be very noisy. Nonetheless, the rationality behind flavors has been demonstrated several times, illustrated by successful QSPR studies able to discriminate the sweet or the bitter taste with high performances.

However, unsupervised methods can be very relevant in this context, because they are not affected by the labels of the compounds and by the difficulties of curation of flavor labels. For this reason, the GTM approach is particularly suited. This illustrated in the beginning of the tutorial.

However, getting a meaningful picture of the chemical space of flavors requires some investigation about the algorithm itself. The exercises illustrated the generation and analysis of GTM and propose an optimization procedure. Although the procedure is tedious, the main results is that the number of RBF is the most important parameter to set in a GTM. For all others, the heuristics implemented make sense. Typically, the width of the RBF is set to cover

two times the typical distance between two RBF centers on the manifold, thus ensuring a reasonable stiffness of the manifold and reducing the chances of overfitting. At the same time, the regularization parameters can be set to 1 corresponding to a situation where each element of the GLR describing the manifold follows a standard distribution. Finally, the number of node, is rather a modification of the resolution of the map. It can be set to low value in an exploratory phase, then to large values, in order to produce better quality visualizations.

Thus, with only one important parameter to set, the GTM can be considered as rather simple method to visualize the chemical space.

Finally, an important aspect of the GTM through visualization, is the freedom of representation of the data. All steps of the calculations are generating files that are easy to read and to plot. The end user shall have the choice of the software and the tools to create custom representation, emphasizing the features of the map to support its observations.

4. Bibliography

- [1] C. M. Bishop, M. Svensén, C. K. Williams, *Neural computation* **1998**, *10*, 215-234.
- [2] N. Garg, A. Sethupathy, R. Tuwani, S. Dokania, A. Iyer, A. Gupta, S. Agrawal, N. Singh,
 S. Shukla, K. Kathuria, *Nucleic acids research* 2017, 46, D1210-D1216.
- [3] A. Scalbert, C. Andres-Lacueva, M. Arita, P. Kroon, C. Manach, M. Urpi-Sarda, D. Wishart, *Journal of agricultural and food chemistry* **2011**, *59*, 4331-4348.
- [4] A. Wiener, M. Shudler, A. Levit, M. Y. Niv, *Nucleic acids research* **2011**, *40*, D413-D419.
- [5] J. Ahmed, S. Preissner, M. Dunkel, C. L. Worth, A. Eckert, R. Preissner, *Nucleic acids research* **2010**, *39*, D377-D382.
- [6] M. Dunkel, U. Schmidt, S. Struck, L. Berger, B. Gruening, J. Hossbach, I. S. Jaeger, U. Effmert, B. Piechulla, R. Eriksson, *Nucleic acids research* **2008**, *37*, D291-D294.
- [7] H. Arn, T. Acree, *Developments in Food Science* **1998**, *40*, 27-28.
- [8] G. A. Burdock, *Fenaroli's handbook of flavor ingredients*, CRC press, **2016**.
- [9] C. Rojas, R. Todeschini, D. Ballabio, A. Mauri, V. Consonni, P. Tripaldi, F. Grisoni, *Frontiers in chemistry* **2017**, *5*, 53.
- [10] J. Leffingwell, D. Leffingwell, 10 ed., Leffingwell and associate, http://www.leffingwell.com/flavbase.htm, **2011**.
- [11] K. Martínez-Mayorga, T. L. Peppard, A. B. Yongye, R. Santos, M. Giulianotti, J. L. Medina-Franco, *Journal of Chemometrics* **2011**, *25*, 550-560.
- [12] H. Hotelling, Journal of educational psychology **1933**, 24, 417.