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Extensive Metabolism Knowledge \ N
@ @ Transparent Predictions @ Expert ICH M7 Support

/" Predictions are clearly represented Sarah can be used as part of an ICH

proprietary data, ensuring vast coverage of - and supported by a measure . T e S e

of confidence. This high leval of i accepted by regulators under the
BRI ’ﬁam_m St v Sl T Confident Predictions

Rodummskhm The Sarah model is built upon a

Save maney large, high-quality dataset that has
m::m L5 been curated by Lhasa experts.
A statistical-

based system for

the prediction of "
mutagenicity a ra

nexus

Using structure
activity relationships
and a dictionary of
biotransformations,
Meteor provides
transparent Phase
1and 2 WM|M Using a unique
e méchi foaing Skin Sensitisation Predictions
mathodology,
Sarah provides > Using a Nearest Neighbour approach,
statistical-based EC3 values are predicted for compounds
predictions for The preferred that fire a skin sensitisation alert.
Greater Efficiency mutagenicity.
Industry-standardised

Eliminates the need to set up
costly and time consuming
analytical methods to measure
impurities that are unlikely to be

prasent in the final drug product.

Expert ICH M7 Support

The ICH M7 Guideline specifically
allows for a control strategy

that relies on an understanding
of process controls in lisu of
analytical testing.

Transparent Predictions

Provides expert commentary and
detailed supporting information
for calculated purge factors,
enabling improved and justifiable
decision making.

Aiding Submission to Regulators

Mirabilis provides a report which includes
the purge calculation, scientific rationale
and supporting evidence to aid in the
submission to regulators.

software tool for the
caloulation of purge
factors of potentially
mutagenic impurities
in a synthetic route

A semi-automated

approach, built on

expert knowledge,
Mirabilis improves the

A toxicity database
and information

toxicity prediction.
Winner of the
Queen's Award
for Enterprise:
Innovation 2016

Using structure
activity relationships
created by Lhasa's
scientific experts,
Derek provides
scientifically robust
and transparent
toxicity predictions for
query compounds.

management contains expert
system curated, high-quality
and peer reviewed
toxicity data from

Expert ICH M7 Support

Derek can be used as part of an
ICH M7 workflow and predictions
are accepted by reguiators under
the ICH M7 guideline.

Reducing Risk in R&D

Derek predicts for various endpoints
including carcinogenicity, mutagenicity,
genatoxicity, teratogenicity, initation
and more.

maintained system
both published Zeneth ;
@ Expert ICH M7 Support T SR e t h
Zene
forced degradation

Rapidly find relevant supporting [ ] [ ] . sources.
examples for your impurities by structure, L V t
substructure or similarity searching. I I c

nexus

Meeting Regulatory Requirements

Analysis of actual and potential impurities by
conducting database and literature searches
across carcinogenicity and mutagenicity data.

@ Current Toxicological Data
Regular updates by Lhasa's dedicated
data team ensures access to the
latest toxicology data.
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Screening Risk assement



Can we trust a specific individual prediction?

accuracy

Screening Risk assement

X 1000000



Can we trust a specific individual prediction?

accuracy

Screening Risk assement

x5y

X 1000000



Can we trust a specific individual prediction?

accuracy

Screening Risk assement

x5y

X 1000000 x1



Can we trust a specific individual prediction?

X 1000000 i x1




Can we trust a specific individual prediction?

accuracy

Screening

X 1000000 i x1

Global model accuracy estimate Indivitual prediction accuracy estimate



Current understanding and definitions

@» OECD QSAR principlest?

A defined endpoint
° An unambiguous algorithm
e A defined domain of applicability
° Appropriate measures of goodness-offit, robustness and predictivity

e A mechanistic interpretation, if possible

Common definition?

— 3 “AD is the response and chemical structure space in
o e====22 which the model makes predictions with a given reliability”.

~ Guidance Document on the Validation of (Quantitative) Structure— Activity Relationship QSAR Models; OECD Series on Testing and Assessment No.69; OECD
Environment Directorate, Environment, Health and Safety Division: Paris, 2007

B Setubal workshop report : Jaworska, J. S.; Comber, M.; Auer, C.; Van Leeuwen, C. Environ. Health Perspect. 2003, 111, 1358-1360



Current understanding and definitions

@» OECD QSAR principlest?

A defined endpoint
° An unambiguous algorithm
e A defined domain of applicability
° Appropriate measures of goodness-offit, robustness and predictivity

e A mechanistic interpretation, if possible

Boundaries

Common definition? Likelihood ?

e = "AD is the response and chemical structure space in
o w====2- which the model makes predictions with a given reliability”.

Reliability

Applicability




A good fundation to build on
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And many more...
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A good fundation to build on

Full Paper

Structure Modification toward Applicability Domain of a
QSAR/QSPR Model Considering Activity/Property

Volu
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Predicting skin sensitizers with confidence — Using
conformal prediction to determine applicability domain of
GARD

Andy Forreryd 2 & =, UIf Norinder ® &, Tim Lindberg 2 =, Malin Lindstedt @ & =

JOURNAL OF
CHEMICAL INFORMATION
AND MODELING

JCM

Conformal Regression for Quantitative Structure—Activity Relationship
Modeling—Quantifying Prediction Uncertainty

Fredrik Svensson*t#
and Andreas Bendert (
1 Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2
1EW, UK.

#|0TA Pharmaceuticals, St Johns Innovation Centre, Cowley Road, Cambridge CB4 OWS, U.K.
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! Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07 Kista, Sweden
+ Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala Sweden
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V Department of Computer Science, Royal Holloway, University of London, Egham Hill, Surrey, U.K.

Shoki Ochi, Tomoyuki Miyao, Kimito Funatsu

First published: 16 August 2017 | https://doi.org/10.1002/minf.201700076

Chemometrics and Intelligent Laboratory Systems
Volume 170, 15 November 2017, Pages 77-83
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A strategy on the definition of applicability domain of
model based on population analysis

Yong-Huan Yun  ® © & &, Dong-Ming Wu ® ¢, Guang-Yi Li ® ¢, Qiao-Yan Zhang 2 & &, Xia Yang 2,
Qin-Fen Li ® ¢, Dong-Sheng Cao 9, Qing-Song Xu ©



Current common methods

Molecule classes
i Organic-Organometalic-Inorganic
i Class of molecules (Arom. Amines)

Feature representation

. Unseen features
Agreement based -
. RF consensus hd

i kNN
Descriptor ranges

° Box

. Convex hull

Distance based methods
i Distance to data points
. Density

Response domain
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Current common methods

Molecule classes

i Organic-Organometalic-Inorganic ® ® A ®
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Molecule classes
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Current common methods

Molecule classes . )
Descriptor density

i Organic-Organometalic-Inorganic
i Class of molecules (Arom. Amines) 8 ;
. _ |
Feature representation / L \\ | i
I
. Unseen features o [/@ / ' :
e \
Agreement based X S ¢
. RF consensus ~
. kNN l
. ST
Descriptor ranges avd | |
. BOX — el — ’ / 5 .?. . .:. £
. Convex hull '
Distance based methods m
i Distance to data points Density of data &
° Density

Response domain



Mixture of different concepts

i, B

Applicability
(can | use this model to make a prediction ?)
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Reliability
(is the prediction reliable?)
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Decidability
(can | make a clear decision)



Mixture of different concepts

Applicability
(can | use this model to make a prediction?)

T

Reliability Decidability
(is the prediction reliable?) (can | make a clear decision)



Mixture of different concepts

ability Domain



Towards an extended and more formal framework

//// Confidence in the prediction if ..

@ My model can be applied for this query compound  [IRaygsllez=tellisY

domain

‘ ./h The prediction is reliable enough for my use case Reliability

domain

| can make a clear decision Decidabiity
dommi//
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Applicability (of the model)

Can | apply my model ? Applicabilty
3 s Model boundaries

(Designer's specifications)

Out of Perform the prediction

Applicability
domain

* |Is the class of my query compound supported by the model ?
e.g. exclude polymers, proteins, inorganic molecules, etc.

* Is my query compound in the range of the descriptor of the training set ?
e.g. inside convex hull, minimum information density

» Did my model see all the structural features present in the query compound ?
e.g. not in domain, contains unseen boronic acid functional group

- /




Reliability (of the prediction)

Can | apply my model ?
(X ')

A\ 4

Out of Perform the prediction

Applicability
domain

Can | trust my
prediction ? o
Reliability
Prediction boundaries
* : (User defined )

~
* How close are the nearest neighbours ?
* How reliable are these nearest data points ?
e.g. GLP compliance
* How well did my model predict these data points ?
e.g. performance during CV
- J

Aniceto, N., Freitas, A.A., Bender, A. et al. J Cheminform (2016) 8: 69. https://doi.org/10.1186/s13321-016-0182-y



Decidability (of the outcome)

Can | apply my model ? ("« Does my evidence converge or conflict ? R
Q P e.g. k Nearest Neightbours distribution

A\ 4

v

Out of Perform the prediction * Is there a consensus between intermediate conclusions ?

e.g. RF tree distribution

applicability
domain

Can | trust my
prediction ?

Out of Reliability Look at the prediction
domain

* Is my posterior likelihood strong enough ?
e.g. Naive Bayes posterior probability

Can | make a
clear call ?

Decidability

I Likelihood boundaries
User defined
— I ( )
Make a statement

Introducing Conformal Prediction in Predictive Modeling. A Transparent and Flexible Alternative to Applicability Domain Determination Ulf Norinder, Lars
Carlsson, Scott Boyer, and Martin Eklund J. Chem. Inf. Model., 2014, 54 (6), pp 1596-1603



Intuitive, non ambigous and formal decision framework

Can | apply my model ?
X Applicabilty

Out of
applicability
domain
Is my prediction
reliable enough?

Reliability

Out of reliability
domain

Can | make a
clear call ?

[ 9

v v

Decidability

Applicability domain: towards a more formal definition. Hanser T, Barber C, Marchaland JF, Werner S.
SAR QSAR Environ Res. 2016 Nov;27(11):893-909. Epub 2016 Nov 9.



Articulation of the method

* Applicability domain is not a monolithic concept, there are 3 key layers
. Separation of concern can help clarify and formalise the notion of AD

. Purpose: Initiate a constructive discussion among our QSAR community to

build a common understanding together

. Harmonize the way we define and present AD to the end users across models

and applications

° Remove confusion for the end user and improve the value of our AD model
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