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Natural products 101 
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Natural products as drugs 

• natural products have been optimized in a very long natural 

selection process for optimal interaction with biological macro-

molecules  

• NPs are therefore an excellent source of substructures which may 

be used as a basis in the design of new bioactive compounds  

• large portion of drugs on the market are NPs or their derivatives 

and many other NPs are under development as new drugs 
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Challenges 

• the structures of NPs are generally quite complex 

(many fused rings, several stereocenters), require 

complex separation 

• resupply from natural sources is in many cases difficult 

• access and benefit sharing is required with the 

countries of origin (Nagoya protocol) 
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Simple properties 
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What makes natural products the 

natural products? 

• physicochemical properties (logP, TPSA) of NPs do not differ 
significantly from those of synthetic molecules 

NPs differ from synthetic molecules in some simple structural 
features, they have: 

• less aromatic rings 

• more stereo centers 

• less nitrogens, more oxygens 

• NPs are “more complex” 
 

More important is to understand detailed structural differences 
between NPs and synthetic molecules – differences in functional 
groups, scaffolds and substituents. The NPs occupy different 
area of structural space than synthetic molecules. 
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The chemical space of NPs 
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NP scaffolds 

the most common scaffolds from synthetic molecules the most common scaffolds from natural products 
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Functional groups 

P. Ertl, An algorithm to identify functional groups in organic molecules 
J. Cheminformatics 9:36 (2017) 

A recursive walk through molecule 

to identify all “clusters” of 

heteroatoms and multiple bonds. 

Functional groups in ~260,000 

structures of NPs from DNP252. 

 

3051 FGs identified 

 

few common FGs and large 

number of rare FGs 

 

11 in > 10% of molecules 

25 in > 1% of molecules 

37% of FGs are singletons 
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The most common FGs in NPs 

12 Public 



P. Ertl, June 2018 
13 Public 

FGs typical for synthetic molecules (PubChem) 

FGs from  

natural products 
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Substituents typical for NPs 
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Natural product-likeness 

P. Ertl, A. Schuffenhauer, S. Roggo, J. Chem. Inf. Model. 48, 68 (2008) 

NP-likeness is a measure how the molecule is similar to the chemical  
space occupied by NPs. The method, developed at Novartis, is 
based on fragment contributions and naive Bayesian statistics. 
 
1. molecules in 2 large training sets (NPs and “average” synthetic 

molecules) are fragmented into atom centered fragments with up 
to 2 neighbor levels 
 

2. for each fragment a fragment NP-likeness contribution is 
calculated using the following formula 

 

      fi = log (nacti / ninacti * ninacttotal / nacttotal)      
      

      this creates a large database of fragments with their contributions 
 

3. NP-likeness of a new molecule is calculated simply as a sum of 
its fragment contributions, normalized to the size of the molecule  
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NP-likeness score 
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NP-likeness score 
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Visualization of NP-likeness 
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Application of NP-likeness 

virtual screening 

selection of molecules for screening and enhancement of the 

company molecular collection 
 

library design 

selection of NP-like scaffolds and substituents for synthesis of NP-

like combinatorial libraries; a balance between NP-likeness  and 

complexity need to be considered 
 

selection of fragments for fragment-based screening 

identification of fragments with high NP-likeness for fragment-based 

screening 
 

de novo molecule design 

automatic design of molecules, optimizing at the same time multiple 

properties, including the NP-likeness 
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NP-likeness in commercial libraries 

Interesting part of 

the “commercial 

chemical space” 
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NP-inspired fragment library 

H. Prescher, P. Ertl et al. Bioorg & Med Chem 25, 921 (2017)  

A fragment library consisting of ~250      

3D-shaped, NP-liked fragments was 

assembled by: 

• NP degradation and diversification 

• identification of NP-like fragments from 

commercial sources 

Novartis fragment library 

NP-inspired frag. library 
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Generation of novel molecules by 

deep neural networks 

P. Ertl et al. arXiv: 1712.07449 (2017) 

LSTM deep recurrent neural network may be trained to generate 

molecules with desired characteristics. Trained on a large collection of NPs 

the network will generate “non-natural” natural products – i.e. novel, 

diverse molecules covering well the NP chemical space.  
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Target preference 
GPCR, kinase, protease, other enzyme, ion channel, 

nuclear receptor, transporter, epigenetic, multiple targets  
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Summary 

• natural products are very promising class of molecules to be used in 

drug discovery 

• they have been optimized in a very long natural selection process for 

optimal interactions with biological macromolecules 

• the high bioactivity potential of NPs is encoded in their structural 

features, that are distinctly different from those of synthetic 

molecules 

• sophisticated cheminformatics methods are needed to master the 

challenge of analyzing the NPs and learning from their structures: 

substructure analysis to identify scaffold, substituents or functional 

groups typical for NPs, NP-likeness, target analysis 

• application in drug discovery: virtual screening, library design, 

fragment screening or generation of “non-natural” NPs by deep 

neural networks 
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