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Challenges of current toxicity testing
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Too High a Cost
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Too many endpoints
Too many mechanisms

Slide courtesy of Dr. Ann Richard, EPA
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Future of Chemical Toxicity Testing

REPORT
ToxXicity Testing in the 21st Century: =

A Vision and a Strategy %

Advances in molecular biology, biotechnology, and other fields are pav- ﬁ

ing the way for major improvements in how scientists evaluate the health risks s

posed by potentially toxic chemicals found at low levels in the environment. These
advances would make toxicity testing quicker, less expensive, and more directly
relevant to human exposures. They could also reduce the need for animal testing by
substituting more laboratory tests based on human cells. This National Research
Council report creates a far-reaching vision for the future of toxicity testing.

oxicity tests on laboratory

ammals are conducted to

evaluate chemicals—including
medicines, food additives, and industnial,
consumer, and agncultural chemicals—for
their potential to cause cancer, birth
defects. and other adverse health effects.
Information from toxicity testing serves
as an important part of the basis for
public health and regulatory decisions
concermng toxic chemucals. Current test
methods were developed
incrementally over the
past 50 to 60 years and
are conducted using
laboratory animals, such
as rats and mice. Using
the results of animal
tests to predict human
health effects involves a
number of assumptions
and extrapolations that
remain controversial.

effects at lower doses or exposures. Test
ammals are typically observed for overt
signs of adverse health effects, which
provide little information about biological
changes leading to such health effects.
Often controversial uncertamnty factors
must be applied to account for differences
between test animals and humans. Finally,
use of animals 1n testing 15 expensive and
time consuming, and it sometimes raises
ethical 1ssues.

Today, toxicological
evaluation of chemicals
15 poised to take advan-
tage of the on-going
revolution 1 biology
and biotechnology. This
revolution 1s making it
increasingly possible
to study the effects of
chemicals using cells,
cellular components, and
tissues—preferably of

Test ammals are often human ongin—rather
exposed to higher doses 1 than whole animals.
than would be expected ‘ These powerful new
for typical human approaches should help
exposures, requiring P e u to address a number of
assumptions about " : challenges facing the
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Transforming Environmental
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Agency (EPA), with support from the U.S.

National Toxicology Program (NTP),
funded a project at the National Research
Council (NRC) to develop a long-range vision
for toxicity testing and a strategic plan for
implementing that vision. Both agencies
wanted future toxicity testing and

In 2005, the U.S. Envi I Protection

ghp ing (HTS) and other auto-
mated screening assays into its testing
program. In 2005, the EPA established the
National Center for Computational Toxi-
cology (NCCT). Through these initiatives,
NTP and EPA, with the NCGC, are promot-
ing the evolution of toxicology from a pre-
d tly observational science at the

paradigms to meet evolving regulatory needs.
Challenges include the large numbers of sub-
stances that need to be tested and how to incor-
porate recent advances in molecular toxicol-
ogy, i 1 and infi i
technology; to rely increasingly on human as
opposed to animal data; and to offer increased
efficiency in design and costs (/-5). In
s the NRC C i on Toxicity

level of disease-specific models in vivo to a
predominantly predictive science focused
on broad inclusion of target-specific, mech-
anism-based, biological observations in
vitro (/, 4) (see figure, below).
Toxicity pathways. In vitro and in vivo
tools are being used to identify cellular
after chemical expected
to result in adverse health effects (7). HTS

Testing and A of Envi
Agents produced two reports that reviewed
current toxicity testing, identified key issues,
and developed a vision and impl i
strategy to create a major shift in the assess-
ment of chemical hazard and risk (6, 7).
Although the NRC reports have laid out a solid
i ionak prehensive and rig-
orously gathered data (and pari with
historical animal data) will determine whether
the hypothesized improvements will be real-
ized in practice. For this purpose, NTF, EPA,
and the National Institutes of Health Chemical
Genomics Center (NCGC) (organizations
with expertise in experimental toxicology,
computational toxicology, and high-through-
put technologies, respectively) have estab-
lished a collaborative research program.

EPA, NCGC, and NTP Joint Activities

In 2004, the NTP released its vision and
roadmap for the 21st century (/), which
established initiatives to integrate high-
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Washingtan, DC 20460; JAssociate Director, US. National
Toxicology Program, National Institute of Environ mental
Health Sciences (NIEHS), Research Triangle Park, NC
27709, USA.
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palicies of their respective agencies.
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hods are a primary means of discovery
for drug development, and screening of
>100,000 compounds per day is routine (§).
However, drug-discovery HTS methods tra-
ditionally test compounds at one concentra-

Standard rodent
toxicological tests
10-100/year

Human experience
1-3 studiesiyear

We propose a shift from primarily in vivo animal
studies to in vitro assays, in vivo assays with
lower organisms, and computational modeling
for toxicity assessments.

tion, usually between2 and 10 uM, and toler-
ate high false-negative rates. In contrast, in
the EPA, NCGC, and NTP combined effort,
all compounds are tested at as many as 15
concentrations, generally ranging from ~5
nM to ~100uM, to generate a concentration-
response curve (9). This approach is highly
reproducible, produces significantly lower
false-positive and false-negative rates than
the rraditional HTS methods (9), and facili-
tates multiassay comparisons. Finally, an
informatics platform has been built to com-
pare results among HTS screens; this is
being expanded to allow comparisons with
historical toxicologic NTP and EPA data
(http://ncge.nih.gov/pub/openhts). HTS data
collected by EPA and NTP, as well as by
the NCGC and other Molecular Libraries
Initiative centers (http://mli.nih.gov/), are

being made publicly available through Web-
based databases [e.g., PubChem (http://
pubchem.ncbi.nlm.nih.gov)]. In addition,

Biochemical- and cell-based
in vitro assays
>10,000/day

Altemative
animal models
100-10,000/year

led from wwav.sciencemag.org on February 15, 2008

To&

Transforming toxicology. The studies we propose will test whether high-throughput and computational tox-
icology approaches can yield data predictive of results from animal toxicity studies, will allow prioritization
of chemicals for further testing, and can assist in prediction of risk to humans.

1SFEBRUARY 2008 VOL319 SCIENCE wwwsdencemag.org
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Structural alerts and QSAR-based

predictions 1n chemical safety

assessment.

Chemical categories
and read-across

¥ - 4
ToxMatch,EU -
AIM, US EPA/OPPT
QSAR Toolbox, OECD

Chemical toxicity
database
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Qtructural alertsy
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Alerts:
x Flagged as possibly toxic
v'Annotated as safe

QSAR:
x Predicted as toxic
v'Predicted as non-toxic

*Alves et al, Alarms about structural alerts. Green Chem, 2016, DOI: 10.1039/C6GC01492E



Structural Alerts: A Popularmgyyis

Concept in Chemical Toxicolo€
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Structural alerts are ““molecular patterns that are associated
with particular types of toxicity or ADRs either directly or after
undergoing of a metabolic activation in vivo™*

*Image and definition from Sushko et al, J Chem Inf Model. 2012 Aug 27; 52(8): 2310-2316.



Common strategy for
developing alerts

Structural alerts for hepatotoxicity 541

Step 1. Acquire appropriate training data

v

Step 2. Initial structural similarity-based category formation

v

Step 3. Manual validation of initial categories

v
Step 4. Elucidation of structural alerts

v

Step 5. Use structural alerts to regenerate categories

v

Step 6. Examine regenerated categories (alert verification) and propose
mechanistic rationale

I-l_Step 7. Use structural alert to screen query dataset / use categories to apply read-across

— — — — — — — — — — — — — — — — — — — — — —— — —— — — — — — — —

Hewitt et al, Hepatotoxicity: A scheme for generating chemical categories for read-across,
structural alerts and insights into mechanism(s) of action. Crit Rev Toxicol, 2013; 43(7): 537-558



Chemical Read-Across: Learning f
Similar Compounds
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Experimental Data Sources

The AIM database contains 31,031 chemicals
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Indexed

On-Line Databases
TSCATS
HSDB
RIS

1) Quick Search by SMILES notation

There are three ways to run AIM
= - |

Submit SMILES Notation

LS. Government Documents

2) Draw your compound
HPV Challenge Program ‘ .

Draw vour structure
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About the AIM Methodology

AlM, US EPA/OPPT



OECD QSAR Toolbox
&) OECD

BETTER POLICIES FOR BETTER LIVES

Francais

D L e

DECD Home » Chemical safety and biosafety » Azsessment of chemicals » Grouping of Chemicals: Chemical Categories and Read-Across

Assessment of chemicals

In the read-across approach, endpoint information for one chemical (the source chemical) is used to predict the same endpoint
for another chemical (the target chemical), which is considered to be "similar” in some way (usually on the basis of structural

Guantitative read-across involves:
+ the identification of a chemical substructure or mode or mechanism of action that is comman to two substances (which are
considered to be analogues); and

»the assumption that the known value of a property for one substance can be used to estimate the unknown value of the same
property for another substance.

In both cases, expert judgement is needed and some justification should be provided.

— aciudd.liLti
Activity 1 ® #; O & l:I:> & SAR/Read-across

Activity 2 @ |:|::> 7 O &= o Interpelation

Activity 3 O C:[:‘ ® & I:F) o Extrapolation

e Existing data point ~ Missing data point 8




Skin Sensitizers: commonly identified using:

toxicity alerts (OECD QSAR Toolbox)

Source ‘
ICCVAM (Interagency Coordinating Committee on the Validation of

Alternative Methods) report 2009

Non-

Vehicle type i, Sensitizer Total
sensitizer
ACE 12 31 15 471 records
dH>O 2 2 4 : R ama /
DMF 40 27 67 \ » 4
DMSO 16 15 31 Remqval of
PG 6 8 14 Organometallic compounds
Pluronic L92 (1%) 2 5 7 Inorganic salts
Others 4 7 11 Duplicates
Total 135 273 408 Dataset balancing
387
Abbreviations: AOO, acetone&olive oil (4:1 by volume); ACE, acetone; DMF, compounds

dimethyl formamide; DMSO, dimethyl sulfoxide; PG, propylene glycol.

254 compounds were retained for QSAR modeling:
127 sensitizers and 127 non-sensitizers

133 remaining sensitizers were used as external validation set




Workflow for comparing QSAR
versus OECD QSAR Toolbox

QSAR TOOLBOX

OECD | QSAR| Read-accross

387 compounds ) QSAR Toolbox

224 compounds®* present in both datasets

163 remaining compounds

Externally predicted
compounds (5-fold)

QSAR models QSAR Toolbox

Comparison

*These compounds had 94% concordance with ICCVAM report

10



Comparison between QSAR
Models and the Toolbox

1,2

1,0

0,8

0,6

0,4

0,2

0'0 ege & ogpe o

Sensitivity Specificity CCR Coverage

m Consensus no AD 0,31 0,94 0,62 0,78
m Consensus 0,48 0,98 0,73 0,60
- Consensus Rigor 0,41 1,00 0,71 0,26
i QSAR Toolbox 0,82 0,20 0,51 0,92

Models were built using Random Forest approach — 5-fold External CV results

11

* Applicability Domain wasn’t considered in this model



ALERTS vs. QSAR: ACTIVATED PYRIDINE/PYRIMIDINE

QSAR Toolbox QSAR Experiment
o) o)
F Contains
H3C/\O / Activated
O Pyridine Non Non
-7 Sensitizer Sensitizer
Cl N Cl
Ethyl 2,6-dichloro-5-fluoro-b-oxo-3- Sensitizer
pyridinepropanoate
CH,
y
/N Contains
H,C —N O O Activated
N N Pyridine Non Non
\r g Sensitizer Sensitizer
s© Cl Sensitizer
N-(2-Chloro-4-pyrimidinyl)-N,2,3-
trimethyl-2H-indazol-6-amine
H
N N Contains
’ C_N/O Activated
’ N N Pyridine Non Non
\l/ ‘-V Sensitizer Sensitizer
H3C Cl Sensitizer
N-(2-Chloro-4-pyrimidinyl)-2,3-
dimethyl-2H-indazol-6-amine 12




ALERTS vs. QSAR: NO PROTEIN BINDING ALERTS

QSAR Toolbox QSAR Experiment
/No alert Non Non
; - : Sensitizer Sensitizer
1-[3,5-Bis(trifluoromethyl)phenyl]-N- Sensitizer
methylethanamine
CH,
: N
: ~o /No alert Non Non
‘-V Sensitizer Sensitizer
Sensitizer
1-[3-(Cyclopentyloxy)—4-methoxy-p%enyl]-4-
oxocyclohexane carbonitrile
H,C  CH,
/ No alert
N NH, P Sensitizer Sensitizer
H,C .
Non sensitizer
3-Aminomethyl- 3,5,5-
trimethylcyclohexyl amine 13




MISPREDICTED COMPOUNDS

QSAR Toolbox Experiment
0
H,c”
G o / No alert Non
3 % . nsitizer
~o g Sensitizer Sensitiz
Non sensitizer
Veratraldehyde
o)
/ No alert
HO O Non ..
P - Sensitizer
Sensitizer
OH Non sensitizer
4-Carboxyphenylacetate
F
F
HN
. / No alert Non
-r .. Sensitizer
O/CHs Sensitizer

5-Methoxy-6-trifluoromethyl-2,3-

dihydro-1H-indole

Non sensitizer

14



MISPREDICTED COMPOUNDS

FIRST NEIGHBOR

Tanimoto Score

0 Sensitizer HO Non sensitizer
H,c”
LN Z° XN Z° 0.92
Veratraldehyde Vanillin
Sensitizer Non sensitizer
0 0
HO 0 HO
0.70
OH OH
4-Carboxyphenylacetate 4-Hydroxybenzoic acid
Sensitizer Non sensitizer
F F
F F
HN HN
F F
C 0.81
_CH

@)

5-Methoxy-6-trifluoromethyl-2,3-
dihydro-1H-indole

Ch;
5-Methyl-6-(trifluoromethyl)indoline

15



OECD QSAR Toolbox (categori

read across): predict or alert?

From reviewer’s critique of our manuscript: “Novel computational tools to predict
chemically-induced skin reactions. Part I: QSAR Models of Skin Sensitization and
their application to identify potentially hazardous compounds” (TAAP, 2015)

... I don’t think the authors have properly understood the function of the read-across facilities
implemented in OECD Toolbox...

... providing tools for implementation of read across in the Toolbox does not guarantee adequate
predictions.

... the Toolbox is not a model that can be compared with other models, but should rather be
considered as an instrument for generation of models ...

.... | strongly recommended that the comparison with the Toolbox (and analysis of the Toolbox
system) should be removed.

From Hewitt et al, Hepatotoxicity: a scheme for generating chemical categories for
read-across, structural alerts and insights into mechanism(s) of action. Crit Rev
Toxicol. 2013 Aug;43(7):537-58

It must be stressed that we are not aiming to develop a model for predicting
hepatotoxicity; rather we are detailing a scheme capable of generating
mechanistically supported structural alerts suitable for identifying cqg‘nicals with
hepatotoxic potential




Chemical Alerts of Toxicity: wha—_

are they for, really?
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ALERTS vs. QSAR: TERTIARY AMINE / ARYLCHORIDE

(a) Tertiary amine 1

Jih

Rz
Presence

3,436 blockers

Ri=alkyl, aryl
Re= alkyl, aryl 2,548 non-blockers
Rs=alkyl, aryl
Experiment: Blocker Experiment: Non-blocker -,
QSAR: Blocker QSAR: Non-blocker
Alert: Blocker Alert: Blocker
(b) Aryichioride 3
X
| 1o
Presence
Ry 7 854 blockers
423 non-blockers _
Ri=any (C
Experiment: Blocker Experiment: Non-blocker

QSAR: Non-blocker
Alert: Blocker

QSAR: Blocker
Alert: Blocker

Braga, R. C.; Curr. Top. Med. Chem. 2014, 14 (11), 1399-1415. 18



Alerts based toxicity estimate for

withdrawn and marketed drugs

. Toxic . . . DNA alerts :
Toxic hazard Carcinogenicity In vitro
. . hazard for AMES, L B
QSAR classification . . (genotox and mutagenicity  mutagenicity
Drug Name State C e o classification MN and CA :
prediction by Cramer nongenotox) (Ames test) (Micronucleus)
. by Cramer by OASIS
(extension) . . alerts by ISS alerts by ISS  alerts by ISS
(original) v.1.3
Amineptine withdrawn unsafe High (Class III)  High (ClassIII)  No alert found  No alert found No alert Alerts
Duract withdrawn unsafe High (Class III)  High (Class III)  No alert found  No alert found No alert Alerts
Vioxx withdrawn unsafe High (Class III)  High (Class III)  No alert found  No alert found No alert Alerts
Astemizole withdrawn unsafe High (Class III)  High (Class III) Alerts No alert found No alert Alerts
Cerivastatin withdrawn unsafe High (Class III)  High (ClassIII)  No alert found  No alert found No alert Alerts
Chlormezanone withdrawn unsafe High (Class III)  High (Class III) Alerts No alert found No alert Alerts
Fenfluramine withdrawn unsafe High (Class III)  High (ClassIII)  No alert found  No alert found No alert No alert
Flosequinan withdrawn unsafe High (Class III)  High (Class III) Alerts No alert found Alerts Alerts
Glafenine withdrawn unsafe High (Class III)  High (Class III) Alerts No alert found No alert Alerts
Grepafloxacin ~ withdrawn unsafe High (Class III)  High (Class III) Alerts No alert found No alert Alerts
Mibefradil withdrawn unsafe High (Class III)  High (Class III) Alerts No alert found No alert Alerts
Troglitazone withdrawn unsafe High (Class III)  High (ClassIII)  No alert found  No alert found No alert Alerts
Ximelagatran withdrawn unsafe High (Class III)  High (Class III) ~ No alert found Alerts No alert Alerts
Aspirin marketed safe Low (Class I) Low (Class I) No alert found  No alert found No alert Alerts
Ibuprofen marketed safe Low (Class 1) Low (Class 1) No alert found  No alert found No alert Alerts
Valtrex marketed safe High (Class III)  High (ClassIII)  No alert found  No alert found No alert Alerts
Microzide marketed safe High (Class III)  High (Class III) Alerts No alert found No alert Alerts
Neurontin marketed safe High (Class III)  High (ClassIII)  No alert found  No alert found No alert Alerts
Enoxaparin marketed safe High (Class III)  High (ClassIII)  No alert found  No alert found No alert Alerts
Lyrica marketed safe Low (Class 1) Low (Class T) No alert found  No alert found No alert Alerts

*Zakharov, Lagunin, Poroikov. Chem. Res. Toxicol., 2012, 25, 2378-2385.



Pan-Assay Interference Compounds

Assay interference is a source of error in drug screening.
A true screening hit exhibits its effect (inhibition or activation) through
direct binding with a protein.

* false positives are often interspersed among these true hits.
The measured effect of false positives does not depend specific interactions
with a protein.

* Interference mechanisms, such as auto-fluorescence, hydrogen

peroxide production, metal chelation, and chemical aggregation

Luinones

0

DINJ-

Catechols 5

| 1 5

HO ; O

o]

Rhodanines

Frequent Hitters

Thorne, N., Auld, D. S. & Inglese, J. Curr Opin Chem Biol 14, 315-324 (2010).
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J. Med. Chem. 2010, 53, 2719-2740
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New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening
Libraries and for Their Exclusion in Bioassays

Jonathan B. Baell*"* and Georgina A. Holloway™*

PAINS = Pan Assay Interference Compounds
* Compounds with certain substructures are likely to be false positives

MEMBRANE DISRUPTION
SAMPLE IMPURITIES

e 480 substructural PAINS alerts

e.g. a,B-unsaturated carbonyl compounds, quinones
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Feeling Nature’s PAINS: Natural Products, Natural Product Drugs,
and Pan Assay Interference Compounds (PAINS)

Jonathan B. Baell*

PAINS in the Assay: Chemical Mechanisms of Assay Interference and
Promiscuous Enzymatic Inhibition Observed during a Sulfhydryl-
Scavenging HTS

Jayme L. Dahlin,"* J. Willem M. Nissink," Jessica M. Strasser,| Subhashree Francis,! LeeAnn Higgins,l
Hui Zhou,” Zhiguo Zhang,# and Michael A. Walters*|

Compounds in Antifungal Research

Miniperspective

Martin Pouliot and Stephane Jeanmart™  Agsay Interference by Chemical Reactivity

Jayme L. Dahlin, MD, PhD
Jonathan Baell, PhD

Michael A. Walters, PhD

Activity artifacts in drug discovery and different facets of
compound promiscuity

Jiirgen Bajorath .

Pan Assay Interference Compounds (PAINS) and Other Promiscuous



Alerts are ... well ... just Alerts

e Structural Alerts are used in toxicity to identify potentially toxic compounds

Alerts Compounds
- MH:
' NH
)1 e #©

1 |

@ o L:l—-
Aromatic 2_(4-Amino-2nitro- 3,4-dichloroaniline ,

. . . Benzocaine

amines phenylamino}-ethanol hydrochloride
Sensitizer Sensitizer Non-sensitizer

Structural Alerts are generally overly sensitive (false positives)

Our group has shown that QSAR models has better accuracy at predicting toxicity

than alerts alone.

Alves, V. M. et al. Toxicol. Appl. Pharmacol. 284, 273-80 (2015).




The Problem with PAINS

e \Mbat dees trigimbhPAdN8 substructures derived?
e (Dmtarahiabysonfod PAONE sib TS cdamgsaglsoverextrapolation
e Limitddagplichbibsyodtdmibredoltassay interference
JAtdnova fimzan s asavekEéNSdiPected at protein-protein interactions
What 2tz é imsgéficiwetdékeletclaefiieniaalilts of a study to be
iQrdldAdphpe e bhie das ol og\a wabaisedture?
Limited sample sizes

Frequency of Sample Sizes for Alert Extrapolation

190
200

)
@ 150
< 94
%5 100 69 47
T 50 22 28
o 12 5 6 3 4
£ I e I e
=1 0
=2
S > S D x’%g\ \99\ ,\90\ S J S /gb“’\
LN D Q.
VO O

Number of Compounds

The Extrapolative Power of 1. A histogram showing the
frequency of the 480 PAINS alerts and the number of
compounds used to derive them. 190 PAINS alerts were
extrapolated from only one representative compound. Only 18
PAINS alerts were extrapolated from sample sizes for greater
than 100 compounds per alert.




Random PAINS

 What is the “pan-assay” activity of PAINS compared to non-PAINS?
e PubChem Promiscuity
e All assays
* All beta-lactamase, luciferase, and fluorescence-based
assays

e (Calculate the frequency of activity across all assays
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anil_di_alk_A(478) ene_six_het A(483) ene_rhod_A(235) mannich_A(296)
_ Percent Active (Average)
# of cpds All Assays Luciferase Beta-lactamase Fluorescence
Random-PAINS 14,611 3% (562) 3% (95) 1% (12) 2% (329)
58,722 1% (550) 2% (93) 0.6% (13) 0.8% (321)
AT (T T R 2,598 1% (552) 2% (93) 1% (11) 1% (323)
Ene_six_het_A(483) 1,315 2% (603) 1% (100) 1% (12) 2% (357)
Ene_rhod_A(235) 1,109 3% (544) 3% (92) 1% (9) 3% (320)
Mannich_A(296) 927 3% (580) 4% (98) 1% (12) 2% (339)

Table 1. Pan-assay activity of compounds in PubChem. The average assay activity for PAINS and non-PAINS across all assays in PubChem,
highlighting luciferase-, beta-lactamase-, and fluorescence-based assays. The average number of assays in which the compounds were tested are

provided in the parenthesis.



PAINS in Dark Chemical Matter

Dark Chemical Matter
* Small molecules that have never shown biological activity despite

having been exhaustively tested in HTS assays
« DCM is a potential starting point for the optimization of selective

compounds
e ~ 140,000 DCM from a Novartis and PubChem collection tested in at

least 100 assays

Novartis PubChem

MDS coordinate 1 MDS coordinate 1

e PAINS substructures can be found in DCM.
e ~4,500 compounds
e PAINS can be biologically inert!




PAINS in Approved Drugs

e 76 drugs possess PAINS substructures
e 21 individual PAINS alerts types
e 19 are part of the WHQ's List of Essential Medicine
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Relative influence of structural fragments on
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Modified from
Kuz’'min et al.

J Comp Aided Mol Des
2008, 22, 747-759
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An example of drug design based

on descriptor interpretation

(b)

(@)

/ ™
oo

P

&W

Experlmental
dataset

mf\
W

o PP

Designed
antiviral agents
confirmed
experimentally

(e)

L= 555/556A

Generation of
new SAR rules

Molecular Fragments
Promoting or Interfering with
Biological Response

*Alves et al, Alarms about structural alerts. Green Chem, 2016, DOI: 10.1039/C6GC01492E



QSAR model interpretation based on Chemistry-
Wide Association Studies (CWAS)

Patients Compounds

Response Phenotype (disease/no disease) Activity (active/inactive)

Single Nucleotide Ponmorphisms (SNPs) Chemical descriptors (e.g. fragments)

R PG PPN
Mm.,;,k
AG A N / L
T =
L-I'F,EILT'ELI ‘\ 0 /

http://www.broadinstitute. org/educatlon/glossary/snp P \) _— l/\
ADAMTS7 \ N N\)

\ -
o o

http://www.aldrichmarketselect.com/support/similarityOverview.asp

1 2 3 4 5 6 T 9 10 1 12 13 14 1516 17 19 21
Lusis A, Genetics of atherosclerosis, Trends in Genetics (2012) 28(6):267-275

Objectives Identify SNPs/loci associated with Identify substructure associated with
phenotype activity
Predict phenotype from SNPs Predict activity from structure
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CWAS: develop and employ QSAR models using
GWAS framework
Significant StruFturaI alerts Mutually
fragments (combined fragments) influencing
0 I 0 y fragments
N J N v ;
s O O | (=0

CWAS: study how chemical structures are associated with activity

Fragment-fragment interactions

Significant fragments Co-occurring fragments associated with activity

(e} H (0] H .
» © < pr O+« e e
o// \ o// \ W Y
. \20 °
Assemble into H
structural aIertl
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Modeling and identifying important fragments

Ames data set
5,439 compounds 967 76
2,121 mutagenic fragments fragments
3,318 non-mutagenic

Chemical curation
Remove invariant, highly
correlated fragments

Full model Reduced model

(967 fragments) (76 fragments)
Specificity 0.92 +0.009 0.92 +0.009
Sensitivity 0.78 +0.005 Slightly 0.81 +0.005
Balanced Accuracy 0.85 +0.005 improved 0.87 £0.005
AUC 0.91 +0.004 0.94 +0.003

Results from 5-fold external cross validation
35



Nitro’s mutagenic effect is:

increased by furan (synergism)

decreased by primary alkanes(antagonism)

Synergistic interaction
Antagonistic interaction
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Nitro compounds are active when paired with aromatic rings

inactive w
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nitroalkanes (primary)
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Non-mutagenic

645-12-5 5275-69-4
5-nitro-2-furanoate 2-acetyl-5-nitrofuran

Mutagenic Mutagenic
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Mechanism

multiple resonance forms
likely to be reduced

@7 / |

L) NS .
aromatic nitro more \=_// \y  nitro
likely to be bioactivated I —

°" reductase

— Nzo_
<~/ \
(@)
N//
_ N
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Benigni 2011 Chem Rev

Helguera 2006 Toxicol

McCalla 1983 Env Mutagen 17



Marrying SAR and QSAR in CWAS: Deriving alerts
rom validated QSAR models

F
Chemlcal structural |rtual

\l I, datal screenmg ,,
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Structural alerts
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utually influenci g

fragments Image: Glowing molecule, Stz;?d/;op, Optibrium
Data-driven drug design
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Contrasting alerts- and QSAR-based
predictions 1n chemical safety

assessment.
Chemical categories
and read-across Alerts:
x Flagged as possibly toxic
I v'Annotated as safe

XY
O,Jﬁ >

"] -V J
ToxMatch,EU  °
AIM, US EPA/OPPT

QSAR Toolbox, OECD

QSAR:
x Predicted as toxic
v'Predicted as non-toxic

Chemical toxicity
database

*Alves et al, Alarms about structural alerts. Green Chem, 2016, DOI: 10.1039/C6GC01492E



Concept and strategy consolidation:
Combining structural alerts and QSAR
models.

' Chemical Toxicity
f

Structural alerts

Database
: . Modeling
SAR rules \\ /@ O |
Interpretation ‘ 4
' O { +
/ N\ | & /Q Q ¥o
Va o | R A
*_“é/ TR Significant alerts | ~ ’
0557; @\Y} ., Toxicity \‘m/@“/@
- ¢ hypothesis L,I//

Toxicity | > | Prediction ‘ « x \/ '|
hypothesis | x I \/ xw

x Predicted as toxic
v'Predicted as non-toxic

*Alves et al, Alarms about structural alerts. Green Chem, 2016, DOI: 10.1039/C6GC01492E



Conclusions

* Although transparent and mechanistically
interpretable, “isolated” alerts derived from
training sets have limited predictive power;

* The influence of “alerts” on the compound
depends on their structural environment;

 Mutually dependent alerts derived from externally
validated QSAR models (cf. CWAS) afford higher
predictivity;

* Any alert should be viewed as a structural
hypothesis of chemical action; its predictive power
should be confirmed by QSAR predictions and, if
possible, by experimental validation
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