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Toxicity Testing in the 21st Century:
A Vision and a Strategy

Advances in molecular biology, biotechnology, and other fields are pav-

ing the way for major improvements in how scientists evaluate the health risks
posed by potentially toxic chemicals found at low levels in the environment. These
advances would make toxicity testing quicker, less expensive, and more directly
relevant to human exposures. They could also reduce the need for animal testing by
substituting more laboratory tests based on human cells. This National Research
Council report creates a far-reaching vision for the future of toxicity testing.

effects at lower doses or exposures. Test

oxicity tests on laboratory
animals are conducted to animals are typically observed for overt

evaluate chemicals—including  signs of adverse health effects, which
medicines, food additives, and mdustnal, provide little information about biological
consumer, and agncultural chemicals—for changes leading to such health effects
their potential to cause cancer, birth Often controversial uncertainty factors
defects, and other adverse health effects. must be applied to account for differences
Information from toxicity testing serves between test animals and humans. Finally,
as an important part of the basis for use of anmmals 1n testing 15 expensive and
public health and regulatory decisions time consuming, and it sometimes raises
concerning toxic chemicals. Current test ethical issues

TOXICOLOGY

Transforming Environmental

Health Protection

Francis §. Collins,”" Gearge M. Gray?" John R Bucher®”

Agency (EPA), with support from the 1S,
Mational Toxicology Program (NTP),
funded a project at the Mational Research
Council (NRC) to devel op a long-range vision
for toxicity testing and a strategic plan for

Irl 2003, the U.S. Environmental Protection

throughput screening (HTS) and other auto-
mated screening assays into its testing
program. In 2003, the EPA established the
Mational Center for Computational Toxi-
cology (NCCT). Through these initiatives,
NTP and EPA, with the NCGC, are promot-

implementing that vision. Both
wanted future toxicity testing and assessment
paradigms to meet evolving regulatory needs.
Challenges include the large numbers of sub-
stances that need to be tested and how to incor-
porate recent advances in molecular toxicol-
ogy, computational sciences, and information
technology; to rely increasingly on human as
onposed to animal data; gnd tooffer i d

d costs (/-5). In
nmittee on Toxicity
of Environmental
ports that reviewed
fentified key issues,
pnd implementation
Ir shift in the assess-
rd and risk (6, 7)
‘have laid out a solid

ing the I of logy from a pre-
dominantly observational science at the
level of disease-specific models in vivo to a
predominantly predictive science focused
on broad inclusion of target-specific, mech-
anism-based, biological observations in

vitro ({, 4) { see figure, below).
Toxicity pathwayvs. In vitro and in vivo
tools are being used to identify cellular
after chemical expected

to result in adverse health effects (7). HTS
methods are a primary means of discovery
for drug development, and screening of
=100,000 compounds per day is routine (8).
However, drug-discovery HTS methods tra-
ditionally test compounds at one concentra-

Standard rodent

Humean experience toxicological tests

animal models

We propose a shift from primarily in vive animal
studies to in vitro assays, in vivo assays with
lower arganisms, and co ional modeling

for toxicity assessments.

tion, usually between 2 and 10 uM, and toler-
ate high false-negative rates. In contrast, in
the EPA, NCGC, and NTP combined effort,
all compounds are tested at as many as 15
concentrations, generally ranging from ~5
nM to ~100 1M, to generate a concentration-
response curve (%), This approach is highly
reproducible, produces significantly lower
false-positive and false-negative rates than
the traditional HTS methods (9), and facili-
tates multiassay comparisons. Finally, an
informatics platform has been built to com-
pare results among HTS screens; this
being expanded to allow comparisons with
historical toxicologic NTP and EPA data
(http:/‘ncge nih.gov/pub’openhts). HTS data
collected by EPA and NTP, as well as by
the NCGC and other Molecular Libraries
Initiative centers (http://mli.nih gov/), are
being made publicly available through Web-
based databases [e.g., PubChem (http://
pubchemnchi nlm.nih.gov)]. In addition,

emative
in vitro assays

methods were developed Today, toxicological 1-3 studesiyear 10-100/year R 210,000/

incrementally over the
past 50 to 60 vears and
are conducted using
laboratory animals, such
as rats and mice. Using
the results of animal
tests to predict human
health effects involves a
number of assumptions
and extrapolations that
femain controversial.
Test animals are often
exposed to higher doses
than would be expected
for typical human
eXpOsures, Tequiring
assumptions about

P& 1

evaluation of chemicals
1s poised to take advan-
tage of the on-going
revolution in biology
and biotechnology. This
revolution is making it
increasingly possible

to study the effects of
chemicals using cells,
cellular components, and
tissues—preferably of
human origin—rather
than whole animals.
These powerful new
approaches should help
to address a number of
challenges facing the

preh and rig-
pd comparisons with
O X I determine whether
fements will be real-
[purpose, NTE, EPA,

of Health Chemical
[3C) (org

with expertise in experimental toxicology,
computational wxicology, and high-through-
put technologies, respectively) have estab-
lished a collaborative research program.

EPA, NCGC, and NTP Joint Activities

In 2004, the NTP released its vision and
roadmap for the 21st century ([), which
established initiatives to integrate high-
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20892; ZAssistant Administrator for the Offica of Resaarch
and Davalopment, U.S. Envimnmantal Protaction Agancy,
Washingtan, DC 20460; ssaciata Diractar, US. National
Toxicalogy Program, Nafional Instituta of Environ mantal
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Slide courtesy of Dr. Ann Richard, EPA (modified)
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A spectre is haunting Europe -- the spectre of
[chemoinformatics]. [Chemoinformatics] is
already acknowledged by all European powers
to be itself a power. It is high time that
[Chemoinformaticians] should openly, in the
face of the whole world, publish their views,
their aims, their tendencies, and meet this
nursery tale of the spectre of
[chemoinformatics] with a manifesto of the
party itself.




The importance of modeling 1s
acknowledged and appreciated
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Next RSC president predicts that in 15 years no chemist will do
bench experiments without computer-modelling them first

Jul 17,2013

The newly-appointed President-Elect of the Royal Society of e e
Chemistry today forecast the impact of advances in modelling and

computational informatics on chemistry

LIBERTY

1)

" [" Professor Dominic Tildesley, who will become yoL

president in 2014, said: "The speed and Please scroll for Indication, Important Limitatio

UNIVERSITY @ development of computers is now so rapid’ and hlporllnt saw Information lﬂc'udlnﬂ Boxed \
ONLINE y v . . . . : ;

the advances in modelling and informatics are drooping eyelids, hoarseness or chang

Christian counselors are : " 85 so dramatic that in 15 years' time, no chemist loss of voice (dysphonia), trouble sayin
needed to guide people - B will be doing any experiments at the bench clearly (dysarthria), loss of bladder con!

through the toughest ' | without trying to model them first." T e
times of their lives: of A happens. do not drive a car, operate

] f Professor Tildesley is a world-leading expert in
Will you answer the call? Nl large-scale computational modelling and



QSAR Modeling Workflow: the Importance of Data

Curation and of Rigorous Validation Experimental

Data
Datasets )
curation

!

confirmation
A

Virtual screening
(with AD threshold)

Evaluation of
External set
external performance

5-fold

An ensemble of
QSAR Models

courtesy of L. Zhang

1
External 2 o 4
Validation ‘ /Modelingset // A

Internal validation
Model selection

¢

Mode/inq| methods

|
K-Nearest Random
Neighbors (kNN) Forest (RF)

J [ Support Vector

Combi-QSAR
Machines (SVM) J

modeling

VY

Descriptor)

Dragon MOE

Tropsha, A. Best Practices for QSAR Model Development, Validation,

and Exploitation Mol. Inf., 2010, 29, 476 ;- 488
Fully implemented on CHEMBENCH.MML.UNC.EDU



In the Pipeline
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ncoded Libraries \ersus a F,’rotfiln-Prot in Interaction | Main

bic;fogy_maybe_rlg t chemistry ridiculously wrong.
php 66

Biology Maybe Right, Chemistry Ridiculously Wrong & Hon »
Posted by Derek

April 11, 2014
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as
am
O As my correspondent (a chemist himself) mentions, a close look at <
H Figure 2 of the paper raises some real questions. Take a look at that .
4 cyclohexadiene enamine - can that really be drawn correctly, orisn't it
O just N-phenylbenzylamine? The problem is, that compound (drawn of
correctly) shows up elsewhere in Figure 2, hitting a completely ad
different pathway. These two tautomers are not going to have different of
T d biological effects, partly because the first one would exist for about two ‘ark ted
molecular vibrations before it converted to the second. But how could both of
Ar them appear on the same figure? tes
Dou; ) ) ) zen's
. Us And look at what they're calling "cyclohexa-2,4-dien-1-one". No such compound exists as olumbia.
) lEc; such in the real world - we call it phenol, and we draw it as an aromatic ring with an OH to
coming from it. Thiazolidinedione is listed as "thiazolidine-2,4-quinone”. Both of these would | 3peled 08
:(c(;;:: lead to red "X" marks on an undergraduate exam paper. It is clear that no chemist, not ound in
Recer €VEN sOomeone who's been through second-year organic class, was involved in this work e
bo. (or at the very least, involved in the preparation of Figure 2). Why not? Who reviewed this, d in full 5

anywaY? numerous attempts have been made to




Cheminformatics Analysis of (inaccuracy of) gHTS Data

over 17,000 compounds screened against five major CYP isozymes using
In Vitro b|olum|nescent gqHTS assay

SID €D CID(TXTFILE) lition Obse 2c19_LogAC50 2d6_LogAC50  3ad_LogAC50  1a2 LogAC50  2c9_LogAC50 Compound QC
51 7955 11113498 1348 1348 [ TRUE -6.1 5.7 5.1 -5.9 -5.4 Qc'd by Tocris
60 7577 11113881 1370 1370 [ TRUE 4.9 5 4.8 5.6 5.1 Qc'd by Tocris
69 7888 11113566 1574 1574 [ TRUE 5.1 4.7 4.8 4.7 4.4 Qc'd by Tocris
97 7686 11113772 1797 1797 [ TRUE 5 4.6 a4 74 -4.6 Qc'd by Tocris
117 7987 11113466 1960 1960 [ TRUE 5.2 4.6 4.8 4.8 4.6 Qc'd by Tocris
130 7925 11113529 2052 2052 [ TRUE 4.8 47 45 5.3 -5.1 Qc'd by SigmaAldrich
136 7531 11113928 2125 2125 [ TRUE 5.1 5.4 -5 4.8 5.7 Qc'd by Tocris
210 9989 11110929 2703 2703 [ TRUE -5 4.6 45 -5 44 Qc'd by SigmaAldrich
27 9973 11110952 2782 1 TRUE 6.7 5.9 5.2 -5 4.6 Qc'd by SigmaAldrich
29 7772 11113684 2790 2790 [ TRUE 4.8 4.9 5.8 48 -4.9 Qc'd by Tocris
20 9964 11110963 2812 2812 [ TRUE 5.1 -5 7.3 -5.4 6.5 Qc'd by Prestwick
241 9965 11110962 2812 1 TRUE 5 2.4 6.9 48 -6 Qc'd by SigmaAldrich
202 8112 11113341 2818 2818 [ TRUE 4.6 4.8 4.5 48 4.4 Qc'd by Tocris
264 9208 11111961 2998 2998 [ TRUE 5.1 4.6 5.4 4.9 5.5 Qc'd by SigmaAldrich
282 7920 11113534 3101 3101 [ TRUE 7.2 -6.1 5.5 7.7 = Qc'd by Tocris
283 9889 11111058 3101 1 TRUE 6.3 5.4 5.5 -6.9 -6 Qc'd by SigmaAldrich
200 9873 11111076 3136 3136 [ TRUE 45 a4 47 5.4 44 Qc'd by SigmaAldrich
300 8943 11112239 3293 3293 [ TRUE 7.3 5.6 4.9 5.3 5.7 Qc'd by Prestwick
326 9309 11111163 3396 1 TRUE 4.8 -5 5.2 4.9 44 Qc'd by SigmaAldrich
345 7961 11113492 3455 3455 [ TRUE 4.6 -6.2 4.9 45 47 Qc'd by Tocris
353 8100 11113353 3488 3488 [ TRUE 5 -5 5 44 -5.1 Qc'd by Tocris
364 7374 11114090 3538 3538 [ TRUE 5.1 4.6 5.3 45 -5.9 Qc'd by Tocris
383 7284 11114182 3671 3671 [ TRUE 5.5 74 5.1 6.2 -6.2 Qc'd by SigmaAldrich
384 9442 11111654 3675 3675 [ TRUE 65 5.6 5.1 -6 -6.8 Qc'd by Prestwick
385 9443 11111653 3675 1 TRUE -6.1 5.2 55 5.5 -5 Qc'd by SigmaAldrich
394 8391 11112811 3698 3698 [ TRUE 5.3 4.9 5.5 4.8 4.9 Qc'd by Prestwick
410 9189 11111983 3797 1 TRUE 45 5.7 5.7 5.4 4.9 Qc'd by SigmaAldrich
422 9652 11111370 3885 3885 [ TRUE 5.4 4.8 4.8 5.4 4.5 Qc'd by SigmaAldrich
428 7207 11114259 3932 3932 [ TRUE -6.7 5.1 -6.3 45 5.1 Qc'd by SigmaAldrich
485 7988 11113465 4299 4299 [ TRUE SRR 45 4.6 -4.4 -5.7 Qc'd by Tocris
486 7934 11113469 4306 4306 [ TRUE 74 5.1 4.9 5.6 -4.9 Qc'd by Tocris

Velth et aI., Nature Blotechnology, 2009, 27 1050 5
Sun et al., J. Chem. Inf. Model., 2011, 51:2474-81



Dataset Curation summary
A 0 17143 compounds

cleaning of salts

o .................. Normalization of 17121 compounds

specific chemotypes

Treatment of

....................... 17121 compounds

tautomeric forms

CURATED DATASET

Fourches D, et al. J Chem Inf Model. 2010 50(7):1189-204.



Chemical Duplicate Analysis

« Carried out by ISIDA/Duplicates program

« 1,280 duplicate couples were found
— 406 had a complete matching profile
— 874 had profile differences

— Atotal of 1,535 discrepancies were found in the 874
duplicates couples CYP annotation:

| CYPco | CYP1A2 | CYP3A4 | CYP2D6 | CYP2CI9_

# of 154 363 426 422 170

discrepancies

PROBLEM: CYP bioprofiles for some duplicates are
dramatically different
»Need biological curation!




Neighborhood analysis helps to choose correct value

Case Study: structural duplicates found in NCGC CYP450 qHTS data

Cytochrome P450 :
Tocris-0740 Supplier 2C9 1A2 3A4 2D6 2C19 \
CID_6603937 11113673 Tocris -4.6 44 | -46 |-62]| -45 E_I

CID_6603937 11111504 | Sigma Aldrich | -4.4

5 | Likely | correct!

5 Nearest Tanimoto Cytochrome P450

. s SID Supplier 2C9 1A2 3A4 2D6 2C19
nelghbors Similarity OG O

7

6604862 0.98 11114071 Tocris INA [ INA| 4.5- | INA| 5.5- 6604862

H
N

&

N

N /IK
HO i : NH
\ o,

6604846 0.98 11114012 | Tocris | INA [ INA | INA | INA | INA
GS O 6604846
,{) /'u

Kﬁ

6604136 0.95 11112054 [Sigma Aldrich| INA | INA | 4.8- | 5.9-| INA
6604136

) 6604137

R

6604106 0.98 11112029 |Sigma Aldrich| INA | INA | 5.1- | INA | INA 6604106

I

-

6604137 0.95 11113764 Tocris INA [ 4.4-| 4.7- | 4.5-| INA




Global Curation Workflo

Error
Rate

....................... Chemical Curation

....................... Duplicate Analysis

Analysis of intra- and inter-lab
experimental variability

V., S Exclusion of unreliable
data sources
64, _______________________ Detection and Verification

of Activity Cliffs

Predictions
Identification and correction

of mislabelled compounds

Dataset Size
Curated Set (# of Records)



Notes on the importance of data curation

' The curation of chemical data is critical prior to any
cheminformatics analysis and modeling. Difficult cases
require human interventions and cannot be fully automated.

) Prediction outliers may be due to structural outliers, real activity
cliffs or mislabeled compounds. Many of them can still be detected

and removed prior to modeling studies boosting the reliability of
QSAR model.

» Rigorously developed QSAR models can be even used to correct
erroneous biological data associated with certain compounds.



Integration of Diverse Data Streams into QSAR
Modeling to Improve Toxicity Prediction

Cheminformatics

Over many
chemicals

-
senlles
N
b CO,Me
65% 90%

28 O
Me

Chemical descriptors (in silico):

Molecular weight,
Connectivity indices
Presence/absence of fragment,
Hydrophobicity, etc.

Huma

studies

Medical
e-heal;
Insurai

terature
records
> claims

v

Toxicity

Bioinformatics

Over many
biological
assays

Short-term biological assays

Transcriptomics,
Metabolomics,
Cytotoxicity,
Genotype, etc



The Use of Biological Screening Data as Additional
Biological Descriptors Improves the Prediction Accuracy

of Conventional QSAR Models of Chemical Toxicity

Zhu, H., et al. Use of cell viability assay data improves the prediction accuracy of
conventional quantitative structure-activity relationship models of animal carcinogenicity.
EHP, 2008, (116): 506-513

Sedykh A, et al. Use of in vitro HTS-derived concentration-response data as biological
descriptors improves the accuracy of QSAR models of in vivo toxicity. EHP, 2011, 119(3):
364-70.

Low et al., Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics
approaches. Chem Res Toxicol. 2011 Aug 15;24(8):1251-62

Rusyn et al, Predictive modeling of chemical hazard by integrating numerical descriptors of
chemical structures and short-term toxicity assay data. 7ox. Sci., 2012, 127(1):1-9

Low Y, ef al. Integrative chemical-biological read-across approach for chemical hazard
classification. Chem Res Toxicol. 2013, 26(8):1199-208

Low, Y, et al. Integrative Approaches for Predicting In Vivo Effects of Chemicals from their
Structural Descriptors and the Results of Short-Term Biological Assays. Curr. Top. Med.
Chem., 2014, 14(11):1356-64



Approaches to Integrative QSAR Modeling

A
Chemical features QSAR . =
Consensus
Biological data Biological model

model
B Chemical features in vitro/in vivo relation
RIS, Hierarchical
Biological data CEET QSAR
C :
Chemical features —
—)

Hybrid model

Biological data

D
Chemical features QSAR I8 =
! ©
(i) % N —) Chemical-
= : .
Biological data T Biological = Biological Read-
model ) Across (CBRA)

Low et al,. Curr. Top. Med. Chem., 2014, 14:1356-64



Hierarchical QSAR: Using in vifro IC50 data to

develop improved QSAR models for in vivo Rat Oral
LD50.

ZEBET Database* and Data Preparation

cytotoxicity IC50 and both rat and/or
361 compounds mouse LD50

inorganics, mixtures and heavy metal
salts are removed

291 compounds

both in vitro IC50 values and rat
L.D50 results

253 compounds

Random split

*The ZEBET database was
230 compounds 23 compounds provided by Dr. Ann
modeling set validation set Richard (EPA)




LDS0 (mmol/kg)

Relatively poor correlation between in
vitro IC50 data and in vivo Rat Oral LD50

3.00

2.00

1.00

0.00

-1.00

-2.00

21

@ No obvious correlation

@ Can we break the problem
into regions of higher

correlation?
@ Can we use QSAR methods

to define those regions based

on chemical structure alone?
IC50 (mmol/l)

Zhu H, Ye L, Richard A, Golbraikh A, Rusyn I, Tropsha A. (2009) EHP 117:1257-1264.



Different regions of in vitro IC50 - in
vivo Rat Oral LD30 relationships

3.00
- m [ ] |
2.00 — . Class 2
] [ ] - m
L 4
.. ¢ Class |
]

LD50 (mmol/kg)
N o N
o o o
o o o

2.00 ® Use “moving regression” to
T define regions of higher correlation
-3.00 . . . @ Regions bear some
4 2 0 2 commonalities to “baseline toxicity”

IC50 (mmol/l) representations

o Attempt to distinguish regions
based on chemical structure alone

22
Zhu H, Ye L, Richard A, Golbraikh A, Rusyn I, Tropsha A. (2009) EHP 117:1257-1264.



LDS0 (mmol/kg)

Hierarchical QSAR modeling

y =0.4488x - 1.0041

3.00
= 0.8946 .
- X . | o Baseline
2.00 ~~~~gunds
/ = Class 2 g Classification QSAR ___.
. = . aseline
1.00 QSAR 2 x— hd ’ Compounds
plass | Ouitliers
0.00 +———— == solgm oty =
Cla,§83 X (E:xternal ;
1.00 X~ ompounds
' — Linear (Baseline
Compounds)
-2.00
@ Step 1: Apply Classification QSAR to
-3.00 A . . . assign new chemical to Class 1 or Class 2

4 2 0 2 @ Step 2: Apply QSAR 1 or 2 to predict
LD50 based on chemical structure alone

IC50 (mmol/l)
IC50 used to inform construction of @ Step 3: Validate approach with external
QSARs, but not needed for prediction data

23
Zhu H, Ye L, Richard A, Golbraikh A, Rusyn I, Tropsha A. (2009) EHP 117:1257-1264.



Prediction of the Rat LD50 Values for the

External set of 23 Compounds

* R%=0.79, MAE=0.37, Coverage=74% (17 out of 23)

Pred.Log(1/LD50)

1.50
1.00

0.50 -
0.00 -
-0.50 A

-1.00
-1.50
-2.00

-2.00

-1.50

-1.00

-0.50 0.00
Exp.Log(1/LD50)

0.50

1.00

1.50

m C2 compounds
A C1 compounds




Hybrid QSAR: In vitro dose-response data
improve the predictive power of QSAR
models of in vivo toxicity (rat LD, )

*1408 substances
*382 chemical structure descriptors (Dragon v5.5)
* 13 in vitro NCGC cell viability assays * :

gHTS (quantitative HTS) data

14 test concentrations: 0.6nm .. 92.2um

May vyield up to 13x14 = 182 in vitro gHTS descriptors, but
the issue of data noise becomes important.

*Inglese J., Douglas S. A. et al. PNAS, 2006, v103(31), p11473



QSAR-like Table — gHTS descrlptors

Descriptor #:
N S N
9.2mkM | 21mkM 92mkM
Acrolein
ﬁ
2-Amino-4- N NH; ]
nitrophenol O \©i L 22 L
OH

~ N
.

Tebuco- N
~ - - -
369 e ~_ N 21 24 18
OH
Cl




SMOOTHING CONCENTRATION-
RESPONSE CURVES (NOISE

SUPPRESSION).
N
2 (Jurkatcellline, Pubchem AID #426)
L & A— Attt
°\“ 20
& Y
3 "
% RanRa e St
60
X —=— fi-Nitrostyrene A | ".
-30 | —e—Carbendazim I".'l 80| MXDV - LT lln‘.
—— Colchicine X : 2 "
100 g 100
A. Oriemnal data B. Processed data

W

log Concentration

Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn |, Tropsha A. EHP, 2011, 119(3):364-70



Modeling Workflow

A Rat LD, data: ’ “TOXIC:” 92 molecules gHTS LD
7385 molecules | || overlap: | / mmmmmmmmmmmmm e >0
N 695 | “MARGINAL:” 326 molecules dataset:
NTP-qHTS data: molecules bommmmmmmmmmmmmmmmms 363
1408 molecules J “NON-TOXIC:” 277 molecules molecules
B 5-fold cross-validation routine (j=1..5)

b J-validation set =70 molecules —

q ™ sampling by modeling set

similarity:

=180
: 3 -120
j-modeling set =300 molecules molecules
molecules
S




Smoothing the concentration-
response data improves the
prediction accuracy of hybrid models.

Chemical Hybrid Hybrid

% descriptors | descriptors descriptors
only (Original) (THR=15%)

Sensitivity 68+8 63+9 76+5
Specificity 8544 86+4 8742
CCR 76 £5 * 74 £5 82 +3
Random ~ Sensitivity 7449 6648 77+10
Forest (RF) e
el Specificity 8247 874 863
CCR 78 +4 * 77 5 82 +5

Shown are averaged results of five-fold external validation. *Chemical descriptors only models were significantly
different (p < 0.05) from all other models of the corresponding group by the permutation test (10,000 times).



Hybrid QSAR models have higher
predictive power than commercial
software TOPKAT

Hybrid

descriptors Hybrid descriptors

(THR=15%)

Chemical
descriptors only

(Original)

kNN  RF kNN RF kNN RF
Sensitivity 0.45 073  0.73 0.55 0.82 091 0.91
Specificity 0.93 0.78  0.80 0.85 0.78 0.85 0.83
CCR 0.69 * 0.75  0.77 0.70 0.80  0.88 0.87

Results are shown for 52 compounds in our external validation sets, which were also absent in
the TOPKAT training set.

*TOPKAT model was significantly different (p < 0.05) from all other models by the permutation
test (10,000 times).



Hybrid QSAR: Predicting subchronic hepatotoxicity using

poth chemical descriptors and 24h toxicogenomics
orofiles e

127 compounds in 2 classes
70

60
50
- ¢
30
Assigned by 20
pathologists 1°

0

WS
Liver histopathology

Rats in triplicates
6-8 weeks old
Sprague Dawley

Subchronic 28-day
hepatotoxicity

Doses: low, med, high
Time points:

3h, 6h, 9h, 24h,

3,7, 14 and 28 days

01011010 :
1001010110 Predict

101110111001
1010010010100

In vivo hepatic
gene expression
(24h, high dose )

Data source: Japanese toxicogenomics project; Open TG-GATEs http://toxico.nibio.go.jp/




Selection of chemical descriptors and transcripts for

Chemistry-based modeling

For QSAR
models

304 Dragon
descriptors

2,030 Dragon
descriptors

116 MOE
descriptors

185 MOE
descriptors

271 SiRMS
descriptors

2,297 SiRMS
descriptors

. Removal of low-variance and highly correlated descriptors

model building

127 curated

compounds

31,042
genes

Compare with
treated control

2,991

genes mp

Toxicogenomics-based modeling

For toxicogenomic
models

Top 4 genes

Top 30 genes

Top 100 genes

Top 400 genes

Rank by significant
difference
between toxic and
nontoxic classes

2,923 genes

Low et al. Chem. Res. Toxicol. 24,1251-1262 (2011)
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Optimal
model with
85 genes

Comparison of models

Correct Classification Rate (CCR)
(Specificity + Sensitivity)/2

Toxicogenomics
models

Hybrid models

QSAR models
| |
2 5 10 20 50 100 200 300

Number of chemical descriptors

Toxicogenomics >  Hybrid >

models models

QSAR
models

33



Model interpretation (biology): Pathway analysis
shows that selected genes are mechanistically

Networks were generated by IPA (Ingenuity) re | eva n t Red = up-regulated tranSCI’IptS'
A 5 Green = down-regulated transcripts

Ppp2r2d Alkbhg
Atad3a

/
Psmg2
Npm3

Npm1

Hnf4a is assoc. with Myc is assoc. with Cellular function- and
* Morphological and * Cell proliferation maintenance-related
functional * Cell differentiation interactomes
differentiation of * Apoptosis

hepatocytes (Lin 2009)

e Liver architecture
* ER stress (Parviz 2003, Watt 2003, Luebke-Wheeler 2008)



Model Interpretation (chemistry) Significant chemical
descriptors are interpreted in the form of structural

Substructure A (Acetanilide)

alerts Toxic species )L /© /lk/© )I\/© ﬁk/@

N- hyd roxyI amines — acetamlnophen phenacetin bucetin
Nitroso compounds

phenylbutazone

." s ! s
S PPy J\ S ":J.‘ - /”.‘ LoD ,,‘: J
J L 'T' g [r St HN \T":" ‘.' » \\‘N""-

HyN e - S G, N N /

......

sulfur species C—— thioacetamide ~disulfiram ethionamide methimazole*

Substructure C (C-Cl)

o,
Cl Cl\‘/,’*\_\N"_,:?‘ “: o PNy cl OH
c Cl\«“NkNAvJ . £ i v "
[ H " 8 o Sy A0
: — carbon c N Ho™" R
Alkyl radlcals tetrachloride cyclophosphamide °" lomustine chloramphenicol i

Substructure D (Styrene)

/ / ,"
. 0-_-,:1",\ 07777 ' 0""—"‘1\\ _z2 ,
S RN .
Epox|des _ Ry AN : e
¢ S R
" N

Nyer
)

‘OH

B \‘,
benzbromarone benziodarone amiodarone” coumarin
N




Why is gene expression more predictive
than chemical descriptors?

 Small and chemically diverse data set

— Too few congeneric compounds is a challenge for
QSAR

» Effect of activity cliffs

— 50% of top 40 nearest neighbor pairs in chemistry
space are activity cliffs

— 33% of top 40 nearest neighbor pairs in biology space
are activity cliffs



does it make

sense to model any SAR data?

Example: Poor structure —in vivo or in vitro-in vivo correlations for Toxcast data™

Dataset Modelability
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The Concept of Modelability

« We often fail to build a predictive QSAR model.
However, it may be possible to evaluate
modelability of the dataset prior to QSAR
study.

 MODI-index: Balanced accuracy (BA) of a kNN
model with K=1 (the activity class of each
compound is predicted to be the same as that of

its nearest chemical neighbor)
CONFUSION MATRIX

SE = N../N PREDICTED | OBSERVED | OBSERVED | TOTAL
00°~ "0 CLASS 0 CLASS 1

CLASS 0 Noo N, N,
CLASS 1 N, N, N,
TOTAL N, =N, N, =N, N

BA =% (SE + SP)

N




Prediction of Dataset
Modelability

1
NON-MODELABLE MODELABLE
0.9 -
0.8 - y = 0.57x + 0.33
< R?=0.66 B 44 diverse datasets
O
1 0.7 L &
) P
o =0.88x +0.07
| C@ - y=o - () 60 ToxCast datasets
0.6 QC & R%=0.83
o P G P
0 _SnERs ©
0.5 - CO" eo)
P O
&
004 | | | | |
0.4 0.5 0.6 0.7 0.8 0.9 1
MODI

Golbraikh A, et al. Data Set Modelability by QSAR. J Chem Inf Model. 2014, 54(1):1-4



QSAR < Toxicogenomics
models models

65%

%2

Chemical descrlptors

dru 3 H

l-‘

x Toxicogenomics expression
(24h)

B

304 Dragon

descriptors 2,923 genes
Rank by

Hybrid models differential

expression |

68- 7‘BAcc >
Top 400 genes

y A
QSAR Toxicogenomics Top 100 genes
models models
55-61% 69-78% Top 30 genes
Hepatotoxicity
4 classification methods BAcc (28 day) BAcc Top 4 genes

(RF, SVM, kNN, DWD)
Low et al. (2011) Chem. Res. Toxicol. 24,1251-1262



Conflicting Predictions by
QSAR and Toxicogenomics Models

Biological space

Chemical space

e Toxic drug
®Non-toxic drug

1.0

0.5

PC2 (10%)

0.0
l
®
.sg..
‘s
Ny X
' ..
..
L I ]

-0.5
:

-1.0

. ® Toxic drug . .
» - ®Non-toxic drug .
[ ] LK ]
% o °
° _ e . e o
N .. °® . & .
g _ caffeine. %
N e e
O - .\ o )
D— e e
o - e e® .." ... . e ..
% ee® s e ®_ e, °
¢ A :.o ' “: ' .? .:.. : [ *
! [
° '.o. o-
. "ae®e
o carbamazepin€e .
* [ ]
I I I

PC1(20%)
Carbamazepine
XIDistant biological neighbors
[IClose chemical neighbors
=> Chemical similarity works
better

Caffeine

VIClose biological neighbors
[XIDistant chemical neighbors
=> TGx similarity works
better

0 2 4
PC1(70%)
Improved
predicion:
Learn from both
sets of neighbors




Chemical Read-Across: Learning from

D OSAR Tootboy iz.v'.'nnmxmm)

‘ Structure
|
O\
0
0
0
‘H I L

Similar Compounds

QSAR TooLeoy

()

» Input

Deta Gap Fillng Methed
© Read-across

©® Trend analysis

Training sat

M
Bacterial Reverse Mutation Assay

Gene Mutation

Salmonella typhimurium
No S9 Info
With S9

Without S3

Undefined Metabolic activat

Undefined Test organisms (¢
HEDNA Damage and Repair Assay, |
HEDNA React. (Ashby Fragments)
H2in Vitro Mammalian Chromosome /|
EMammalian Cell Gene Mutation As
H2Mouse COMET Assay
L—ESnslel Chromatid Exchange Assay

L8 Undefined Test type
In Vivo

|—Immunotoxicity
HBImitation / Comosion

f— Neurotoxicity

L @Repeated Dose Toxicity
HaSenstisation

B Toxicity to Reproduction
LigToxicokinetics, Metaboksm and Distriby
BProfile

QSAR Toolbox, OECD

Experimental Data Sources

Indexed

On-Line Databases
TSCATS

U.S. Government Documents
NTP
ATSDR

HPV Challenge Program

Other Sources
DSSTox
RTECS
IUCLID
AEGLS

The.Analog |dentifi
des_lgned to help id
toxicity data on clo

was

ble, experimental
I structures

cati.on Methodology (AIM)
entify publicly availa
sely related chemica

The AIM database contains 31,031 chemicals

There are three ways to run AIM

Submit SMILES Notation

.

1) Quick Search by SMILES notation

Draw vour structure
2) Draw your compound e

_

|

3) CAS Registry number Search

About the AIM Methodology

AlM, US EPA/OPPT



PC2

Chemical-biological read-across (CBRA):
learning from both sets of neighbors

A___ =similarity-weighted average of toxicity values

pred™
overall correctly predicted as nontoxic
CARBAMAZEPINE
Non-toxic
Close chemical neighbors Distant biological neighbors
o Toxic . . L o Toxic B
« - ®Non-toxic T o _| ®Non-toxic
.'o . = *
N .. ¢ ¢ ] : o
. o ] N
- . & ..
N 8|
S '“":-..‘ . T o]
S I“f" i g - '
N carbamazepin.e".'. 2 4 carbamazepine
| | | . | | | | | | | I
-4 -2 0 2 4 -1 0 1 2 3 4
PC1 PC1

Low et al, Chem Res Toxicol. 2013, 26(8):1199-208



CBRA outperforms other models

Balanced

accuracy
Specificity Sensitivity (CCR)

Chemical 0.73 =0.07 0.34 = 0.05 0.53 +0.04
read-across

Results of 5-fold external cross-validation

* Single space approaches replicated previous results: TGx > hybrid > QSAR

* Multi-space kNN read-across, using both chemical and toxicogenomic

neighbors, had the highest predictive power
Low et al, Chem Res Toxicol. 2013, 26(8):1199-208 44



Four Benchmark Data Sets

Balanced Accuracy

Rat Hepatotoxicity
127 compounds

85 genes

Rat Hepatocarcinogenicity
132 compounds
200 genes

Mutagenicity (Ames Test)
185 compounds

148 cytotoxicity assays

Rat Acute Toxicity (Oral LD,)
122 compounds

148 cytotoxicity assays

Low et al, Chem Res Toxicol. 2013, 26(8):1199-208

Chemical
Biological
Hybrid
Ensemble
CBRA

Chemical
Biological
Hybrid
Ensemble
CBRA

Chemical
Biological
Hybrid
Ensemble
CBRA

Chemical
Biological
Hybrid
Ensemble
CBRA

0.0 0.2 0.4 0.6
| |

0.8

CBRA Shows Consistently Top Performance for

1.0




Radial Plots Visualize both Chemical and Biological
Similarity to Help Forming the Read-across Argument

+1 CHLORAMPHENICOL TERBINAFINE BENZBROMARONE
(toxic) Apreq= +0.157 Apreq= +0.365 Apreq= +0.688
B|o\og|ca| Chem\cal
>
.ﬁ b
E similarity 0.6
E CARBAMAZEPINE TICLOPIDINE SULINDAC
= Apreq= -0.099 Apreq= +0.153 Apreq= 10.445
©
2
[=T]
o
2
0
>
e}
c
2
e}
2
8 QUINIDINE VALPROIC ACID FAMOTIDINE
a Apres= -1.00 Aprea= -0.286 Aprea= -0.591

-1 (non-toxic)e=— Prediction by chemical similarity —> (toxm) +1

Low et al, Chem Res Toxicol. 2013, 26(8):1199-208 46



Conclusions and Outlook

Rapid accumulation of large biomolecular datasets
(especially, in public domain):

— Strong need for both chemical and biological data curation

— Cheminformatics approaches support biological data
curation

Novel approaches towards Integration of inherent _
hemical properties with short term biological profiles
fblologlcal descriptors )

— improve the outcome of structure — in vitro — in vivo
extrapolation

Interpretation of significant chemical and biological
descriptors emerging from externally validated models

— inform the selection or design of effective and safe
chemicals and focus thesefection of assays

Tool and data sharing
— Pubic web portals (e.g., Chembench, OCHEM)




CHEM
SENCH http://lchembench.mml.unc.edu

HOME

MY BENCH

DATASET

MODELING PREDICTION CECCR BASE

Toxicity Predictors

These are public predictors useful for toxicity prediction.

Date Modelin Descriptor -
| seea | wmeD | Rap | ey [ ooy

5HT2B_Binder_DragonkNN

Ames_Genotoxicity_kNN

Ames_Genotoxicity_SVM

cb101--1d50_369_cdk_RF

cb101--Id50_369_hts_RF

cb101--1d50_369_hybrid_RF

cb101--1d50_369_sdf_RF

ER_binding_affinity

RAT-ACUTE-
LD50_DragonkNN

T.Pyriformis

2010-09-16
03:57

2011-06-14
15:28

2011-06-14
15:28

2011-08-28
20:46

2011-09-09
23:03

2011-08-28
20:46

2011-08-30
11:22

2011-09-12
14:07

2010-09-23
03:57

2009-10-09
16:46

This predictor contains models generated
using Dragon and kNN by R Hajjo; etal in
http://dx.doi.org/10.1021/jm100600y.
KNN DRAGONH These models built and validated using
304 compounds with binder/non-binder
classification defined based on functional
assays.

KNN DRAGONH

SVM DRAGONH

RANDOMFOREST  UPLOADED CDK

RANDOMFOREST  UPLOADED HTS

RANDOMFOREST UPLOADED HYBRID

RANDOMFOREST CDK

SVM UPLOADED

This predictor contains models generated
using Dragon and kNN by H Zhu; etal in
http://dx.doi.org/10.1021/tx900189p.
These models built and validated using
3472 compounds predict Acute Toxicity
(pLD50(mol/kg)) in Rats.

This predictor contains the kNN-
MolconnZ models generated by H Zhu; et
alin
http://dx.doi.org/10.1021/ci700443v.
These models built using 983 compounds
(644 training/339 external test) predict
aquatic toxicity (pIGC50) against
Tetrahymena Pyriformis.

KNN DRAGONH

KNN MOLCONNZ
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