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Key questions in structure-based drug design

PROTEIN

PROTEIN
Where is the binding site?

given a protein:

Target structure

What is the structure of the complex?

given a binding site and a ligand structure:

What is the energy of interaction? PROTEIN-LIGAND 
COMPLEX

What is a suitable, tight-binding ligand?

given a binding site:

PROTEIN

requires some sort of affinity prediction or scoring
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Application tasks:

Scoring functions: Tasks and types

Available approaches:

• Force field-based methods

• Knowledge-based scoring functions

• Empirical scoring functions

A) Determination of the correct binding mode for a given ligand

B) Identification and ranking of new ligands

C) Affinity prediction for compound series

Pose prediction in docking

Virtual screening

Ligand design, lead optimization

Force field-based methods

Scoring protein-ligand complexes:

+ for pose prediction in docking

– for ligand ranking by affinity

Terms accounting for (de)solvation & entropic factors required (cf. MM-PBSA)

Molecular Mechanics (MM):

• atoms  charged spheres

• bonds  springs

• classical potentials

• no electrons  no bond formation / cleavage

• typically parameterized to reproduce 
molecular potential energy surface
( conformational ∆H in the gas phase!)



3

Knowledge-based scoring functions
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Statistical potential

No experimental affinities used!

Empirical scoring functions

pKi =  pKin fn(structure)Regression-based:

affinity weighting factors structure descriptors

determined via regression analysis (MLR, PLS)

Data:

Experimental 
binding affinities

Experimental 
structures
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The prototype: SCORE1 (Böhm, 1994)

Affinity prediction on generic data sets

Scoring function performance 2004
or: The „large-test-set“ shock …
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Wang et al., J. Chem. Inf. 
Comp. Sci. 44 (2004), 2114

Correlation with affinity
for a test set of 800 
known complexes:

for most functions
r < 0.50  (r2 < 0.25)
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Affinity prediction on generic data sets

Scoring function performance 2004
or: The „large-test-set“ shock …

Wang et al., J. Chem. Inf. 
Comp. Sci. 44 (2004), 2114

Correlation with affinity
for a test set of 800 
known complexes:

for most functions
r < 0.50  (r2 < 0.25)

• poor correlation for generic data sets

• hardly possible to obtain correct ranking

• of limited use for ligand optimization

How to improve empirical scoring functions?

pKi =  pKin fn(structure)Regression-based:

affinity weighting factors structure descriptors

determined via regression analysis (MLR, PLS)

Development options:

• training sets

• descriptors

• regression methods
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The SFCscore approach

• Training sets:

Data collection from public & industry sources

SFC: Scoring Function Consortium

up to 855 complexes with affinity data

• Descriptors: 

• Regression method: MLR + PLS 

larger training set

additional descriptors

pKi  =  - pKi1  n_rot_bonds

+  pKi2  neutral_H_bonds

+  pKi3  metal_interaction

+  pKi4  AHPDI

+  pKi5  ring-ring_interaction

+  pKi6  ring-metal_interaction

+  pKi7  total_buried_surface

+  pKi8

Example: SFCscore function
„sfc_290m“

R R2 s F Q2            sPRESS

0.843 0.711 1.09 99.2 0.692 1.12

Statistical parameters for training set (n = 290):

Sotriffer et al., Proteins 73 (2008), 395

SFCscore

R R2 s F Q2            sPRESS

0.873 0.762 1.40 32.1 0.696 1.67

Comparison with SCORE1 (n = 45):
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2009 benchmark

Scoring function performance

Pearson correlation coefficient RP
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SFCscore functions

Functions tested by
Cheng et al. 2009

J. Chem. Inf. Model.
49 (2009), 1079

Zilian & Sotriffer
J. Chem. Inf. Model.
53 (2013), 1923

Some known limitations of SFCscore:

• data set issues (IC50 etc.)

• implicit model assumptions (i.e., 

functional form of descriptors, 

linear regression techniques)

Correlation of scores with experimental binding affinities

Test set compiled by Cheng et al., 2009: 195 PDBbind complexes (65 targets)

growth of PDBbind   →   1005 complexes with Ki data

Non-parametric machine-learning methods:

• Training sets:

(not overlapping with Cheng & CSAR test sets)

• Regression methods:

(not imposing any particular functional form)

Random Forestin particular :

Addressing these limitations …

Random Forest for scoring functions
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Random Forest for scoring functions

First scoring function trained with Random Forest:

RF-Score (Ballester & Mitchell, Bioinformatics 2010)

• Training set: 1105 PDBbind complexes

• Descriptors: count of protein-ligand atom type pair contacts withing 12 Å

9 atom types (C, N, O, S, P, F, Cl, Br, I)  →  36 pairs

→ each complex characterised by vector of 36 contact counts

RF-Score yields much higher Rp for Cheng test set!

BUT:   Do the pure contact counts sufficiently well capture

the physicochemical interaction features?

Random Forest for scoring functions: SFCscoreRF

use SFCscore descriptors to train Random Forest model!

SFCscoreRF • Training set: 1005 PDBbind complexes

• Descriptors: 63 SFCscore descriptors

Increase of the mean squared error 
when randomly permuting the descriptor values

Relative descriptor importanceTest set (Cheng)

RP = 0.779   RMSE = 1.56

Zilian & Sotriffer, 
J. Chem. Inf. Model.

53 (2013), 1923
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SFCscore functions

Functions tested by
Cheng et al. 2009

RF functions

Pearson correlation coefficient RP

Zilian & Sotriffer
J. Chem. Inf. Model.
53 (2013), 1923

Correlation of scores with experimental binding affinities
Test set compiled by Cheng et al., 2009: 195 PDBbind complexes (65 targets)

Scoring function performance

Why does SFCscoreRF outperform the other SFCscore functions?

Applicability domain of SFCscoreRF

SFCscoreRF training data

Cheng test set complexes

sfc_229m  training data

Cheng test set complexes

better coverage 
of training-set region

Knowing in advance the best 
SFCscore function for each 

individual complex would lead to

RP = 0.93   RMSE = 1.03
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CSAR-NRC HiQ evaluation set: 332 complexes
Dunbar et al., J. Chem. Inf. Model. 51 (2011), 2036; Smith et al., J. Chem. Inf. Model. 51 (2011), 2115

Correlation of scores with experimental binding affinities

One more generic test set: CSAR-NRC HiQ (2010)

Performance across 17 core methods:

• RP in the range 0.35 – 0.76 (only 3 >0.65)

• RMSE in the range 2.99 – 1.51 (pKd units)

• correlation with heavy atom count: RP 0.51

SFCscoreRF:

RP = 0.73 RMSE = 1.53 (pKd units)

Scoring function performance

CSAR-NRC HiQ evaluation set: 332 complexes
Dunbar et al., J. Chem. Inf. Model. 51 (2011), 2036; Smith et al., J. Chem. Inf. Model. 51 (2011), 2115

Correlation of scores with experimental binding affinities

One more generic test set: CSAR-NRC HiQ (2010)

SFCscoreRF:

RP = 0.73 RMSE = 1.53 (pKd units)

Scoring function performance

Inherent experimental error
limits the possible correlation between scores and measured affinity. 

RP is limited to:
∼0.91 ~0.83

when fitting to the data set when scoring the data set with a
without overparameterizing method trained on outside data

(estimate based on error with σ = 1.0 log K)

Dunbar et al., J. Chem. Inf. Model. 51 (2011), 2146

Where are the limits?
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What about individual targets?
Leave-Cluster-Out (LCO) Validation: Target-dependent performance

RMSE

Correl. coeff. RP

Scoring function performance

Zilian & Sotriffer
J. Chem. Inf. Model.
53 (2013), 1923

What about individual targets?
Leave-Cluster-Out (LCO) Validation: Target-dependent performance

BUT:  Somewhat artificial setup …

Training 
set

HIV-protease
set

Out-of-bag (OOB) predictions 

for HIV-protease class (n=97):

RP = 0.60 RMSE = 1.26

Scoring function performance
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What about individual targets and docked ligands?

The CSAR 2012 challenge

Scoring function performance

Example:  ERK2 test set

~40 compounds for
docking and affinity ranking

rather poor results for most groups:
median Rp = 0.37 best:  0.66 SFCscoreRF:  0.49

Major problem: 

binding-mode prediction!

What about individual targets and docked ligands?

Scoring function performance

The CSAR 2012 challenge

Example:  ERK2 test set

Based on 12 crystal structures
released later:

Damm-Ganamet et al., J. Chem. Inf. Model. 53 (2013), 1853
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Scoring function performance (II)

Cheng et al., J. Chem. Inf. Model. 49 (2009), 1079

rmsd < 1.0 Å

rmsd < 2.0 Å

rmsd < 3.0 Å

Success rate for identifying
best-scored ligand binding pose
with

- Test set of 195 complexes of 65 different targets

- 100 low-energy poses per complex (0-10 Å rmsd)

- 29 scoring functions tested

Identification of near-native binding pose
among a set of geometric decoys

Pose prediction in docking

DSXCSD 85%

• native poses can be detected fairly well

• success rates of up to ~80%

• knowledge-based approaches work best

• for reduced Cheng data set (n=176), rmsd 2 Å:

• DSXPDB: 83.5%

• SFCscore sfc_229m (best): 38.1% !?!

SFCscore for docking pose prediction 

SFCscore functions:  trained on crystal structures for affinity prediction

- insufficient information on unfavorable interactions

- no knowledge about decoy poses

In particular: penalties on bad contacts lacking 

Using a simple „clash-descriptor“ as filter
Lennard-Jones potentials

0

1
„Clash“-scores 

in crystal structures 
(Astex data set, 
Hartshorn et al.)

Filter cutoff
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SFCcsore for docking pose prediction

≤ 2.0 Å Pose (incl. crystal pose)

Scoring function   

Prefiltering poses with „clash-descriptor“ 
improves pose prediction with SFCscore

RMSD to crystal pose (Å)
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BUT: Success rates of DSX not reached

How to improve further?

SFCcsore for docking pose prediction

Learning from decoy poses

Huang: based on CSAR 2010
318 complexes (no overlap with Cheng)
500 poses/complex from Mdock & DOCK 
0-18 Å RMSD (incl. native pose)

Data sets:

CSAR 2012: 
58 complexes of 5 targets
199 decoy poses/complex from DOCK
(2-22 Å rmsd) + 1 near-native pose (<1 Å)

Exposed/buried ligand surface

Cheng Huang
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SFCcsore for docking pose prediction

Random Forest classification model using SFCscore descriptors
based on combined C&H2 training set

Used in combination with DSX !

For pose prediction / docking power calc.:

For each complex:
classification with RF-model 

„near-native pose(s)“ „only decoys“

if multiple poses:
rank with DSX, take top pose take top-ranked DSX pose

• Cheng/Huang test set (165 complexes):

improving from 84.2% (DSX)   to 87.3% (RF+DSX)

• CSAR-2012 test set (58 complexes):

improving from 87.9% (DSX)   to 91.4% (RF+DSX)

PDB
4FV1

top DSX pose
(wrong)

top RF+DSX pose
(correct)

SFCcsore for docking pose prediction

• Cheng/Huang test set (165 complexes):

improving from 84.2% (DSX)   to 87.3% (RF+DSX)

• CSAR-2012 test set (58 complexes):

improving from 87.9% (DSX)   to 91.4% (RF+DSX)
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Why is affinity prediction a challenge?

2.) The prediction methods need to be fast

Database screens: ~ 103 – 106 molecules need to be compared

Docking runs:   ~ 107 – 109 configurations need to be evaluated 

„Scoring functions“ required:

Fast, simplified, heuristic methods for prediction of binding strength

1.) Protein-ligand complexes are dynamic systems in aqueous solution

• simultaneous, unperiodic, 
continuously changing interactions

• huge number of particles 

needs integration over entire phase space!

Simulation methods required!

Statistical thermodynamics: Calculation of ∆G°

Computationally very expensive!

Fundamental limitations of empirical scoring functions (I)

• G0 =  RT ln KD = H0 - TS0

difference between
two states (bound/unbound)

depending on the entire
accessible phase spacereferring to an 

equilibrium observable

yet scoring functions in general …
… consider only the complexed state 
… consider only a single (or very few) configurations
… attempt to provide G0 also for arbitrary non-equilibrium states (poses)

Overall, the simplistic scoring functions work surprisingly well!

And: More sophisticated approaches start appearing …

e.g.: „Blurring“; Ucisik et al., J. Chem. Theor. Comput. 10 (2014), 1314

force-field based; ensemble generation, consideration of unbound state
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Fundamental limitations of empirical scoring functions (II)

• Accuracy of experimental data!

> Structural data (mainly X-ray) of protein-ligand complexes

> Affinity data of protein-ligand complexes

Scoring functions cannot be better than 

the experimental data they are based on!

- depend highly on pH, buffer, salt concentration, temperature

- enyzme kinetics: inhibition mechanism must be known

- IC50 ↔ Ki ↔ Kd

- multiple conformations (highly dynamic systems)

- hydrogen atom positions (protonation states) not observable

- side-chain orientation may be ambiguous (Asn, Gln, His)

- water molecules are only partially observable

- binding modes may depend on crystallization conditions and crystal packing

J. Med. Chem. 55 (2012), 5165

Exp. uncertainty in Ki for heterogeneous data: MUE 0.44-0.48 pKi units

Upper limit of performance for all affinity prediction models!

max. performance of model with same uncertainty as exp. uncert.: Rp = 0.81

max. performance of a perfect model: Rp = 0.90

Scoring 
Function 
Consortium

Astra Aventis

BASF Boehringer

Glaxo Novo Nordisk

Pfizer Agouron

Roche      Schering         CCDC
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