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Presentation Outline

• Bioactive conformations: Definition and importance
• Experimental and computational identification of bioactive conformations
• Challenges in identifying and scoring bioactive conformations
• Bioactive conformational biasing
• Bioactive conformations of drugs: Preliminary analysis
• Conclusions and future directions
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Bioactive Conformations
• The conformation adopted by a compound when bound to its bio-target
• The conformation responsible for the biological activity
• Bioactive conformations are target-dependent 

Retinoic acid binding proteinRetinoic acid binding protein Nuclear receptorNuclear receptor

AliretinoinAliretinoin ((antineoplasticantineoplastic))
RMSD = 1.6RMSD = 1.6ÅÅ
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• Pharnacophore: A 3D arrangement of function groups which is responsible for the 
biological activity


 

Obtained by the superposition of active (and inactive) compounds


 

Assumption: Compounds represented by their bioactvie conformations 

Ligand-Based Drug Design: Pharmacophore

Acceptor

Donor

Excluded 
volumeAromatic ring 

Shape based on largest 
active compound

Aromatic ring 

Donor
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Target-Based Drug Design: Docking

• Determine the most probable binding mode
• Approximate binding free energy
• Knowledge of bioactive conformation can eliminate erroneous binding modes
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Target-Based Drug Design: Scoring
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Contribution of Conformer Focusing to the Uncertainty 
in Predicting Free Energies for Protein-Ligand Binding 
(Tirado-Rives and Jorgensen, J. Med. Chem., 2006, 49, 5880-5884)

When a ligand binds to a protein, it is typically not in the lowest- 
energy conformation for the unbound ligand and there is also a loss 
of conformational degrees of freedom. The free-energy change for 
this “conformer focusing” is addressed here formally, and the  
associated errors with its estimation or neglect are considered in the 
context of scoring functions for protein-ligand docking and 
computation of absolute free energies of binding. Specific 
applications for inhibition of HIV-1 reverse transcriptase are reported. 
It is concluded that the uncertainties from this source alone are 
sufficient to preclude the viability of current docking methodology for 
rank-ordering of diverse compounds in high-throughput virtual 
screening.
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Potential Energy Surface (PES)

• An N atoms ligand is defined by 3N Cartesian coordinates or 3N-6 internal 
coordinates
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Experimental Sources for Bioactive Conformations

• Solid state (X-ray)


 

PDB (82,522 structure, 24,517 
complexes (“has ligand” AND “300 < MW 
< 800”))



 

CSD (596,810 entries; January 1st 2012) 


 

Potentially subjected to crystal packing 
forces



 

Represent a single conformer
• Solution (NMR)



 

Analysis complicated by multiple 
conformations



 

Only few studies

MethotrexateMethotrexate
FoloppeFoloppe and Chen, and Chen, CurrCurr. Med. Chem. 2009, 16, 3381. Med. Chem. 2009, 16, 3381
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Computational Derivation of Bioactive Conformations

• Approximate the true PES


 

Force Field: 



 

QM: 


 

QM/MM
• Sample the PES



 

Minimization


 

Conformational search


 

Molecular dynamics (MD)


 

Monte Carlo (MC)
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Energy Minimization

Starting geometry

• Depends on starting geometry
• Can only go down hill
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Conformational Search

• Energy minimization

• Duplicates elimination

• Randomly or systematically 
generated starting geometries

• Representative structures for each 
potential minimum

• Gives coverage of potential surface.
• Combinatorial growth.
• Resulting ensemble reflects enthalpy only.



12

Systematic Search

• Test all combinations of all (torsional) DOF
• Screen each torsion with a pre-defined granularity
• Optionally minimize structures
• Computational cost is exponential with number of torsions
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Stochastic Search

Random change (torsional space)

Optionally minimize

Remove duplicates (RMSD)

Select structure for next step

Starting conformation • Factors affecting performances


 

# cycles


 

Energy cutoff


 

RMSD threshold


 

Starting structure for next cycle

Apply energy cutoff
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Genetic Algorithm

• Create a random populations of conformations (chromosomes)
• For each chromosome calculate a fitness value (conformational energy) 
• Evolve population using genetic operators (selection of the fittest, mutations, 

cross-over)
• Optimize fitness function

Conformation defining
variables

Fitness function
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Additional Conformation Search Methods

• Rule based (e.g., Omega)


 

Use pre-defined fragment conformations obtained, e.g., from CSD
• Tabu search (e.g., Catalyst’s poling)



 

Avoid re-visiting already samples regiond of the PES
• Distance geometry



 

Used to derive structures from NMR data
• And many others…
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Molecular Dynamics 

Calculate velocities based on force

t typically 10-15sec

Calculate new position

Calculate force based on surface curvature

Save energy and geometry for average

• Gives average quantities which reflect free energy
• Slow to cross barriers ~2-3 kcal/mol
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Monte Carlo/Simulated Annealing (MC/SA)

Metropolis 
Test

“Trial”
Random Move

E

NO

YES
E < 0
or 
exp(-E/RT) > X[0,1]

??
X[0,1] is a random number in the range 0 to 1
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Performances of CS Methods
Software Dataset Performances
Balloon 311 90% with RMSD < 2A

CAESAR 918 60% with RMSD < 1A
90% with RMSD < 2A

32 47-50% with RMSD < 0.5A

150 20% with RMSD < 0.5A
69% with RMSD < 1A

193 70% with RMSD < 1A

510 80% with RMSD < 1.5A
93% with RMSD < 2A

ConfGen 253 80% with RMSD < 1A
Confort 32 34% with RMSD < 0.5A

Cyndi 742 MECMB: 54% with RMSD < 1A
FFMB: 37% with RMSD < 1A

Flo99 32 62-66% with RMSD < 0.5A

ICM 150 20% with RMSD < 0.5A
69% with RMSD < 1A

MacroModel: LMCS 32 69% with RMSD < 0.5A
MOE 256 95% with RMSD < 1.5A

32 41-50% with RMSD < 0.5A
36 56-78% with RMSD < 0.5A

150 27% with RMSD < 0.5A
69% with RMSD < 1A

Catalyst

Omega

• Success determined in 
terms of having at least one 
structure close to the 
bioactive conformation

• All methods produce many 
conformations remote from 
the bioactive one, hence the 
need for focusing 
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Produce conformational ensemble

Challenges in the Field of Bioactive Conformations

Score bioactive conformations

E =?

Identify bioactive conformation(s)
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Challenges in Defining the Bioactive Structure

• Assume: crystal conformation represents the bioactive conformation
• Assumption questionable (but not enough solution phase data) 
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Identify Bioactive Conformations: Structure
• Assumption: Bioactive conformations more elongated than global energy 

minima

21GS RMSD= 2.8Å1HPV RMSD= 5.1Å 2NNP RMSD= 3.9Å 1FCN RMSD= 2.9Å

6PAH RMSD= 1.9Å1JBO RMSD= 5.4Å 1M4D RMSD= 1.8Å 1NU3 RMSD= 1.4Å
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Challenges in Determining the Bioactive Conformational Energy

0
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EEbioactivebioactive --EEclosest_minimaclosest_minima (OPLS(OPLS--AA; Kcal/mol; RMSD = 0.5AA; Kcal/mol; RMSD = 0.5±±0.1)0.1)

• Unconstrained minimization
• Protein-constrained minimization
• Flat-bottom constrained minimization
• B-Factor constrained minimization BTkkrrkE B /4;)( 22
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Minimization

E = 232 Kcal/mol

E = 34 Kcal/mol

PDB Unconstrained Protein 
constrained

B-factor 
constrained

1BZM 0.39 0.61 0.12
1CBX 0.56 0.76 0.07
1FKF 0.38 0.57 0.06
1HPV 0.74 0.51 0.12
1HVR 1.11 0.56 0.05
1ADD 0.51 0.85 0.06
1CPS 0.37 0.55 0.16
1PSO 0.88 0.58 0.11
1TLP 0.50 0.62 0.12
2GBP 0.17 0.29 0.00
Ave 0.56±0.28 0.59±0.15 0.09±0.05
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Identify Bioactive Conformations: Energy

• Assumption: Bioactive 
conformations reside within well 
defined energy windows relative 
to global energy minima

• Reality: Not necessarily
• Some estimates are clearly 

unreasonable

• Discrepancies from


 

Inappropriate definition of 
bioactive conformations



 

Inappropriate force fields


 

Different data sets


 

Low resolution structures
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Bioactive Conformational Biasing: A New Method for Focusing 
Conformational Ensembles on Bioactive-Like Conformers

• Goal


 

Enrich conformational ensembles by bioactive-like conformations (RMSD < 1Å)


 

Retain a sufficiently large number of bioactive-like conformations


 

De-rich conformational ensembles by non-bioactive conformations (RMSD > 2.5Å)
• Dataset



 

71 ligands (47 in training, 24 in test)


 

Ligand and protein diversity


 

High resolution proteins
• Conformational ensembles generated in MacroModel
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Pre-Filtration

• Can we always identify bioactive conformations?
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Pre-Filtration: M-PROB

• Can we always identify bioactive conformations? NO!

M-PROB 1-3 4-5 6-7 8-9 10-18
# ligands 16 10 11 5 5
# “good” ligands 16 7 9 0 3
# “bad” ligands 0 1 2 5 2

M-PROB: No. of rotatable 
bonds along maximal path
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Single 3D Descriptors: SASA
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2D-3D Combination: MW & ROG

MW > 350  bin 6 (retrieve bioactive conformations of cyclothiazide; blue)

MW < 350  bins 4,5 (retrieve bioactive conformations of flufenamic acid; red) 
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2D-3D-3D Models

• Pre-filtration


 

5 compounds pre-filtered


 

4 with no bioactive conformations


 

1 with a single bioactive conformations


 

Sensitivity 80%


 

2 compounds with no bioactive conformation 
not filtered

• Filtration


 

36% of all conformations removed


 

39% of “bad” conformations removed


 

26% of “good” conformations removed


 

74% compounds retained sufficiently large 
number of “good” conformations

• Overall success rate: 75%



31

Interim Conclusions & Future Work

• Conformational ensembles could be focused on 
bioactive conformations using ligand characteristics

• A larger data set
• Incorporate target information



 

Bioactive conformations are target dependent  

• A more flexible algorithm


 

Test more descriptors combinations
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A Drug Binding Site Database 
(Kinnings et al. PLoS Computational Biology, 2010, 6, 1)

• 274 approved drugs
• 962 drug binding sites
• 194 drugs co-crystallized with a 

single unique protein
• Multiple drugs crystallized with 

multiple proteins


 

Indomethacin (non-steroidal anti- 
inflamatory)(7)



 

Alitretinoin (antineoplastic)(8)


 

Acarbose (anti-diabetic)(9)


 

Niacinamide (vitamin)(11)



33

Database Characteristics
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Database Characteristics: Lipinski’s Rules
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The Workflow

Produce conformational ensembles Score conformational ensembles

Focus on bioactive conformations

Conformational Search
LMCS/MCMM (OPLS, MMFF)

Catalyst (CHARMm)

Torsional

 
Clustering (30º)

Pick Centroids

Database

Data Analysis
Global Minimum

“Bioactive”

 

conformation

Nrot

 


 
6

(123)

Nrot

 
> 7

(77)

Minimization
3‐21G, 6‐31G*, OPLS‐AA,

MMFF, CHARMm

Pick Bioactive 

 Conformation 
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Did We Really Need to Work That Hard (~15K QM Calc.)?
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Can CS Methods Generate Bioactive Conformations? 

# ligands RMSD < 0.5Å RMSD < 1.0Å RMSD < 1.5Å RMSD < 2.0Å RMSD > 2.0Å
OPLS-AA 117 0.62/0.22 0.91/0.56 0.97/0.73 0.99/0.88 0.01/0.12
MMFF 119 0.63/0.20 0.92/0.54 0.98/0.79 1.00/0.93 0.00/0.07
CHARMm 120 0.78/0.20 0.97/0.52 1.00/0.74 1.00/0.91 0.00/0.09

# ligands RMSD < 0.5Å RMSD < 1.0Å RMSD < 1.5Å RMSD < 2.0Å RMSD > 2.0Å
OPLS-AA 110 0.75/0.28 0.98/0.67 1.00/0.81 1.00/0.93 0.00/0.07
MMFF 110 0.74/0.26 0.98/0.58 1.00/0.80 1.00/0.95 0.00/0.05
CHARMm 110 0.78/0.23 0.98/0.56 1.00/0.75 1.00/0.92 0.00/0.08
3-21G 110 0.73/0.21 0.98/0.51 1.00/0.75 1.00/0.94 0.00/0.06
6-31G* 88 0.83/0.32 0.99/0.66 1.00/0.83 1.00/0.97 0.00/0.03

• In general, our workflow can produce bioactive conformations slightly better than 
“standard” CS methods

• From within the methods tested in this work, OPLS-AA and 6-31G* perform the best
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Identify Bioactive Conformation: The Structure

• Assumption: Bioactive conf. more elongated than global energy minima
• Reality: Not necessarily
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Hydrophobicity Dependent Ligand Unfolding

RotBond = 5, 6 n ClogP ROGbioactive - ROGglobal minimum

Hydrophilic ligands
(ClogP < 0) 12 -1.9±1.1 -0.14±0.27

Hydrophobic ligands
(ClogP > 0) 19 2.5±1.5 -0.02±0.17

• Hydrophilic ligands tend to fold in their binding sites

2ZQ9: ClogP = -1.13
ROGbioactive – ROGglobal minimum = -0.83

3CLB: ClogP = 1.15
ROGbioactive – ROGglobal minimum = 0.39
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Force Field-Based Conformational Focusing Energies 

• Conformational focusing energies calculated relative to the 
constrained-free minimized bioactive conformation

nn = 110; = 110; EE = 3.93= 3.93±±6.44  6.44  
nn = 88; = 88; EE = 1.88= 1.88±±3.48  3.48  

nn = 110; = 110; EE = 3.49= 3.49±±6.14  6.14  

nn = 110; = 110; EE = 2.73= 2.73±±3.60  3.60  
nn = 110; = 110; EE = 1.98= 1.98±±2.36  2.36  

Conformational Focusing Energies (kcal/mol)Conformational Focusing Energies (kcal/mol)

EnergyEnergy
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Comparison with Docking

# ligands Average SD RMSD < 0.5Å RMSD < 1.0Å RMSD < 2Å
Docking 110 0.78 0.61 0.42 0.83 0.95
3-21G 110 1.05 0.63 0.21 0.51 0.75
6-31G* 88 0.84 0.57 0.32 0.66 0.97
OPLS-AA 110 0.92 0.62 0.28 0.67 0.93
MMFF 110 0.94 0.60 0.26 0.58 0.95
CHARMm 110 1.04 0.68 0.23 0.56 0.92

• Glide docking with default parameters
• Success defined according to lowest energy structures
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Conclusions I

• Bioactive conformations are important and interesting
• Can CS methods generate bioactive conformations?



 

For rigid ligands (# RotBonds 
 

6) a bioactive conformation is likely to be found in the 
conformational ensemble, although not as the global minimum.



 

For more flexible ligands (# RotBonds ≥
 

8) the probability of identifying bioactive 
conformations is lower



 

Our workflow performs better in these respect thans “simple” CS methods


 

Medium level QM calculations show promise 

• Could bioactive conformations be identified based on their structures?


 

Probably but more work is needed


 

Bioactive conformations are not necessarily more elongated than global minima ones
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Conclusions II

• Could bioactive conformations be identified based on their energies?


 

Our data support energy cutoffs in the order of 5-6 kcal/mol for force field calculations


 

QM data show a trend towards lower penalties as the size of the basis set increases

• How well do CS methods reproduce bioactive conformations compared with 
docking simulations?


 

Docking is better than CS but medium level QM is not far behind


 

What does this tell us about our scoring functions?


 

Should we re-visit rigid docking?
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