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Dramatic Situation in Big Pharma ?

« R&D expenditure raising
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« New drugrapprovals decreasing
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A True Productivity Problem ?

- New drugs approved since 1950 ...

— 1103 Small molecules

— 119 Biologicals
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Costs Per New Drug
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Nat. Rev. Drug Discov., 8, 959-968 (2009)

New molecular entity
(NME). A medication
containing an active ingredient
that has not been previously
approved for marketing in any
form in the United States. NME
is conventionally used to refer
only 1o small-molecule drugs.
but In this article the term
incluges biologcsasa
shorthand for both types of

e —

ANALYSIS

Lessons from 60 years of
pharmaceutical innovation

Bernard Munos

From 1950 to 2008, the US Food and Drug Administration
(FDA) approved 1,222 new drugs (new molecular entities
(NME:s) or new biologics). However, although the level of
investment in pharmaceutical research and development
(R&D) has increased dramatically during this period —
to US$50 billion per year at present’ — the number of
new drugs that are approved annually is no greater now
than it was 50 years ago. Indeed, in 2008, only 21 new
drugs were approved for marketing in the United States,

Abstract | Despite unprecedented investment in pharmaceutical research and development
(R&D), the number of new drugs approved by the US Food and Drug Administration (FDA)
remains low. To help understand this conundrum, this article investigates the record of
pharmaceutical innovation by analysing data on the companies that introduced the

~1,200 new drugs that have been approved by the FDA since 1950. This analysis shows that
the new-drug output from pharmaceutical companies in this period has essentially been
constant, and remains so despite the attempts to increase it. This suggests that, contrary to
common perception, the new-drug output is not depressed, but may simply reflect the
limitations of the current R6D model. The implications of these findings and options to
achieve sustainability for the pharmaceutical industry are discussed.

research organizations if they are to escape the increasing
pressures created by linear new-drug output and rapidly
rising R&D costs.

Rate of new drug introduction

Of the 1,222 NMEs that have been approved since 1950,
1,103 are small molecules and 119 are biologics. FICURE 12
shows the timeline of these approvals. Although at first

glance there are no obvious patterns, on closer obser-

N



Efficiency Deficit ...

Prediction of failure in early stage

. 2500 Mio S

>>100.000

200 Mio $

T. Langer, Strasbourg, 2012-06-28



Costs Attributed To Drug Discovery
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What are we talking about today?

- Examples of chemoinformatics methods

- Application in medicinal chemistry for early
drug discovery research

» Focus on
—Hit identification by virtual screening
—Decision support for med chem optimization

—Liability prediction for later development

T. Langer, Strasbourg, 2012-06-28



What Do We Need ?

- Reliable decision support tools
- Easy to use, easy to understand
- Need for speed

» Solid science behind

Tanimoto Coefficient
Free Energy Calculations 3D QSAR

. _OM/MM2D Fingerprints,
Docking "MEPs ShapeSimilarity

Pharmacophores

Self Organizing Neural Networks

Support Vector Machine @5AR
Similarity IndexCoMFA

T. Langer, Strasbourg, 2012-06-28



Expectations: The Medicinal Chemist

« Answer the most important question !

Te/ll me: LWAhich
molecule Sha!l T prepare
rnext 7

T. Langer, Strasbourg, 2012-06-28



Expectations: The Biologist

« Answer the most important question !

Tell me afl aboced

QUi ToPAY! , 2he patheoay & reladed
S Finetics !
| sem_

A
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The Chemoinformatician ...

« Wants to find the right answers to all the

guestions ...

« Wants to help the medicinal chemist by

designing great molecules ...

« Wants to explain biological data based on

oversimplified models ...

T. Langer, Strasbourg, 2012-06-28



Ultimate Goal - Predict Everything

- Molecular properties
- physicochemical data
- affinity to target(s)

- Effects of molecules

- on cells
- on organs
- on the entire organism

T. Langer, Strasbourg, 2012-06-28



The Chemoinformatician ...

T. Langer, Strasbourg, 2012-06-28



Just Try To Avoid The Pitfalls ...

» There is no “one-model-fits-all” paradigm
« Local models can only explain local phenomena

e Let’s have a closer look ...

— Virtual screening pitfalls™

* .
T. Langer, Strasbourg, 2012-06-28 T. Scior et aI., J. Chem. Inf. Model. 2012, 52, 867—881



Some Pitfalls - In Detail

« Concerning erroneous assumptions
 Concerning data design & content
- Relating to the choice of software

 Concerning conformational sampling and

molecular flexibility (target & ligand)

* .
T. Langer, Strasbourg, 2012-06-28 T. Scior et al,, J. Chem. Inf. Model. 2012, 52, 867—881



VS Pitfalls (1) - Wrong Assumptions

 Expectation: Identify high affinity compounds
e Stringency of queries

« Binding pose prediction

 The role of water in mediating interactions

« Subjectivity of compound selection

* .
T. Langer, Strasbourg, 2012-06-28 T. Scior et aI., J. Chem. Inf. Model. 2012, 52, 867—881



VS Pitfalls (2) - Data Design & Content

» (Non)comparability of benchmark data

» (Non)comparability of performance metrics
e Hit rate in benchmark data sets

» ‘Bad’ molecules (reactive / aggregants)

» Inactives (‘decoy’) selection

* .
T. Langer, Strasbourg, 2012-06-28 T. Scior et aI., J. Chem. Inf. Model. 2012, 52, 867—881



VS Pitfalls (3) - Choice Of Software

* [/0 errors & format incompatibilities

« Molecular structure preparation

« Pharmacophore feature definition

e Fingerprint selection & algorithms used
e Partial charges

« Single predictors / ensemble prediction

* .
T. Langer, Strasbourg, 2012-06-28 T. Scior et aI., J. Chem. Inf. Model. 2012, 52, 867—881



VS Pitfalls (4) - Flexibility (!!!)

« Conformational coverage
« Bio-active conformation
« Conformer comparison

« Conformer energy

« Target flexibility

* .
T. Langer, Strasbourg, 2012-06-28 T. Scior et aI., J. Chem. Inf. Model. 2012, 52, 867—881



Let’s be more positive ...

... and have a look at real life situations and

related success stories ...

T. Langer, Strasbourg, 2012-06-28 GBESTWlFI'( CHEMICAL
Mmacarcirno [ o I(.‘"!l}"y coOompany



Pharmacophores @ Prestwick

« Medicinal chemists want to understand what is
driving the affinity - do not like a black box !!!

« Quickly elucidate ligand-target interactions

- Pharmacophores are versatile tools for
—ldentification of starting points by virtual screening
— Understanding structure-activity relationships

— Supporting the molecular design process
 Achieving better target selectivity

 Avoiding unwanted off-target effects

T. Langer, Strasbourg, 2012-06-28 GBESTWI?I.( CHEMICAL
fmMmacircCiInag < """"‘"Y < ‘il"’)(ll\)’



Our Initial Aim, 15 Years Ago ...

 Create a database of pharmacophore models for
activity profiling of small organic molecules

« Need for a method for rapid and reliable model
generation & validation

 Developed software prototypes @ IBK university

» Creation of spin-off company Inte:Ligand

w .
T. Langer, Strasbourg, 2012-06-28 mte:llga nd
Your partner for in-silico drug discovery



EuroQSAR 2004: LigandScout 1.0

» Detect ligand and clean-up the binding site in the protein
(all amino acids within 7A default distance from the ligand)

* Interpret hybridization status and bond types in the ligand

o Perform chemical feature recognition for the ligand
(H-bond donor, H-bond acceptor, positive ionizable, negative
ionizable, hydrophobic, aromatic ring, metal ion coordination)

 Search for corresponding chemical features of the protein

» Add interaction features to the model only if a corresponding
feature pair is found in the complex

» Add excluded volume spheres for opposite hydrophobic
features

T. Langer, Strasbourg, 2012-06-28 G. Wolber, T. Langer: J. Chem. Inf. Model. 45, 160-169 (2005)



EuroQSAR 2010: LigandScout 3.0
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Bridging Gaps

Structure-based Ligand-based
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Example: CDK2 DUD Set
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Example: CDK2 DUD Set

« ROC Curve Analysis

—58 actives / 2015 decoys

—188 hits

—Enrichment Factor: 28.6
é 188 hits . .

| (first 1% of screening)

20.0% 40.0%  60.0% 80.0% 100.0%

1 -~ Specificity (% selected decoys)

T. Langer, Strasbourg, 2012-06-28



Comparison - Structure & Ligand Based
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Shared features between both worlds
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Pharmacophore Models for Rapid VS

- The alignment problem
—Which type of matching ?
—How to define matching pairs of features ?
—How to define a fast and accurate scoring function ?

» The solution
—Pharmacophore elements-based matching
—Adaptation of the hungarian matcher algorithm

T. Langer, Strasbourg, 2012-06-28



Alignment By Pharmacophore Points
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T. Langer, Strasbourg, 2012-06-28 Bohm, Klebe, Kubinyi: Wirkstoffdesign (1999) p. 320f



Alignment By Pharmacophore Points

T. Langer, Strasbourg, 2012-06-28



First Achievements

 Universal method for accurate feature-based
pharmacophore model generation

- New pattern recognition-based alignment

- Highly selective models will retrieve low
number of false positives / false negatives

» High enrichment factor can be obtained

- Speed allows for implementation of massive
parallel screening

T. Langer, Strasbourg, 2012-06-28 |nte :li 18d nd

Your partne silico drug disc



Use Cases / Success Stories

« Finding starting points for medicinal chemistry
program: Hit identification by virtual screening

« Medicinal chemistry decision support in hit to
lead and lead optimization

e Activity profile estimation by parallel screening

« Target fishing for natural products

T. Langer, Strasbourg, 2012-06-28



Identification of Starting Points

* Real life example
» Target with known 3D structure (x-ray)
« Pharmacophore derived in direct approach

e Virtual library built ab-initio using a fragment-
based approach (9ok compounds)

e Screening delivers reasonable small number of
hits (0.05% range)

« Synthesis and biological testing

T. Langer, Strasbourg, 2012-06-28 G',:" ESTW',C'.( CH'YEMK?A';



Time Line & Results

Months 1 2 3 4 5 6 7

PhD 1

PhD 2

Technician
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T. Langer, Strasbourg, 2012-06-28 GIBESTWICK CHEMICAL
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Ligand Profiling: Proof of Principle

e First pharmacophore-based ligand profiling

« Case study: Five targets relevant in viral diseases

- 10 pharmacophore models per target

« Investigation on 100 antiviral compounds

- 20 compounds per target

 Target profile estimation by parallel screening

T. Langer, Strasbourg, 2012-06-28



Ligand-directed Analysis
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Pharmacophore-directed Analysis

HIV protease HIV RT Influenza NA HRV coat protein HCV polymerase 123

B e T B it L L T e e e L L T o e ]

HIV protease

HIV RT
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Influenza NA
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HRV coat

protein

HCV

polymerase e

raIAries
.

123

Model with low selectivity:

70% of actives (HIV RT), but 75% from one specific
false target (HRV coat protein)

40% active and 60% inactive compounds in hit list

Model with high selectivity:
95% of actives (HRV coat protein),
0% inactive compounds in hit list

T. Langer, Strasbourg, 2012-06-28 T. Steindl et al., J. Chem. Inf. Model., 46, 2146-2157 (2006)



Target Fishing With Natural Products

S*/INM v B
s* 4% 1% 10%

S/NM
8%

ND
28%

Small molecule new chemical entities organized by source/year (N =974).
David J. Newman, and Gordon M. Cragg, J. Nat. Prod., 2007, 70, 461-477

T. Langer, Strasbourg, 2012-06-28



Target Fishing With Natural Products
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Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer

protein

Kristina Duwensee?, Stefan Schwaiger®, Ivan Tancevski®, Kathrin Eller¢, Miranda van Eck9,
Patrick Markt®, Tobias Linder®, Ursula Stanzl®, Andreas Ritsch?, Josef R. Patsch®, Daniela Schuster®,
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Keywords,

Cholesterol metabolism
High-density lipoproteins
Cholesteryl ester transfer protesn

ABSTRACT

Objective: Cholesteryl ester transfer protein (CETP) plays a central role in the metabolism of high-density
lipoprotein particles. Therefore, we searched for new drugs that bind to CETP and modulate its activity.
Methods: A preliminary pharmacophore-based paraliel screening approach indicated that leoligin, amajor
lignan of Edelweiss (Leontopodium alpinum Cass.), might bind to CETP. Therefore we incubated Icoligin
ex vivo at different concentrations with human (n«20) and rabbit plasma (n=3), and quantified the
CETP activity by fluorimeter. Probucol served as positive control. Furthermore, we dosed CETP transgenic
mice with leoligin and vehicle control by oral gavage for 7 days and measured subsequently the in vivo
modulation of CETP activity (n=5 for each treatment group).
Results: In vitro, leoligin significantly activated CETP in human plasma at 100 pM (p~0,023) and I nM
(p=0.042), respectively, whereas leoligin concentrations of 1 mM inhibited CETP activity (p=0.012). The
observed CETP activation was not species specific, as it was similar in magnitude for rabbit CETP, In vivo,
there was also a higher CETP activity after oral dosage of CETP transgenic mice with leoligin (p=0.015).
There was no short-term toxicity apparent in mice treated with leoligin,
Conclusion: CETP agonism by leoligin appears to be safe and effective, and may prove to be a useful
modality to alter high-density lipoprotein metabolism,

© 2011 Elsevier Ireland Ltd. All rights reserved.

T. Langer, Strasbourg, 2012-06-28

K. Duwensee, et al.,
Atherosclerosis (2011) 219, 109-115



Pharmacophore Profiling of Leoligin

PHE265A

LEU206A

Leoligin matches the pharmacophore model encoding for the

interaction site of cholesteryl ester transfer protein (CETP)

K. Duwensee, et al.,
Atherosclerosis (2011) 219, 109-115

T. Langer, Strasbourg, 2012-06-28



Biological Testing
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Leoligin enhances the activity
of human and rabbit CETP in
vitro when applied in
subnanomolar concentration
(control Probucol)

T. Langer, Strasbourg, 2012-06-28
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transgenic mice, leoligin
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K. Duwensee, et al.,

Atherosclerosis (2011) 219, 109-115



Summary ...

First published examples of applications of extensive
parallel screening approach based on pharmacophores

 Multitude of pharmacophore models (up to several thousand ...)

» Large set of molecules (up to several million ...)

Results indicate

« Correct assignment of selectivity in most cases

« Independent of search algorithms used

Fast, scalable in silico activity profiling is now possible !

T. Langer, Strasbourg, 2012-06-28



Recent Success Stories

T. Langer, Strasbourg, 2012-06-28 GRESTWICK CHEMICAL

A medicinal chemistry company



Protein Protein Interfaces

Available online at www.sciencedirect.com

».” ScienceDirect

Small molecular weight protein-protein interaction
antagonists —an insurmountable challenge?
Alexander DGmling

Several years ago small molecular weight protein-protein However, more and more scientists recognize the cigcn—
interaction (PPI) antagonists were considered as the Mount value of protein interaction antagonization. The growing
Everest in drug discovery and generally regarded as too difficult importance of PPIs as oncology targets was underlined by
to be targeted. However, recent industrial and academic many talks and posters at the recent AACR-EORTC
research has produced a great number of new antagonists meeting in San Francisco. Covered examples included
of diverse PPIs. This review structurally analyses small p33/mdm2/mdm4, Bcl family interactions, IAPs, c-Myc,
molecular weight PPl antagonists and their particular SPRY2-Cb, ERCC1/XPF, FAK-protein interactions,
targets as well as tools to discover such compounds. orphan nuclear recepror COUP-TFI, Smad4-SKI, c-
Besides general discussions there will be a focus on Src-SH3, Smad2/3/4, Rb/Raf-1, SDF-1/CXCR4, rtissue
the PPl p53/mdma2. factor/FVIla, HOX/PBX and tubulin. In the following

the small molecule antagonists of the p33/mdm2 inter-
Address action are discussed, as an example of a successfully
Departments of Pharmaceutical Sciences and Chemistry, University of targeted PPL.

Pittsburgh, United States

Comresponding author: Démling, Alexander {asc30@pitt.edu) The p53/mdm2 case

Céprrmdy o

T. Langer, Strasbourg, 2012-06-28 Domling, A. Curr. Opin. Chem. Biol. 2008, 12, 281-291.



Described p53/mdma2 Inhibitors

A~

Domling, A. Curr. Opin. Chem. Biol. 2008, 12, 281-291.

T. Langer, Strasbourg, 2012-06-28
RESTWICK CHEMICAL
A

medicinal chemistry company



Structure-based Pharmacophore
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Comparison with JNJ-26854165
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Conclusions

« Smart medicinal chemistry, supported by cutting-
edge chemoinformatics methods is a straight-
forward and rapid method for the generation of
promising new lead compounds

« Assessment of risks in later development stages
becomes possible on a rational & transparent basis

« Translation into an academic research environment
is feasible

T. Langer, Strasbourg, 2012-06-28



Thank you for your attention

NEVER GIVE UP!!!
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