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Background

In silico methods for toxicity prediction
- QSAR
— Machine learning methods

- Expert systems

Use of emerging pattern mining to assist knowledge-
workers in building the knowledge-base of an expert
system



Toxicity prediction

e Avoid late stage failures in drug discovery

e Large numbers of compounds available early in
drug discovery and not possible to test all

e In-silico prediction: low cost high-throughput
process

— Can be used to prioritise compounds
— Highlight potential problems with compounds

— Allows predictions to be made on virtual compounds
as well as real compounds

— Lead to a reduction in in-vivo tests



Toxicity prediction

Multiple different endpoints exist

The same endpoint can arise through multiple
mechanisms

For many endpoints, such as carcinogenicity, the
mechanisms are poorly understood

Lack of availability of reliable data



Statistical methods: QSAR

Statistics

Y

Molecular Descriptors:
Topological
Thermodynamic
Physical

Chemical features

Activity = f (Molecular
Descriptors)

Training set is used to develop a model of activity



Molecular descriptors

Many thousands of descriptors

Physicochemical properties
— ClogP, MW, MR, PGA, .....

2D descriptors
- based on the connection table
- unweighted (MACCS eg count of the number of acids)
- deterministic

3D descriptors
- based on geometric patterns of features
- partially subjective

Handbook of Molecular Descriptors
Roberto Todeschini, Viviana Consonni, Wiley-VCH, 2009



Linear Regression

o« Requirements

— Congeneric series of compounds as training set

— High degree of similarity in structures

= y
y=mx+c A
y is the dependent variable
(activity)

x is the independent variable eg a
molecular descriptor

Aim is to find m and ¢ to minimise

differences in predicted values and
actual values




Extrapolation?

Choose the training set with A
care Y

The model explains the data it
was trained on (r?)

Validate the model (g2 pred r?) o

Can only reliably predict for %
compounds that are similar to

Vv

those in the training set

Local vs global models

Muster W, Breidenbach B, Fischer H, Kirchner S, Mueller L, Pahler A. Computational
toxicology in drug development. Drug Discovery Today 13, 2008, 303-310



Machine learning methods

Training set is used to develop a model of activty
Can be used with more heterogeneous datasets

Qualitative or quantitative predictions are
possible

Many different approaches

— Substructural analysis

- Recursive partitioning

- Support vector machines

- K nearest neighbours

— Neural networks



Recursive Partitioning

Classification approach that constructs a decision tree
from qualitative data

— active/inactive, soluble/insoluble, toxic/non-toxic
|ldentification of a rule that gives the best statistical split
into classes, with the lowest rate of misclassification

- Example drug|non-drug: MW < 500|MW > 500

Repeat on each set coming from the previous split until
no more reasonable splits can be found

Can generate good models but with poor predictive
power if used without care
- Use leave-many-out strategies to validate

- Easy to interpret/drive what-next decisions

Hamman F, Gutmann H. Voigt N, Helma C, Drewe J. Prediction of adverse drug
reactions using decision tree modeling. CGlin Pharmacol Ther, 2010, 88, 52-59.
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Test compounds are dropped through the tree. Prediction depends
on whether they fall into "active” or inactive nodes”



Support Vector Machines (SVMs)
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SVM transforms data into a, usually higher dimensional, space
where the actives and inactives are separated by a hyperplane



Applying an SVM model

SVM finds a transformation for

® + ® the training set that separates
* ® actives from inactives,
O % ® SVM * ° S focussing on the support
* - * * vectors near the borders of

L the two classes

Predicted Inactive

3 AL A SVM performs same
A A A transformation on untested
A AA SVM 1A A A compounds
A A A A A Compounds can be ranked
= by distance from the
Predicted Active hyperplane

Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A. Cheminformatics
analysis of assertions mined from literature that describe dug-induced liver injury in
different species. Chem Res Toxicol 2010, 23, 171-183



Nearest neighbour methods

Select the k most similar compounds in training set to
query compound

Use the toxicological activities these to predict the
activity of the query

Lazar

- lazy learning method — training compounds are selected at the
time of processing a query compound

- Allows models to be updated as new data become available

- Includes models for mutagenicity and rodent carcinogenicity

Helma C. Lazy structure-activity relationships (lazar) for the prediction of rodent
carcinogenicity and Salmonella mutagenicity. Mol Divers 2006, 10, 147-158



Expert systems

Toxicological knowledge of human experts encoded as
rules

Can provide predictions about multiple mechanisms

Include information relating to mechanism of action

Derek for Nexus

Structural alerts

Reasoning model used to weigh up multiple arguments for and
against toxicity eg using physiochemical properties, relationship
between endpoints

Level of confidence in prediction is provided
o Eg improbable, plausible, certain

Literature references are provided



Structural alerts

o Alerts: collection of substructures (toxicophores) that
are associated with a toxic effect
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Derek Nexus (www.lhasalimited.org)
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[Pearlstein et al, Cavalli et al, Ekins et al].

This alert describes a structure-based pharmacophore developed primarily from compounds that have been -
reported to be moderate or strong inhibiters of the HERG (human ether-a-go-go-related gene) potassium channel E

A number of pharmaceutical drugs have been shown to block the HERG channel in whole-cell patch clamp
electrophysiclogy assays in a variety of cell types. Examples include norastemizeole [Zhou et al], chleroquine
[Trachert et al], imipramine [Teschemacher et al], amitriptyline [Tie] and (R}-tolteredine [Kang et al].

HERG encodes for the alpha-subunit of a potassium channel which is thought to carry the rapid component of the
delayed rectifier current IKr in the heart [Mitcheson et al, Tristani-Firouzi and Sanguinetti]. Blocking of this channel =~
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Expert systems predict positives only - lack of prediction does not
mean non-toxic!



Expert systems

e Process of knowledge discovery can be very time
consuming

e Requires detailed analysis of the literature by
domain experts



Towards automation of
knowledge discovery

Aim is provide an automated tool to support the process of
knowledge discovery through data mining

Emerging pattern mining techniques used to identify substructural
features that could be associated with toxicity

The substructural features identified require validation through the
literature by knowledge-base workers

Collaborative project between University of Sheffield and Lhasa
Limited



Emerging Patterns

o Emerging patterns are sets of properties (descriptors)
that occur more often in one class compared to another

Molecules a b & d e Molecules a b o d e
1 X X X X X 7 X X X
2 X X X X 8 X X X
3 X X X 9 X X X
4 X X X X 10 X X X
5 X X X X 11 X X X
6 X X X 12 X

o {b, e}is an emerging pattern supported by active
molecules [1, 4, 5] and inactive molecule [9]

e« Emphasis is on finding combinations of properties

tDong, G.; Li, J. In Efficient mining of emerging patterns: discovering trends and differences, The Fifth
International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 1999;
Association for Computing Machinery Press: San Diego, CA, USA, 1999; pp 43-52.



Jumping Emerging Patterns
(JEPs)

o JEPs are patterns of properties that occur in one class
only compared to another

Molecules a b C Molecules a b d
1 X X X X X 7 X X X
2 X X X X - X X X
3 X X X 9 X X X
4 X X X X 10 X X X
5 X X X X || 11 | x X X X
6 X X X 12 X X

o {a, b}isaJEP supported by actives [1, 2, 3, 4, 5] and no
inactives

tDong, G.; Li, J. In Efficient mining of emerging patterns: discovering trends and differences, The Fifth
International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 1999;
Association for Computing Machinery Press: San Diego, CA, USA, 1999; pp 43-52.



JEP mining by enumeration

All patterns Occurrence All patterns continued Occurrence
b c Actives | Inactives a b c d e Actives | Inactives
X 5 3 X X X 3 0
X 6 2 X X X 3 0
X 5 4 X X 2 2
4 o X X X 2 2
3 4 X X 2 1
X X 5 0 X X X 3 0
X X 5 3 X X X 1 0
X 3 2 X X 2 1
X 3 1 X X X 1 2
X 5 0 X X X 2 0
4 2 X X X X 2 0
3 1 X X X X 2 0
X 3 3 X X X X 1 1
X 2 2 X X X X 1 0
2 3 X X X X X 1 0
X X X 4 0

More efficient algorithms are available!




Applications of EPs in
Chemoinformatics

o Auer & Bajorath

- Physicochemical property ranges mapped to a binary bit string

Auer, J.; Bajorath, J. Emerging chemical patterns: a new methodology for molecular

classification and compound selection. Journal of Chemical Information and Modeling 2006,
46, (6), 2502-2514.

e Lozano et al.

- "Jumping fragments” in toxicity dataset

- Subgraphs are enumerated in actives and searched for in
inactives

Lozano, S.; Poezevara, G.; Halm-Lemeille, M. P.; Lescot-Fontaine, E.; Lepailleur, A.; Bissell-Siders, R.;
Crémilleux, B.; Rault, S.; Cuissart, B.; Bureau, R. Introduction of jumping fragments in combination

with QSARs for the assessment of classification in ecotoxicology. . Journal of Chemical Information
and Modeling, 2010, 50, 1330-1339.



Mining JEPs 1n toxicity data

o Aim is to identify patterns (combinations of structural
descriptors) that are present in toxic molecules but
absent from non-toxic molecules

o Use the patterns to suggest substructural features to

knowledge-base workers for validation through the
literature

o Applied to small structural fragments
- Atom pairs, circular fps, etc
- Allows combinations of descriptors to be identified

- Potential toxicphores can be constructed from the descriptors

— Allows hierarchical relationships to be built that represent more
detailed (but lower supported) substructural features



Mining JEPs 1n toxicity data

Given a dataset of toxic (active) and non-toxic (inactive) compounds

i >
Fingerprints Horizon-miner Fingerprints

of actives algorithm™ of inactives
& 4

Border-differential
algorithm#*

l

Active jumping-
emerging patterns

The set of toxic molecules that support a JEP are formed around a
common sets of bits which describe a potential toxicophore

Form of supervised clustering

tLi, J.; Dong, G.; Ramamohanarao, K., Making use of the most expressive jumping emerging patterns for
classification. Knowledge and Information Systems 2001, 3, (2), 131-145.

tDong, G.; Li, J., Mining border descriptions of emerging patterns from dataset pairs. Knowledge and
Information Systems 2005, 8, (2), 178-202.



Hierarchies of JEPs

[123456]
R1 [12345] o™ {b}
{ab}
v : v
A [123] B [125] C [45]
{abc} {abd} {abe}
D [12] D [1‘2]
{abcd} {abcd}

—|R2 [12346]
{bc}
. .
A [123] X [126]
{abc} {bcd}
D [12] D [12]
{abcd} {abcd}




Hierarchies of JEPs

Fingerprints Pattern mining Fingerprints
of actives method of inactives

Active Jumping-
emerging patterns

The JEPs (and the

I | h The hierarchies
molecules that support Supporthierarchy represent families of
them) can be arranged formation structures
into hierarchies i
Higher support More generic patterns

Lower support More specific patterns



Support hierarchies
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Exploring the hierarchies allows relationships between
structures to be analysed



Support hierarchies

Fingerprints

Fingerprints

of actives

More structural
families result in more

hierarchies
® !\. ’ ® c‘%\. ' !

of inactives

Similar structural
families (similar
patterns) and noisy data
can result overlapping
hierarchies



JEP mining algorithm

Generate a set of binary fingerprints using the active compounds in
the dataset and use these to form fingerprints for both the actives
and inactives

Apply the Horizon-Miner algorithm to extract the maximal patterns
for both the actives and the inactives using the binary fingerprints

Apply the border-differential algorithm to mine the set of all possible
minimal JEPs in the actives compared to the inactives

Reduce the set of minimal JEPs to those that occur in distinct sets of
actives

|dentify relationships between the supporting actives of minimal
JEPs, and arrange them into hierarchies

Extract the maximum set of commonly occurring descriptors from
the set of actives that support each minimal JEP, to form the largest
and most descriptive representation of their common structural
features.



Example: Ames mutagenicity

e« Endpoint

- Known to be caused by a diverse set of small activating
substructures

o Dataset

- Hansen' ames mutagenicity dataset was encoded as fingerprints
using an in-house naive fragmentation process

- i.e. breaking all C-C, C-H and non-heterocyclic bonds

o Interpretable substructure fingerprints

fHansen, K. Mika, S.; Schroeter, T.; Sutter, A.; Laak, A.; Steger-Hartmann, T.; Heinrich, N.; Miiller, K. R.;
Benchmark data set for in silico prediction of Ames mutagenicity. Journal of Chemical Information and
Modeling 2009, 49, (9), 2077.



Ames mutagenicity

Root patterns with highest support are

the most interesting
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Ames mutagenicity
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Found substructures that closely match existing alerts in Derek Nexus



Example: Oestrogenicity

e Endpoint

- Known to result from a small number of loosely
defined toxicophores

o The oestrogenicity dataset™ was encoded as
circular fingerprints A

*The FDA National Center for Toxicological Research — Estrogen Receptor Binding (NCTRER) database
obtained from the Distributed Structure-Searchable (DSSTox) network, hosted by the US EPA.



Oestrogenicity

Oestradiol or analogue

o



Oestrogenicity

P

o =

H,C

OH

QUQUUQQUU&J

e

Alkyl phenol or precursor

R1 = alkyl group of at least 4 carbon
atoms in length

R2.= H.F

R3 = OH,/0C0O, OC



Oestrogenicity

Found substructures that are not known to Derek Nexus and
which may be worth further investigation



Conclusions: JEPs

The aim of the JEP mining described here is to assist
knowledge-based workers in discovering new alerts to
augment the knowledge-base

Substructural features have been identified that are
similar to known toxicophores

Substructural features not already present in the
knowledge-base have also been identified

JEP mining could be used predictively (not explored
here)

Currently focused on EP mining

- Improved handling of noisy data

- Preliminary work has shown that a more manageable number of
patterns is found
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