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Data Explosion in Chemistry
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Drug Discovery & Development Process

Discovery >

Disease Identify a protein Find a molecule Preclinical testing

involved in disease  effective against
(target) the target

Human clinical Approval by

. . Drug on the market
trials regulatory authorities

Development —
The whole process takes 10 — 15 years and costs ~1 billion USD !
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Cheminformatics in the Drug Discovery

________________________________________________________________

Lead optimization

— B

— i
Chemical
Genomics |
BiOinformatics ............................. E: Cheminformatics E
Genomics Molecular databases QSAR
Proteomics . | Combinatorial chemistry In silico ADME
Systems biology . HTS screening support Toxicity alerting !
Pathway analysis , 1+ Data mining Bioisosteric design
. 1 Virtual screening
. | Property Calculation
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Cheminformatics in the Pharma Industry

4

“applied” cheminformatics — ultimate goal = design of new
drugs

processing of very large data sets - millions of structures +
related information (screening results, experimental and
calculated properties, spectra, availability, synthesis
information ...)

high requirements on methodology validation

direct feedback by experiment (chemistry, biology,
experimental properties)

large number of users, operation in a complex global
environment

security / confidentiality issues
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Typical Cheminformatics Activities
at Pharmaceutical Industry

Molecular databases

Large-scale data analysis, knowledge discovery
Calculation of molecular properties / descriptors
Estimation of ADME characteristics, toxicity alerting
Navigation in chemistry space

Virtual screening

Support for HTS — hitlist triaging

© N o a &~ W0 bh =

Support for combinatorial chemistry and molecule
optimization
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Novartis Web-based
Cheminformatics System

Easy to use “do it yourself” cheminformatics and molecular
processing tools for synthetic chemists, available on the company
intranet.

first tools introduced in 1995

currently more than 20 tools available

open, modular, platform and vendor independent architecture
integration with other scientific applications

more than 1’800 registered users

used from all Novartis research sites (Tsukuba, Wien, Basel,
Horsham, Cambridge, San Diego, Singapore)

» over 5’000 jobs submitted each month
» 20 million molecules processed per year

i Web-based cheminformatics tools deployed via corporate Intranets,
| P. Ertl, P. Selzer, J. Miihibacher, BIOSILICO 2, 201, 2004
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1. Molecular Databases

Databases in pharmaceutical companies :

)
<
<
<

millions of structures + related data

normalization of chemical structures (nitro, tautomers ...)
all data need to be validated and checked for correctness
interface must support user-friendly data mining and
visualisation of large datasets

responsiveness - substructure and similarity searches
within seconds

chemically interpretable results - pharmacophore searches,
pharmacophore fingerprints

Current trends :

<
<

data warehouses
chemistry cartridges
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Novartis Data Warehouse - Avalon

In-house database written in Java, containing all in-house and
many reference structures, results of biological screens and
many additional data. Allows efficient data-mining, reporting
and SAR analysis.
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2. Large-Scale Data Mining

Data Mining = Knowledge Discovery in Large Databases

analyzing large amount of data to obtain useful information (in
a form of pattern, rule, cluster ...) leading to understanding of
relationships within data and correct decisions

Data mining techniques used in cheminformatics:
» classical QSAR, regression analysis

» Bayesian statistics

» clustering

» neural networks

» decision trees

> ...

Cheminformatics in Modern Drug Discovery Process (’ NOVARTIS
Peter Ertl 9/37 NMOVARTIS INSTITUTES



Self-Organizing Neural Networks

Self-organizing (Kohonen) NN is a mathematical tool used to
simplify complex multidimensional data by reducing their
dimensionality, allowing thus visual processing.

Processed data are expressed as a 2-dimensional map.
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Classification of GPCR Ligands

Identification of properties and structural features typical
for GPCR ligands by self-organizing neural networks.

‘2N Neural Network Analysis - Microsoft Internet Explorer provided by Novartis ['._|[E|§|
r
n

File Edit View Favorites Tools Help

Adrenoreceptor ligands e

SNy
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i Organizing Neural Networks
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Download dataset as SMILES table or ZDF file

' P. Selzer, P. Ertl

e )| | QSAR & Comb. Sci. 24, 270, 2005 !

% Local intranet
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Calculation of Molecular Properties

» properties need to be calculated for datasets containing
~10%molecules (in-house data, virtual libraries, catalogues)

» calculations need to be fast

» descriptors should be interpretable, physically meaningful

» properties should cover all important types of protein-
ligand interactions

Currently the most useful global properties are m‘fm
n 0

|OgP, MW, PSA (polar surface area), HBD and Molecular

Descriptors

HBA counts, number of rotatable bonds.
Many others are used, but they are less
interpretable + highly intercorrelated.

R. Todeschini, V. Consonni,
Handbook of Molecular Descriptors, Wiley, 2000
Lists >8000 various molecular descriptors
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Novartis /n Silico Profiling

£—.'| InSilico Profiling - Microsoft Internet Explorer provided by Movartis
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4. ADME-related Properties

Properties related directly to the biological effect of drugs and
their fate in organism, and therefore frequently needed in
medicinal chemistry.

» water solubility
» pKa - acidity / basicity estimation
» drug transport characteristics
» intestinal absorption
» blood-brain barrier penetration
» Caco-2 permeability
» plasma-protein binding
» efflux
» toxic and metabolic characteristics

Challenges:

» these properties describe complex physical and biological
processes

» not enough experimental data to build reliable models
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hydrophobic [l B hydrophilic

All molecules have the same logP ~1.5, but different 3D MLP pattern.
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5. Navigation in Chemistry Space

Size of the known chemistry space:

» 35 million molecules registered in CAS

» 19 million compounds in PubChem

» 36 million entries in the Chemical Structure Lookup service
» ~500,000 molecules with (known) biological activity

And VERY large number of possible (virtual) molecules

Chemistry space is multidimensional; to process / understand
it, we need to characterize it and to reduce its dimensionality.

Chemistry space may be characterised by:
» physicochemical global molecular properties (logP, PSA ...)
» substructural features (fragments, fingerprints, pharmacophores ...)
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Molecular Property Space
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Structural Diversity Space
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The Scaffold Tree

Separation of molecule universe into smaller parts — clusters:

Clustering Rule-based

» classification derived from » explicitly formulated rules
unsupervised machine- encode “expert knowledge”
learning » class assignment is derived

» information of complete for each structure
dataset is required for independently - scales
classification linearly with number of

» no incremental updates molecules in dataset
possible » incremental updates possible

» n? or n.log(n) time scaling
» not easy interpretable

v

better perceived by chemists
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The Molecular Framework and I1ts
Generalizations
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The Scaffold Tree — Basic Algorithm

» retain the molecular framework as classification element

» exocyclic and “exolinker” double bonds are part of the molecular
framework

» instead removing atom & bond type and ring size information
prune less important rings one by one

» use prioritization rules to decide which ring to remove first

» use small, generic set of rules, no lookup “dictionary”

Q

0 NH

Ol0) — [0 — IO — ©
o 5 QO — Q

______________________________________________________________________________________________________________________________

The Scaffold Tree — Visualization of the Scaffold Universe by Hierarchical Scaffold Classification
A. Schuffenhauer, P. Ertl et al. J. Chem. Inf. Model., 47, 47, 2007

_______________________________________________________________________________________________________________________________
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Classification of Diazepinenones

(rule 3)

\ \ o
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Scaffold Tree Example for HTS results

PubChem Pyruvate Kinase Data Set
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6. Virtual Screening

Selection of molecules having the highest probability to
be active and to be developed to successful drugs from a
large collection of screening samples or virtual molecules.

In-house company archives contain 2-5 million molecules
(in house synthesis, acquisitions, mergers, combichem
libraries).

20-30 million screening samples available commercially —

Selection criteria:

» reliable properties (solubility, stability,
absence of too reactive fragments) - drug-likeness
» no toxicity / adverse effects
» diversity / novelty
» target focus
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Virtual Screening Workflow

No information
about target
~ 10% structures / h

3D pharmacophore
known
~104-10%/h

Receptor known
~103-10%/h

Cleaning the data - neutralizing, removing
counterions, smaller parts, duplicates

7

Removal of “junk” — uninteresting,

organometallic, toxic, reactive, unstable ...

7

Bioavailability screen - PSA, Rule of 5 ...

{

Screen based on the active substructures
| Bayesian methods

{

3D pharmacophore search

U

Virtual receptor screening / docking

Cheminformatics in Modern Drug Discovery Process

Peter Ertl

26/37

Molecular
modelling

'y NOVARTIS
.:QE'I".I'IITIII'\I?"\-‘-»]II\.IL Ii\



Learning from the Nature

Natural products (NPs) have been optimized in a several billion
years long natural selection process for optimal interaction

with biomolecules.

&\g. NH‘ N ‘ . d
,_,, \
@ np 3

I\
%goa

NP molecules are
therefore an excel-
lent source of
substructures for

. the design of new
drugs.

““““““““““““““““““““““

i Charting biologically relevant
i chemical space: A structural
. classification of natural

i products (SCONP)

\
] N
(‘ 1 jn611 @ Hnsb

N

i M.A. Koch, A. Schuffenhauer,
M. Scheck, S. Wetzel, M.

7 ] i Casaulta, A. Odermatt, P. Ertl
T ) | ' and H. Waldmann

' PNAS 102, 17272-17277, 2005.
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/7. High-Throughput Screening - HTS

Screening of >1 million molecules on many targets routinely
in an automatic way.

Challenges for cheminformatics are

» to process screening results and identify hits, worth of further
follow-up - lead identification, hitlist triaging

» support of new types of screening (high content screening,
pathways)
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HTS Workflow

» run HTS, collect the data
» identify “active” compounds (based on % inhibition cut-off)

» organize actives into groups (clustering, maximal
substructure analysis, common scaffold)

» visualize clusters of actives
» analyze inactives to identify those related to active series

» selected actives (primary hits) are further confirmed in
dose/response assays to get EC., values, secondary assays
and chemical validation to get validated hits

» use machine learning techniques to develop SAR models for
validated hits
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8. Combinatorial Chemistry
Molecule Design

» synthesis of compounds as ensembles (libraries)
» technology was introduced in the early 90s

» advantages : speed & economics - combination of scaffolds
and Rgroups allows creation of very large number of
molecules quickly in automatic manner

Cheminformatics issues — library design:

» how large should be combichem libraries?

» which Rgroups and scaffolds to combine?

» diverse (DOS) libraries or targeted libraries?

» how to fill the “holes” in the chemistry space?
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Early CombiChem

Results of early combichem were quite a disappointment.

Early combichem libraries were:

» very large (100°000s molecules)

» molecules were large, hydrophobic, not diverse
» low hit rates

This led to:

» introduction of “drug likeness” — design of compounds with good
physicochemical properties

» targeted libraries - design of smaller, more focused libraries when
information about target is available (i.e. kinase libraries)

» use diverse libraries covering broadly chemistry space when little
information about target is available — “primary screening”
libraries
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Library Design Strategies

Two basic design strategies:

» reactant-based — building blocks are selected based only on their
properties not considering properties of products

» product-based — selection of monomers based on the properties of
final products. This approach is much more computationally
demanding but is more effective

Trends in modern CombiChem:

» smaller (1000s molecules), targeted libraries

» multiobjective optimization (Pareto optimization) — optimize at the
same time properties, coverage of chemical space, price ...

» information from pharmacophore search or docking used in design
» natural product-like libraries
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Database of Organic Substituents

850°000 substituents extracted from organic molecules and
characterised by their calculated hydrophobicity (Hansch rr
constant), donating/accepting power (Hammett o) and size.

hydrophobicity

electronic
prop.

size

logP

substituent “property cube” logP / o plot for 850’000 Rgroups

___________________________________________________________________________________________________________________
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Bioisosteric Design

Bioisosteric replacement - replacement of a functional group
or spacer in a bioactive molecule by another functionality
having similar size and physicochemical properties.

Bioisosteric transformation are used to :

» optimise properties of drug candidates (activity, selectivity,
transport characteristics)

» remove side effects (toxicity)
» design molecules easier to synthesise
» avoid patented structural features
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Substituent Bioisosteric Design

physicochemically compatible) with the target

properties

new non-classical bioisosteric analogs.
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Cheminformatics - Future Trends

» global databases, integration of multiple data sources,
public (Wikipedia-like) curation

» use of large chemogenomics databases (WOMBAT, GVK ...)

» text and image mining, automatic extraction of useful
information from publications and patents

» integration with bioinformatics, with focus on ligand protein
interactions and pharmacophores

» disappearing border between cheminformatics and
computational chemistry

» in technology area — modularization, web services

» open source collaborative software development

Cheminformatics in Modern Drug Discovery Process (T NOVARTIS
Peter Ertl 36/37 NOVARTIS INSTITUTES



	Cheminformatics �and its Role in the Modern �Drug Discovery Process
	Data Explosion in Chemistry
	Drug Discovery & Development Process
	Cheminformatics in the Drug Discovery
	Cheminformatics in the Pharma Industry
	Typical Cheminformatics Activities�at Pharmaceutical Industry
	Novartis Web-based �Cheminformatics System
	1. Molecular Databases
	Novartis Data Warehouse - Avalon
	2. Large-Scale Data Mining
	Self-Organizing Neural Networks
	Classification of GPCR Ligands
	Calculation of Molecular Properties
	Novartis In Silico Profiling
	4. ADME-related Properties
	3D Hydrophobicity
	Novartis In Silico ToxCheck
	5. Navigation in Chemistry Space
	Molecular Property Space
	Structural Diversity Space
	The Scaffold Tree
	The Molecular Framework and its Generalizations
	The Scaffold Tree – Basic Algorithm
	Classification of Diazepinenones
	Scaffold Tree Example for HTS results�PubChem Pyruvate Kinase Data Set
	6. Virtual Screening
	Virtual Screening Workflow
	Learning from the Nature
	7. High-Throughput Screening - HTS
	HTS Workflow
	8. Combinatorial Chemistry�Molecule Design
	Early CombiChem
	Library Design Strategies
	Database of Organic Substituents
	Bioisosteric Design
	Substituent Bioisosteric Design
	Cheminformatics – Future Trends

