Postgraduate Education Programmes in Chemoinformatics

Peter Willett, University of Sheffield

Presented at Obernai, 30th May 2006
Overview

- The need for formal education programmes
- Overview of three such programmes
 - Organisation
 - Taught components
 - Critical success factors
- Conclusions
From chemical information to chemoinformatics

- Chemical information systems available for many years
 - Covered in mainstream chemistry programmes
- Recent prominence of chemoinformatics
 - Huge volumes of data about molecular structures and bioactivities resulting from developments in combichem and HTS
 - Otherinformatics subjects as a result of comparable data explosions
 - Substantially increased employment opportunities
Sources of trained person-power

• Established sources of skilled staff insufficient to meet market needs
 • Limited number of academic institutions with active chemoinformatics research groups
 • Larger number carrying out related research, e.g., chemometrics, crystallography, computational chemistry
 • In-house training of chemists who developed computational interests
• Need for dedicated educational programmes to address this world-wide shortage
Educational programmes: I

- Much current interest at BSc and MSc levels
 - Louis Pasteur University of Strasbourgh
 - Johann Wolfgang Goethe University of Frankfurt
 - University of Massachusetts at Lowell
 - University of Noiada in India
 - Michigan Technical University
Educational programmes: II

• Focus in this presentation on three programmes
 • MSc Chemoinformatics at Sheffield
 • MSc Cheminformatics at Manchester (formerly UMIST)
 • MS Chemical informatics at Indiana
• Rationale for this focus is that I have at least some personal knowledge of all of these
• Commonality of background for the two UK programmes
Funding support: I

• The Engineering and Physical Sciences Research Council (EPSRC) is one of the main research funding agencies in the UK.

• Will consider support for MSc programmes if, and only if, demonstrable and significant industrial need

• Discussions with them and industry 1998-99 led to a call for new Masters Training Packages (MTPs) that included chemoinformatics as one of several priority areas
Funding support: II

- Both Sheffield and Manchester bid, with MTP awards being announced mid-July 2000
 - Funding over 5 years (ca. £500K) to cover (principally) student tuition fees and maintenance costs
 - Expectation that courses would become self-funding at end of period
- Sheffield start in September 2000 and Manchester in September 2001
Sheffield and Manchester courses

- Add informatics skills to existing chemical knowledge (cf some bioinformatics courses)
- The differences in content arise mainly from the different natures of the two departments
 - Stronger chemistry focus in Manchester
 - Stronger informatics focus and industrial involvement in Sheffield
- Common structure
 - Two semesters of taught modules
 - Dissertation project in the summer
Taught modules: Manchester

• Core
 • Applications of cheminformatics, bioinformatics (two modules), chemical information sources, database management and computer programming (Fortran and Perl), molecular simulation (two modules), spectroscopy and crystallography

• Electives
 • Algorithm design, combinatorial chemistry, technology enterprise

• NB some variations in detailed composition at both institutions
Taught modules: Sheffield

• Core
 • Chemoinformatics (two modules), computer programming (Java and Perl, from Computer Science), database design (Oracle), information retrieval, information systems modelling

• Elective
 • Advanced information retrieval, electronic publishing, healthcare information, human-computer interaction, molecular modelling (from Chemistry)
Dissertation

• This runs from ca. mid-June till September
• At Manchester, the dissertation can be carried out internally (the majority) or externally on placement with a company
• At Sheffield, nearly all are carried out externally on placement with a company
 • Initially just in UK but since 2003-04 involvement also from France, Holland, Spain and Switzerland
 • Not necessarily the aim but several have resulted in articles (four thus far, and two to be done)
Industrial placements

- Industry is keen to support placements
 - A key part of the Sheffield proposal
- Four main types of project
 - Development and/or testing of an existing or novel piece of software for some specific application
 - Development of a Web front-end to an existing system or service
 - Comparison of different programs for some specific application
 - Analysis of chemical and/or biological dataset(s)
Continuing professional development: I

- Little industrial interest in distance-learning modules (cf Nottingham molecular modelling)
- Limited take-up of industry secondment and Manchester day release schemes
- But strong interest expressed in a short course, “A Practical Introduction to Chemoinformatics”
 - Sponsored by MGMS and CSA Trust
 - Four days in June
 - Delivered to ~16 delegates from around the world; mostly from industry plus two student bursaries
Continuing professional development: II

- Material from Sheffield MSc programme focusing on drug discovery applications
- Both academic and industrial tutors
- Mixture of lectures, hands-on sessions, and a group problem-solving exercise
- Over-subscribed every year that it has been run (annually since 2001)
Indiana: background

• School of Informatics started in 2000
 • Based on departments at both the Indianapolis and Bloomington campuses

• Wide range of MS/PhD programmes
 • Bioinformatics, health informatics, human-computer interaction, laboratory informatics, music informatics, new media, social informatics etc
 • Chemoinformatics complements these, started in 2001 with 9 MS students to date (cf 72 for bioinformatics and 36 for health informatics); also PhD programme since 2005, with 2 students
Indiana: course content

• Strict pre-requisites
 • If chemistry (or computer science) UG then must cover much of a UG minor in computer science (or chemistry)

• Modules cover
 • Chemical information technology, molecular modelling, programming for chemical informatics
 • Extensive range of elective modules (bioinformatics recommended)
 • Small-scale dissertation project (20% of entire course)
Indiana: distance learning

- Considerable effort to provide distance learning modes, with clear CPD potential
- Initial use of dedicated videoconferencing to cover Bloomington and Indianapolis campuses
 - Too complex when more than two specific locations involved
 - Move to location-independent teaching and learning using Macromedia Breeze
 - Student in California, faculty in Sheffield and Philadelphia etc
Funding support: I

- NIH call in 2005 for applications for Exploratory Centers for Cheminformatics Research: $4M to fund six centers
- Indiana is one of these
 - Chemical Informatics and Cyberinfrastructure Collaboratory (cf e-science in UK); MS programme part of the Collaboratory
 - MIT, North Carolina State, Rensselaer, UMI, UNC
- Forthcoming NIH follow-up call as part of the NIH Roadmap Molecular Libraries Initiative (see http://www.nihroadmap.nih.gov/molecularlibraries)
 - Seeking applications for two Centres for Chemoinformatics Research (each ca. $10M over 5 years)
Funding support: II

- The NIH initiative is in marked contrast to the situation in the UK, where has been difficult to get research-council, as against industrial, funding.
- EPSRC: chemistry panel doesn’t fund computer science and vice versa
- BBSRC: go via bioinformatics route, which has been strongly funded on back of established strengths in structural biology
- Will Roadmap encourage funders in EU?
Lessons that we can draw

• Principally (but not exclusively) based on Sheffield experience
 • Industrial involvement
 Crucial if a meaningful programme is to be delivered
 • Sustainability
 Or the lack thereof
 • Employability
 Excellent prospects for students taking the programme
Industrial involvement: I

- Crucial in EPSRC agreeing to fund this area
 - Appropriately so: chemoinformatics is not a purely academic discipline so need for industrial involvement to ensure relevance
- Visiting lecturers
 - Manchester: database producers and software suppliers
 - Sheffield and Indiana: database producers, software suppliers and ag/pharm companies
- Dissertation projects and supervision (this implying significant funding of the programmes)
Industrial involvement: II

• Dissertation the most important part of a UK MSc (cf certificate and diploma courses)
 • Dissertation intended from the start to be the principal component of the programme, towards which the taught components build
• Correctness of this view, with all three stakeholders benefiting
 • Companies come back year after year
 • Students maximise their employability
 • Academic departments get research links and publications (unexpected benefit)
Sustainability: 1

- The original EPSRC funding was for 5 years
 - Sheffield 2000-2004, Manchester 2001-2005
- Expectation by EPSRC that the programmes would become self-funding
 - Students (both EU and overseas) supporting themselves
 - Marketing of distance-learning modules derived from programme materials
- These expectations were not realistic
Sustainability: II

- In UK, as elsewhere, declining numbers of students studying physical sciences at UG level
 - First physics and now chemistry closures
- Even with the offer of fees, maintenance and placement, only limited numbers of applications for the programme
- Manchester programme now in its final year, with Sheffield expecting 2006-07 as final year
- Move to MRes degrees
Employability of graduates

<table>
<thead>
<tr>
<th>Employment</th>
<th>Manchester 2002-04</th>
<th>Sheffield 2000-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>PhD</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Other</td>
<td>3 patents, 2 teachers</td>
<td>10 IT/informatics</td>
</tr>
<tr>
<td>Unknown</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>
Conclusions

• There is a market here, but it is not one that students realise (at least in the UK thus far)
• Extensive industrial involvement is mandatory for a successful programme
• Possible effect of Roadmap on funding chemoinformatics research
• Acknowledgements
 • Val Gillet and John Holliday (Sheffield)
 • Helen Cooke and Patrick O’Malley (Manchester)
 • Garry Wiggins and David Wild (Indiana)

• References