





Reproducing Bio-Active Conformations with Catalyst and Omega

A careful assessment of conformational model generators

J. Kirchmair<sup>1</sup>, G. Wolber<sup>2</sup>, <u>C. Laggner<sup>1</sup></u>, and T. Langer<sup>1,2</sup>

1 Computer Aided Molecular Design Group, Institute of Pharmacy, University of Innsbruck, Austria 2 Inte:Ligand GmbH, Austria

http://pharmazie.uibk.ac.at/CAMD

## Introduction

#### Introduction

Conf. Model Generators

Work Flow

Results

```
Generator User
Guide
```

Conclusions

- Why do we need conformational models?
- Are model generators able to represent the protein-bound ligand conformation?
- How can the maximum performance be achieved with Omega and Catalyst?

# Introduction

### Importance of finding bio-active conformers

#### Introduction

Conf. Model Generators

Work Flow

Results

Generator User Guide

Conclusions

### Conformational models are needed for

- pharmacophore modeling
- rigid docking
- shape fitting
- 3D QSAR
- virtual screening
- ...
- Any in silico 3D drug discovery approach
   depends on the accurate representation of
   low-energy conformations
   Aim: reproducing the bio-active conformation!

### Search for Bio-Active Conformation The need for reliable conformational models

Introduction

Conf. Model Generators

Work Flow

Results

Generator User Guide

Conclusions

- bio-active conformation is not at the global energy minimum – many conformers within a certain energy range (~20 kcal/mol) to be investigated
- make a representative sampling of conformational space with the smallest number of conformers that contains the bio-active conformation within the required accuracy

## **Conformational Model Generators**

Introduction

Conf. Model Generators

Work Flow

Results

Generator User Guide

Conclusions

### Catalyst 4.11 (Accelrys) <u>www.accelrys.com</u>

- CHARMm force field
- FAST: heuristic approach aiming at interactive speed
  - ring fragment library
- BEST: Monte-Carlo like algorithm & poling
- Omega 2.0 (OpenEye) <u>www.eyesopen.com</u>
  - rule-based approach using a fragment library
  - two self-sufficient modules:
    - seed structure generator
    - torsion driver
  - highly user-adaptable

# Work Flow Scheme Assessment of 778 PDB complexes

Introduction

Conf. Model Generators

Work Flow

Results



assembling of a representative ligand set

- conformational search
- evaluation: RMSD between the bio-active ligand conformation and the best fitting conformer

## **Results** What RMSD values denote...

#### Introduction

Conf. Model Generators

Work Flow

Results

Generator User Guide

Conclusions



SPP-1KLM: RMSD = 0.499

383-1JII. RMSD = 0.944



116-1HWJ: RMSD = 1.466



RPR-1EZQ: RMSD = 1.984



LP1-10DY: RMSD = 2.932

# Results The average RMSDs

#### Introduction

Conf. Model Generators

Work Flow

#### Results

Generator User Guide

Conclusions



RMSD achieved with different settings:

- Omega and Catalyst FAST achieve comparable accuracy
- Catalyst BEST surpasses Omega and FAST

**default:** ewindow 25.0 kcal/mol, maxconfs 400, rms 0.8, bmmff94s\_noestat, smmff94s\_noestat **HTS:** maxconfs\_50, bmmff94s\_trunc, rms 0.8 **HQS:** maxconfs\_500, bmmff94s\_trunc, rms 0.4

### **Results** Average NOC as a function of molecular flexibility



# RMSD as a function of conformational space

**Results** 



# **Results** Computational cost



#### Computing time as a function of flexibility and ensemble size

**Results** 



# Results **Conformational space sub sampling** OMEGA HTS Work Flow OMEGA HQS Results Generator User Guide Conclusions CATALYST 50F CATALYST 250B C. Laggner, Workshop Chemoinformatics, Obernai 2006

### **Results** CSD vs. PDB conformations of 29 compounds



### A User-Guide for Best Performance...

#### Introduction

Conf. Model Generators

Work Flow

Results

Generator User Guide

Conclusions

#### Best performing settings:

|                         | HTS                                       | HQS                                                                   |
|-------------------------|-------------------------------------------|-----------------------------------------------------------------------|
| application<br>scenario | database screening                        | flexible compounds<br>cyclic scaffolds<br>shape fitting<br>alignments |
| Omega                   | maxconfs_50,<br>bmmff94s_trunc<br>rms_0.8 | maxconfs_500<br>bmmff94s_trunc<br>rms_0.4                             |
| Catalyst                | 50 FAST                                   | 250 BEST                                                              |

## Conclusions

Introduction

Conf. Model Generators

Work Flow

Results

Generator User Guide

Conclusions

- the quality of conformational models is always a trade-off between sampling depth and computational costs
- Omega & Catalyst are able to generate high quality conformational models
- Omega shows favorable results in HQS
- Catalyst FAST is the best choice for HTS

### References...

#### Introduction

Conf. Model Generators

Work Flow

Results

Generator User Guide

Conclusions

Kirchmair J, Laggner C, Wolber G, Langer T Comparative Analysis of Protein-Bound Ligand Conformations with Respect to Catalyst's Conformational Space Subsampling Algorithms.

J. Chem. Inf. Model. 2005, 45, 422-30.

Kirchmair J, Wolber G, Laggner C, Langer T

Comparative Performance Assessment of the Conformational Model Generators Omega and Catalyst: A Large-Scale Survey on the Retrieval of Protein-Bound Ligand Conformations.

J. Chem. Inf. Model. 2006, accepted

## Acknowledgements: The Computer Aided Molecular Design Group

#### Introduction

Conf. Model Generators

Work Flow

#### Results

Generator User Guide

Conclusions





Thierry Langer, Patrick Markt, Theodora Steindl, Gudrun Hackspiel, Johannes Kirchmair, Daniela Schuster, Hannes Wallnöfer, Martina Mangold, Kathrin Eder, Evelyn Rosivatz, and Daniela Ladstätter





Gerhard Wolber, Ali Dornhofer, Fabian Bendix, Martin Biely, and Robert Kosara

# **Thank You for Your Attention!**

#### Introduction

Conf. Model Generators

Work Flow

Results

Generator User Guide

Conclusions

