Tutorial on Generative Topographic Mapping Landscapes

G. MARCOU, F. LUNGHINI, D. HORVATH, O. KLIMCHUK, F. BONACHERA and A. VARNEK

1. Introduction

This tutorial will explain how to build a GTM and use it to visualize the density distribution of a compound library in the chemical space, then use the map to draw a property landscape (for regression) or an activity landscape (for classification). It is illustrated on an environmental fate property, the bioconcentration factor.

Software and files

The tutorial uses the following software:

- xGTMapTool: a graphical user interface frontend for the preparation of a GTM
- **xGTMView**: a software for visualization of the GTM and for their chemical interpretation.
- **xGTMReSample**: a software to change the resolution of the map: its number of nodes.
- **xGTMClass**: a software that prepares an activity landscape and estimate the classification performances of the model.
- **xGTMReg**: a software the prepare a property landscape and estimate the regression performances of the model.
- **xGTMLandscape**: a software that allows a visualization of the landscape and its chemical interpretation.

In the frame of this tutorial, two concepts are used in a specific way:

- *Property landscape*: a map which is color coded according to a property value. The map results from a responsibility weighted average of the contribution of training dataset compounds. It estimates the likely value of the property at this location.
- Activity landscape: a map which is color coded according to a class. There are two possible colorations for a given class. The first one monitors the density of those compounds from this class. The second one refers to the probability of compounds in a location of the map to be a member of this class.

The following files are provided:

- train.sdf and test.sdf: The chemical structures in SDF format. The SD fields are:
 - *MolNr*: molecule number in the dataset;
 - CAS: Chemical Abstract Service identifier;
 - STDmols (InChi): Standardized structure in InChi format;
 - *STDmols (InChiKey)*: Standardized structure InChi Key;
 - STDmols (canonical SMILES): Chemical structure in SMILES format;
 - *PHTYP*: Pharmacophoric labels of the atoms;
 - *FFTYP*: Amber force field labels of the atoms;

- *logBCF*: Experimental log value of the bioconcentration factor (in L/Kg);
- *BCFcl*: The class of the compound either as bioconcentrating or not (BCF/notBCF).
- train.hdr: the header file describing the molecular descriptors used.
- train.svm and test.svm: the actual molecular descriptors matrices corresponding to the training and test sets, respectively.
- trainBCFlog.prp and testBCFlog.prp: the property files that store the activity of the compound as the logarithm of experimental bioconcentration factor, in the same order as the corresponding SDF files.
- trainBCFcl.prp and testBCFcl.prp: the property files that store the activity of the compound as bioconcentrating (BC) or not bioconcentrating (notBC), in the same order as the corresponding SDF files.

The tutorial provides files that are pre-generated but are outputs of the instructions:

- train.xml: the GTM trained on the training set data;
- trainPrj.mat and testPrj.mat: the projections of the training and test set compounds on the map.
- trainR.svm and testR.svm: the responsibilities of the training and test set compounds on the map.
- trainBCFlog_reg.xml: the property landscape of the training set as logarithm of the BCF.
- trainBCFcl_cls.xml: the activity landscape of the training set as BC/notBC classes.
- *Dens.mat: Three column files locating the GTM nodes and the local density.
- *LS.mat: Multi-column files, the first two being the (x,y) location of the GTM nodes and the others are the landscape values.
- *k8000*: Files generated after resampling the GTM using 8000 nodes.

License

The software are licensed by the University of Strasbourg. The licence file is called license.dat and is situated in the OS specific directories: Windows, Mac and Linux. The license file must be installed in a proper location to be found.

• On Windows: create the directory AppData\local\ISIDAGTM directory at the root of your home directory and copy the file licence.dat in it. The absolute path of the file should be similar to this one:

C:\Users\username\AppData\local\ISIDAGTM\licence.dat The file and the directory should have read and write permissions.

• On Mac: create the directory .config/ISIDA directory at the root of your home directory and copy the file licence.dat in it. The absolute path of the file should be similar to this one:

/Users/username/.config/ISIDAGTM/licence.dat

• On Linux: create the directory .config/ISIDAGTM directory at the root of your home directory and copy the file licence.dat in it. The absolute path of the file should be similar to this one:

/home/username/.config/ISIDA/licence.dat

The Bioaccumulation Factor dataset

The determination of Bioconcentration Factor (BCF) is a mandatory parameter used for the PBT/vPvB (Persistent Bioaccumulative and Toxic/very Persistent very Bioaccumulative) substances assessment by the European Union Registration, Evaluation, Authorisation and Restriction of Chemical Substances Regulation (REACH, EC No 1907/2006). In Europe a substance is not considered to possess a significant bioaccumulation potential below a BCF value of 2000 L/Kg (or 3.3 log unit), then it is considered as "bioaccumulative" up to 5000 L/Kg (or 3.7 log unit) and "very bioaccumulative" above ^[1]. However, acquisition of BCF data is expensive, and requires the sacrifice of animal lives. This explains the attention that deserves alternative methods and in particular QSAR^[2].

Bioconcentration experimental data was collected from multiple sources, including several publicly available databases and literature research: the Japanese National Institute of Technology and Evaluation (NITE)^[3], the European Chemical Industry Council Long Range Initiative (CEFIC LRI)^[4], the Canadian Domestic Substance List (DSL)^[5] and the ECOTOXicology knowledgebase of the US Environmental Protection Agency (ECOTOX EPA)^[6] (accessed through the OECD Toolbox^[7]), and the database of ECHA (accessed through the eChem portal^[8]). Additional values were retrieved from literature from the works of Arnot and Gobas^[9], Dimitrov et al.^[10] and Fu et al.^[11]. It is publicly available on the Zenodo platform: https://doi.org/10.1080/1062936X.2019.1626278.

The following entries were excluded: inorganic, polymer, UVCBs (Unknown or Variable composition, Complex reaction products or Biological materials). When the BCF value was not reported in L/Kg of body weight, not calculated on a whole-body measurement-basis or the test was performed on a non-recommended OECD species, the value was excluded. Since these are important study conditions that have to be explicitly stated [3], entries which were missing such details were excluded as being of lower reliability. Chemical structures were standardized and duplicates were removed. When multiple BCF values were available for a given compound, the median was taken as representative value. For some substances the range of BCF values could reach two log units.

The classes have been determined using the thresholds mentioned above. The label notBC is attributed to compounds with a logBCF (logarithm of the bioconcentration factor, expressed in L/Kg) value lower or equal to 3.3. The label BC is attributed to compounds with a logBCF value larger than 3.3.

The Generative Topographic Maps landscapes

Step by step instructions

The exercises are developed to introduce the concept of predictive landscapes based on the GTM approach. They start with the generation of a GTM (Exercise 1) that will be visualized (Exercise 2). In the following, the resolution of the map will be increased (Exercise 3). In the next step, you will be guided in building and validation of an activity landscape, for classification problem (Exercise 4). Then, you will be guided on the building and validation of a property landscape, for regression problem (Exercise 5). Finally, the tutorial will introduce

the visualization tool to analyze the obtained landscapes and discuss its chemical content (Exercise 6).

1.1. Exercise 1. Train a GTM.

The aim of this exercise is to train a GTM on a training dataset, then use the built GTM to analyze a test set.

Inputs:

- train.svm
- test.svm

Outputs:

- train.xml
- trainR.svm, trainPrj.svm, trainPC123.mat, trainZ.mat, trainZ3D.mat, trainPhi.mat, trainPhi3D.mat
- testR.svm,testPrj.svm

Instructions	Comments
Open the xGTMapTool software	The interface of the software appears (Figure 1).
Click the button to the right of the Input label (Figure 1, area 1) and select the file train.svm.	This is the selection of the datafile used to train the GTM model. An automatically generated output base name is proposed by the soft unless explicitly set up by the user. The output base name will be used to name all the files produced by the software. All those files will be in the path specified in this field. The generated files will differ by their terminations only.
As a preprocessing option (Figure 1, area 2), use the center option. In the Initial scaling list, select the item Standard .	An important aspect of the training of the GTM model is the pre-processing. The initial state of the manifold is a flat surface fitted to the two first principal component of the dataset. Therefore, the dataset must be centered. The Standard initialization of the manifold is to extend it according to the loadings of the first two principal components. This is a reasonable choice to avoid a bias from the largest compounds of the dataset. However if that population should critically be represented by the GTM, then it is better to scale the manifold in order that it covers the whole dataset, using the command Extended . Finally, it is possible to tune this initialization with the Custom command, requiring as input a scaling factor from the default, Standard , setup.

	Note: if the principal components have been
	already computed, it is possible to load them
	using the Precomputed PCA element of
	the interface.
Set the Number of traits value to 110	The other parameters of the method are set
(Figure 1, area 3), the interface should look	to default values. These values are visible in
as on Figure 2.	the log window (Figure 1, area 5 and Figure
then click on the button OK (Figure 1, area 6).	4). The width of the RBFs are set to two times
Caution: the calculation takes about 15	the distance between two neighboring RBF
minutes.	on the latent space plane. The number of
	node is 25 times the number of traits and the
	regularization parameter is set to 1.
	While the calculations are running, the log
	window displays information about the
	current state of the process:
	 a warning in case previous results are
	affected by the current run;
	 a reminder about key parameters
	setup;
	 the number of instances to process;
	 a first guess of the likelihood of the
	dataset.
	At each step, the log line gives (Figure 5):
	• the expectation-maximization
	iteration count;
	 the current value of the likelihood;
	 the variation of likelihood since the
	previous step;
	• the percentage of variation of the log
	likelihood compared to the present
	value of the log likelihood;
	 the largest variation of a value in the
	weight matrix defining the manifold;
	 the same number as a percentage.
	At the end of the calculations a message
	(Figure 6) informs that the process
	terminated successfully and the last
	iteration is informative about the log
	likelihood of the studied dataset.
Click the Use model radio button	This action switches the interface to project
	a dataset on the GTM.
Click the button to the right of the Model	This command project the training dataset
(XML) label (Figure 1, area 1) and select the	on the GTM manifold. It will generate
file train.xml.	detailed information in a set of files.
The Input should be train.svm and	 trainPrj.mat: the coordinates of
Output should be train.	the compounds on the map.
Tick the Save full information box.	

The interface should look like Figure 3. Click the OK button.	 trainR.svm: are the responsibilities of the corresponding compounds.
	 trainZ.mat: the pre-processed dataset
	 trainPC123.mat: the first three principal components, they can be reused to bypass PCA calculations for training a GTM (if the pre-processing is the same). trainWPhi.mat: The GTM nodes coordinates in the initial space trainWPhi3D.mat: the GTM nodes projections on the first 3 principal components. trainZ3D.mat: the dataset projection on the first 3 principal components
	The log likelihood is -208.86.
Click the button to the right of the Input label (Figure 1, area 1) and select the file test.svm. The file name in the Output box should update to test. Untick the Save full information box . Click the OK button.	The log likelihood is -208.86. This operation project the test dataset on the GTM manifold. By default, only the projections (testPrj.mat) and the responsibilities (testR.mat) are saved. The loglikelihood of the test set is -205.52. Thus the test set is explained equivalently to the training set. A variation of a few log likelihood unit is not significative in this case. This can be evidenced by repeating the process with a different composition of the training and test set. slightly less explained by the model. To get a scale of variations of the loglikelihood, it is useful to compare to how the initial flat state of the manifold explains the data. This information is the located at the top of the training log: First LLt=- 1427.36 (Figure 4). Actually the number of nodes have been optimized to this end.

The GTM model is stored as an XML file, based on the following tags.

- **GTM**, it is the main node of the XML model file. It supports the attributes
 - **D**, specifying the dimensionality of the input space (*ie* the number of molecular descriptors),
 - $\circ~~$ N is the number of instances used to train the GTM,
 - **Type** indicates which particular GTM algorithm is used,
 - **nIter** is the number of training iterations,
 - **Preprocess** indicating which kind of preprocessing was used.

- **Mean**, is the shift value on each molecular descriptor. It is the actual mean of the molecular descriptors if the preprocessing is a Standardization.
- **SD**, is the scaling value on each molecular descriptor. It is the actual standard deviation of the molecular descriptors if the preprocessing is a Standardization.
- **PC123**, are the coordinates of the approximated first three principal components of the dataset.
- **Manifold**, contains the values of the weight matrix defining the manifold. It needs the following attributes:
 - **D**, the dimension of the input space;
 - **K**, the number of nodes;
 - M, the number of RBFs;
 - **sigma**, the width of the RBFs;
 - o **alpha**, the value of the regularization parameter;

• **beta**, the standard deviation of the normal distribution around the manifold. Therefore, this node is the core of the GTM model.

- LatentSamples, the 2D coordinates of the nodes on the latent space.
- LatentTraits, the 2D coordinates of the RBFs on the latent space.

Conclusion

In this exercise, the training set file train.svm is used to train a GTM model. The number of traits is set so that the model generalizes to a test set taken from the same distribution. The software is used to output additional information on the GTM model of the training set and to project a the test set on the manifold. The good generalization of the model on the test data is illustrated by the correspondence of the loglikelihood score of both dataset. This difference can be compared to the scale of loglikelihood values explored when training the manifold from a flat geometry to the final optimized one.

-		xGTMapTool	- + ×
	Input	Input file (SVM Format)	
Train model	Output	Output base name	
4	Model (XML)	File name of the model	
🔘 Use model			
Save full information			
Number of samples	5 -1	Select a pre-processing 2	
Number of traits	5 1 2	Initial scaling Standard 🔻	
RBF width	-1	Precomputed PCA PC123.mat file	
Regularization	-1		
Max. number of	100	Convergence: likelyhood difference 0.001	
********	********	******	
Welcome ISIDA/xGTMapTool			
a graphical front end to GTM.			
H. Gaspar, A. Varnek, D. Horva P.Sidorov, A. Lin, G. Marcou	ath, 5		
Université de Strasbourg Faculté de Chimie			
2017			
*****	********	*****	
		6 ок	Quit

Figure 1. The interface of the xGTMapTool application. The file management is operated in the region (1) of the interface. The preprocessing is taken care of in (2) and the parameterization of the model is performed in (3). The use of the interface to train or apply a GTM model is controlled in (4). The log of the calculations are written in (5) and launching the calculations is performed in (6).

*		xGTMapTool	- + ×
	Input	/home/marcou/Documents/CS3-2020/Tutorial/dataset/train.svm	
 Train model 	Output	/home/marcou/Documents/CS3-2020/Tutorial/dataset/train	
	Model (XML)	File name of the model	***
🔘 Use model			
Save full informa			
Number of sam	ples -1	Center	
Number of t	raits 110	Initial scaling Standard 🔻	
RBF w	/idth -1	Precomputed PCA PC123.mat file	
Regulariza	ition -1]	
Max. numbe	er of 100	Convergence: likelyhood difference 0.001	

T		xGTMapTool	-	÷	×
	Input	/home/marcou/Documents/CS3-2020/Tutorial/dataset/train.svm			
🔵 Train model	Output	/home/marcou/Documents/CS3-2020/Tutorial/dataset/train			
	Model (XML)	/home/marcou/Documents/CS3-2020/Tutorial/dataset/train.xml			
• Use model					
Save full informati	ons				
State of the interface	e to project the	BCE training data on the GTM			

Figure 3: State of the interface to project the BCF training data on the GTM.

Figure 5. State messages during the GTM model training. It starts with warning in case previous results are affected by the current run, reminders about key parameters setup, reviewing the number of instances to process and a first guess of the likelihood of the dataset. Then at each step, the line give the step count, the current value of the likelihood, the variation of likelihood since the previous step, the same number as a percentage, the largest variation of the weight matrix defining the manifold and the same number as a percentage.

Iter:: 79 LLmap=-208.86604 DLLmap=0.00385 %DLLmap=0.00184 DW=0.04274 %DW=0.00007 Iter:: 80 LLmap=-208.86431 DLLmap=0.00173 %DLLmap=0.00083 DW=0.02394 %DW=0.00004 Iter:: 81 LLmap=-208.86374 DLLmap=0.00057 %DLLmap=0.00027 DW=0.00805 %DW=0.00001 ***All calculations finished successfully!***

Figure 6. Last iteration of the training of the GTM.

1.2. Exercise 2. Visualize the projected data

The aim of this exercise is to analyze the datasets in an unsupervised way using the GTM. The training sets and test sets are scrutinized, order to get an understanding of their chemical content and localization of chemotypes in the chemical space. Inputs:

train.xml, trainR.svm, trainPrj.mat, train.sdf

- testR.svm, testPrj.mat, test.sdf

Comments

Open the application xGTMView	The interface should look as illustrated in the Figure 7. The software aims at connecting the chemical content of the GTM with some plots of the GTM itself. Input is managed in (1). Navigation of the chemical structure file is performed using the controls in (2) and chemical structures are displayed in (5). The GTM data are plotted in (3) and the content
	of the plots are controlled in (4). The log is written in (6). The plot processing is launched in (7).
 Setup the input files to process (Figure 7, area 1). Click the GTM Model (XML format) button and chose the file train.xml. If needed, click the Projection coordinates (MAT format) button and chose the file trainPrj.mat. Check also that the corresponding trainR.svm file is selected as the Responsibility file (SVM format). Otherwise click the corresponding button to choose this file. Open the file chooser dialog of the Molecular structure file (SDF format) to locate and select the file train.sdf. Click the OK button. 	At this step, the GTM model file is processed. The information about how the training/test data set are projected on the map is contained in the responsibility files generated during the previous exercise. When the GTM Model (XML format) interface is setup, the software will guess if there exist some relevant projection and responsibility files. In the current situation, we will focus on the projection of the training data. The file train.sdf is connected to these data. The order of the molecules in these different files is assumed to be the same. In other words, molecules must appear in the SDF file in the same order as in the molecular descriptor file projected on the GTM. In turn, the GTM output will preserve the same order. In case of discrepancies between the files, the results might be meaningless and eventually the application may crash
 Tick the Traits box (Figure 7, area 4). Untick the Traits box, then tick the Samples box. Untick the Samples box, then tick the Projections box. Tick the Responsibility box. 	 The plot (Figure 7, area 3) changes according to the state of the tick boxes. It shall display, in the order: the localization of the RBF on the latent space (Figure 8); the positions of the nodes of the GTM (Figure 9);
<i>Optional</i> : if the plotted points are too small, you can use the slide bar at the bottom right hand corner of the plotting area and validate with the OK button.	 The location of each molecule on the map (Figure 10); the responsibility pattern of the selected compound. The dots of the plot are clickable. On click, the corresponding compound is selected and displayed (Figure 7, area 5).

These operations will load the projections of the test set. The distribution of test
compounds shall overlap nicely the one observed for the training set.
The same chemotypes should be found in
the test set distribution as those observed
The test set distribution is illustrated on
Figure 11.
This operation color the dots of the plot
according to the SDF field value. This field
indicates two classes: not bioaccumulating
(notBCF; $logBCF <= 3.3$) and bloaccumulating
(BCF; logBCF>3.3). The property should
arready concentrated, being indicative of the
concern for bioaccumulation.

This exercise, illustrates the analysis of the GTM model and its application to the training and to the test data. It illustrated the key concepts of the GTM model: the traits, the nodes, the responsibilities, the projection and localization of a property of interest.

The latent space distribution is sampled at 2700 nodes. This a bit too low, thus several compounds are overlapped on the very location of these nodes. A simple workaround is to increase the number of nodes.

Figure 7. Interface of the xGTMView software. Input management is take care in (1). Navigation in the chemical structure file is performed in (2) and chemical structures are displayed in (5). The GTM data are plotted in (3) and controlled in (4). The log are written in (6) and the calculation are launched in (7).

Figure 8. Position of the RBF centers (the traits) on the 2D manifold. The traits are positioned in a pseudo-regular way.

Figure 9. Positions of the sampling points of the manifold. These are the points were the density probability are estimated. The size of the circle around a sample point is proportional to the density of the chemical space region it is located in.

Figure 10. Projection of the training dataset on the GTM. Each point corresponds to a molecule. The black dots are those compounds associated to bioaccumulation.

Figure 11. Projection of the test dataset on the GTM. Each point corresponds to a molecule. The black dots are those compounds associated to bioaccumulation.

1.3. Exercise 3. Increase the number of nodes

The aim of this exercise is to increase the resolution of the model to get a more precise picture of the chemical space.

Input:

- train.xml,train.svm
- test.svm,test.sdf

Output:

- traink8000.xml, traink8000R.svm, traink8000Prj.mat
- testk8000R.svm, testk8000Prj.svm

Instructions	Comments
Open the application xGTMReSample	The interface should look as illustrated in the
	Figure 12. Input management is located in
	(1). The new sampling is configured in (2).
	The log are written in (3) and the calculation
	are launched in (4).
Setup the input files to process (Figure 12,	This setup will load the GTM model build
area 1).	during the Exercise 1. The number of nodes

• Click the GTM Model button and	of this model will be set to 8000, increasing
chose the file train.xml.	the resolution of the latent space
• Optionally, click the Data file	distribution. Using the Rectangular mode,
button and chose the file	the nodes are organized on a rectangular
train.svm.	grid rather than distributed in pseudo-
 Name the output as 	regular way. In that case the geometry of the
traink8000.svm.	grid must be specified. This feature can be
 Select the mode Pseudo-regular and 	convenient for manipulating the data with
set Nodes value to 8000.	other plotting tools.
Click the OK button.	The new model can be immediately applied
	to a dataset, here to the training set, to
Use the xGTManTool software (Figure 1)	The improved resolution model will be used
	to project the test set data.
Select the Use model mode.	With this setup the 8000 node GTM is used
• As Input select the file test.svm.	to compute the projections and
 Name the Output as testk8000 	responsibilities of the test set compounds.
• Chose the file traink8000.xml as	The former are saved in the file
Model (XML).	testk8000Prj.mat and the later in the file
Click the OK button.	testk8000R.mat.
	The new estimated likelihood value should
	be close to the one obtained during the
	exercise 1, about -205.25.
	small enough to speed up calculations and
	being illustrative of the improved resolution
Use the xGTMView software (Figure 7).	This software is then used to monitor the
	changes in the GTM analysis of the test data.
Setup the interface so that:	The figure is very similar to the one initially
• The GTM Model (XML format) is	obtained (Figure 13). However each
the file traink8000.xml	compound is better localized and there are
 The Projection coordinates 	less overlapping points.
(MAT format) is the file	
testk8000Prj.mat	
• The Responsibility file (SVM	
tormat) is the file	
The Melocular structure file	
(SDE format) is the file test sdf	
Push the slide har to the value 5	
(Figure 7 area 4)	
Click the button OK	
At this stage, the data are loaded.	
• Tick the Projections box (Figure	
7, dfed 4)	

٠	Click on the SDF field selector (Figure
	7, area 2) and select the field
	BCFclass.

In this exercise, the number of nodes used to sample the GTM manifold is modified. The new model is used to project the test set. The effect is then monitored.

-	xGTMReSample	- + ×		
GTM Model:	GTM model to resample (*.XML)			
Data file:	Dataset to re-project of the manifold (*.SVM). Optional			
Output:	Output base name			
Pseudo-regular Nodes: Pseudo-regular Rectangular				
An application G. Marcou, D. Université de	Sample to change to sampling of a GTM model Horvath, A. Varnek Strasbourg - 2020			
	4 ок	Quit		

Figure 12: Interface of the xGTMReSample software. Input management is located in (1). The new sampling is configured in (2). The log are written in (3) and the calculation are launched in (4).

Figure 13: State of the xGTMView software visualizing the test set using a GTM using 8000 nodes.

1.4. Exercise 4. Classification models

This exercise will use the GTM to build a classification model discriminating compounds that are not bioaccumulating (labeled "notBCF") from those that are bioaccumulating (labeled "BCF").

Input:

- train.xml, trainR.svm, trainBCFcl.prp
- testR.svm,testBCFcl.prp

Output:

- trainBCFcl_cls.xml, trainBCFcl_clsDens.mat, trainBCFcl_clsLS.mat, trainBCFcl*tsv
- testBCFcl*tsv,testBCFcl_clsDens.mat,testBCFcl_clsLS.mat

The interface and approach is homologous to the later regression exercise. The instructions are therefore almost identical, so the two exercises are independent and self-consistent. It is Yet, both exercises 4 and 5 are required for the next exercise on visualization of the models.

Instructions	Comments
Open the application xGTMClass.	The interface should look as illustrated in
	the Figure 14. Input management is located
	in (1). The meta-data are configured in (2),

	they allow to define the author of the
	classification model, give a title, add
	comments and normalize classes. The
	region (3) give controls over the
	applicability domain. The region (4) allows
	to select between training a model, apply a
	model or perform a cross-validation. The
	model performances can be evaluated if the
	property file is provided in area (1). The logs
	generated during the calculations are
	recorded in the region (5) and the
	calculations are launched in the region (6).
Check that the software is configured on Train mode (Figure 14, area 4).	classification model based on the GTM. To
Setup the input files to process (Figure 14,	this end, the train.xml file is loaded,
area 1).	providing information on the geometry of
Click the GIM file button and	density modelled by the CTM There
chose the The Train. XMI.	information from the training set is loaded
• Click the Responsibilities	Each compound is described by a vector of
the bullon and chose the me	responsibilities: the whole training set is
	stored in the file train P cum The property
• Click the Property file button	values associated to each compound in the
and chose the file	values associated to each compound, in the
trainBCFc1.prp.	same order, are provided through the life
• Name the output as	is always a commont and is interpreted as a
trainBCFcl_cls.	is always a comment, and is interpreted as a
	Neto that the software looks in the working
	directory to propose relevant input and
	auteut file names
	Of course it is possible to generate the
	of course, it is possible to generate the
	models using the high resolution manifold,
	using as input the files traink8000.xml
	and traink8000R.svm as GIW and
	responsibilities files, respectively. However,
	It will not improve the predictive
Complete the following fields:	The mote data are stared in the VML files of
Title: "Piecesumulation Factor	the medal. They should not be discovered
- IILLE: BIOACCUMULATION FACTOR	for management of the models
class ;	The property parts is a short same that us
- Author: enter your name;	the property name is a short name that can
- Comments: doesn't bloaccumulate	be used for referencing the model in an
(NOLBUR) IS NOBBUR<=3.3 ELSE DOES	Polovy the tick boy Normaline alasses
Dioaccumulate (BCF), today's date";	below, the tick-box Normalize classes
- Property name : "BCFCI".	applies a correction to the classes estimates
	to compensate for class impalance. In the

	current situation, it is relevant, but for this
	exercise, it is not used.
Set the Min. Responsibility, Min.	The minimal responsibility is a threshold
Density values to 0 and Prevalent	applied to the responsibility of each
class ratio to 1 (Figure 14, area 3).	molecule on each node. If this value is below
	or equal the threshold, it is ignored in the
	preparation of the model. The minimal
	density is a threshold applied to each node,
	when using the model. If the density of the
	training set on a node is below or equal to
	the infestion, the node is associated to an
	that the responsibilities of a compound on
	such node will contribute to an "OutOfAD"
	score and if this score dominates the class
	scores then the compound is considered out
	of applicability domain
	With this setup, the applicability domain is
	neutralized. except for those compounds
	covered by empty nodes (density equal to 0)
	for which the model cannot compute a
	prediction. This is because the concept of
	applicability domain is out of the scope of
	this tutorial.
	The Prevalent class ratio compute the ratio
	of the largest computed class probability
	over any other, for a given compound. Using
	this setting, if this ratio is 1, this means that
	at least two classes are equiprobable and no
	decision can be taken: the compound is out
	of applicability domain. The value can be
	decreased for a more stringent applicability
	domain. The current setting is the most
	neutral.
The setup should look like on Figure 15.	This starts the calculations. They take are
Click the UK button (Figure 14, area 6)	very fast since, they only need to accumulate
	the contributions of each compounds to
	A mossage appears in the log to summarize
	the calculations. Three files are also created:
	- trainBCFcl cls vml· this file
	records the classification model
	- trainBCFcl clsDens mat this is
	a matrix file that stores the x and y
	coordinates of each node and the
	density value on the node of the
	training data

	 trainBCFcl_clsLS.mat: this is a matrix file that stores the x and y coordinates of each node and the score for each class in the same order as they appear in the trainBCFcl_cls.xml file value on the node of the training data except the out of applicability domain which is always the last column. In this situation the order is notBCF, BCF, OutOfAD.
Click the Cross-validate radio-button.	This operation generates a cross-validation
Check that:	procedure to evaluate the predictive
• The GTM file is the file train.xml	property of the map. The compounds are
• The Responsibilities file is	divided in 10 non-overlapping subsets, each
the file trainR.svm	being recursively allocated as a test set while
• The Property file is the file	the others are merged into a training set.
trainBCFcl.prp	The manifold is not modified, only the
 The Output is set to 	content of the dataset used for training the
<pre>trainBCFcl_cls_CV.</pre>	landscape and for estimating predictive
• The number of folds is set to the	performances are changing.
value 10.	and predictions generated at
Click the button OK	base name.
	On average across folds, the reported
	balanced accuracy should be 0.80 (Figure
	17).
Click the Predict radio-button.	This setup applies uses the landscape to
Check that:	estimate the BCF class to the training data.
• The Landscape model file is the	Thus the performances are overestimated,
file trainBCFcl_cls.xml	with a balanced accuracy value of 0.89.
• The Responsibilities file is	(Figure 19).
the file trainR.svm	
• The Property file is the file	
• The Output is set to	
trainBCEcl cls nred	
The setup should look as in Figure 18.	
Click the button OK .	
Click the Predict radio-button.	This setup applies uses the landscape to
Check that:	estimate the BCF class to the test data. The
• The Landscape model file is the	performances are comparable to those
file trainBCFcl_cls.xml	observed in cross-validation (Figure 21).
• The Responsibilities file is	the model is applied and the software
the me lestk.svm	returns the predicted classes in the * tex

 The Property file is the file testBCFcl.prp 	file. But the predictive performances cannot be estimated.
 The Output is set to testBCFcl_cls_pred. 	
The setup should look as in Figure 20. Click the button OK .	

In this exercise, the GTM is used to prepare an activity landscape discriminating the bioconcentrating (BCF) from non-bioconcentrating (notBCF) chemical species. The performances of this classification model are estimated on the training set, in cross-validation and on an external test set. The performances are comparable to the state of the art models (cross-validated balanced accuracy 0.84) regarding this property.

Figure 14: Interface of the xGTMClass software. The inputs and outputs are setup in area 1. The meta-data are provided in aread 2. The control of applicability domain is provided through the region 3. The model building and validation is chosen in area 4. The log are written in 5 and the calculations are launch with buttons in region 6.

× xGTMClass – -			×	
GTM file:				
/home/marcou/Docum	nents/CS3-2020/Tuto	orial/dataset/train.xml		
Responsabillities file:				
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/trainR.svm		
Property file:				
/home/marcou/Docum	nents/CS3-2020/Tuto	orial/dataset/trainBCFcl.prp		
Outputs:				
/home/marcou/Docum	nents/CS3-2020/Tuto	orial/dataset/trainBCFcl_cls		
 Train 	Property name:	BCFcl		
O Predict	Author:	G. Marcou		
Cross-validate	Title:	BCF classification		
10 Tolds	Comments:	logBCF<=3.3, notBCF; logBCF>3.3, BCF		
Normalize classes				
	1	Min. Responsibility: 0,000000		
		Min. Density: 0,000000		
	Pr	revalant class ratio: 1,000000 🗘		

Figure 15: Preparation of a classification model discriminating bioaccumulating from non-bioaccumulating compounds.

•	xG	TMClass		- +	×
GTM file:					
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/train.xn	nl		
Responsabillities file:					
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/trainR.s	vm		
Property file:					
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/trainBC	Fcl.prp		
Outputs:					
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/trainBC	Fcl_cls_CV		
🔵 Train	Property name:	BCFcl			
O Predict	Author:	G. Marcou			
Cross-validate	Title:	BCE classification			
10 🗘 folds	Comments:	loopCE<=2.2 potP(
	connerto.		.r; logBCF>3.3, BCF		
		Normalize class	ses		
	1	Min. Responsibility:	0,000000	~	
		Min. Density:	0,000000	`	
	Pr	evalant class ratio:	1,000000	÷	

Figure 16: Cross-validation setup to measure the performances of the bioaccumulation landscape.

Processing responsibilities... Number of molecules processed 567 Number of molecules used for landscape 567

Landscape saved in /home/marcou/Documents/CS3-2020/Tutorial/dataset/ trainBCFcl_cls_CV_train-fold10.xml WARNING: File /home/marcou/Documents/CS3-2020/Tutorial/dataset/ trainBCFcl_cls_CV_test-fold10.tsv is overwritten.

Figure 17: Performances measures on the last fold and average performance accross all folds of the BCF landscape.

•	xGTMClass - +			- + ×
Landscape model file:				
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/trainBC	Fcl_cls.xml	
Responsabillities file:				
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/trainR.s	vm	
Property file:				
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/trainBC	Fcl.prp	
Outputs:				
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/trainBC	Fcl_cls_pred	
 Train 	Property name:	BCFcl		
Predict	Author:	G. Marcou		
Cross-validate	Title:	BCF classification		
10 💭 folds	Comments:	logBCF<=3.3, notB(CF; logBCF>3.3, BCF	
Normalize classes				
	I	Min. Responsibility:	0,000000	0
		Min. Density:	0,000000	\$
	Pr	evalant class ratio:	1,000000	0

Figure 18: Configuration of the xGTMClass software to apply the model to training set data and estimate the performances.

/ Performances\
Accuracy =0.9525
Balanced Accuracy =0.8869
Precision(notBCF)=0.9514
Recall(notBCF) =0.9922
F(notBCF) =0.9714
MCC(notBCF) =0.8392
Precision(BCF)=0.9588
Recall(BCF) =0.7815
F(BCF) =0.8611
MCC(BCF) =0.8392
Calculations complete

Figure 19: Performances of the BCF classification landscape on the training dataset.

~	xGTMClass – +			
Landscape model file:				
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/trainBC	Fcl_cls.xml	
Responsabillities file:				
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/testR.sv	/m	
Property file:				
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/testBCF	-cl.prp	
Outputs:				
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/testBCF	-cl_cls_pred	
🔵 Train	Property name:	BCFcl		
• Predict	Author:	G. Marcou		
Cross-validate	Title:	BCF classification		
10 🗘 folds	Comments:	logBCF<=3.3, notB(CF; logBCF>3.3, BCF	
		Normalize class		
	1	Min. Responsibility:	0,000000	0
		Min. Density:	0,000000	\$
	Pr	evalant class ratio:	1,000000	0

Figure 20: Configuration of the xGTMClass software to apply the model to test set data and estimate the performances.

Figure 21: Performances of the BCF classification landscape on the test dataset.

1.5. Exercise 5. Regression models

This exercise will use the GTM to build a regression model to predict the logarithm value the bioaccumulation factor expressed in L/Kg, given the chemical structure of new compounds. Input:

- train.xml, trainR.svm, trainBCFlog.prp
- testR.svm,testBCFlog.prp

Output:

- trainBCFlog_reg.xml, trainBCFlog_regDens.mat, trainBCFlog_regLS.mat, trainBCFlog*tsv
- testBCFlog*tsv, testBCFlog_regDens.mat, testBCFlog_regLS.mat

The interface and approach is homologous to the later regression exercise. The instructions are therefore almost identical, so the two exercises are independent and self-consistent. It is Yet, both exercises 4 and 5 are required for the next exercise on visualization of the models.

Instructions	Comments	
Open the application xGTMReg .	The interface should look as illustrated in	
	the Figure 14. Input management is located	
	in (1). The meta-data are configured in (2),	
	they allow to define the author of the	
	classification model, give a title and add	
	comments. The region (3) give controls over	
	the applicability domain. The region (4)	
	allows to select between training a model,	
	apply a model or perform a cross-	
	validation. The model performances can be	
	evaluated if the property file is provided in	
	calculations are recorded in the region (5)	
	calculations are recorded in the region (5)	
	region (6)	
Check that the software is configured on	The aim of this setup is to train a regression	
Train mode (Figure 14, area 4).	model based on the GTM. To this end, the	
Setup the input files to process (Figure 14,	train.xml file is loaded, providing	
area 1).	information on the geometry of the	
• Click the GTM file button and	manifold and details on the probability	
chose the file train.xml.	density modelled by the GTM. Then,	
Click the Responsibilities	information from the training set is loaded.	
file button and chose the file	Each compound is described by the vector of	
trainR.svm.	responsibilities on each node, the whole	
• Click the Property file button	training set is stored in the file trainR.svm.	
and chose the file	The value of the property associated to each	
trainBCFlog.prp.	compound, in the same order, are provided	
 Name the output as 	through the file trainBCFlog.prp. The	
<pre>trainBCFlog_reg.</pre>	first line of this file is always a comment and	

Complete the following fields: - Title : "Logarithm Of Bioaccumulation Factor"; - Author : enter your name;	<pre>is interpreted as a description of the property. Note that the software looks in the working directory to propose relevant input and output file names. Of course, it is possible to generate the models using the high resolution manifold, using as input the files traink8000.xml and traink8000R.svm as GTM and responsibilities files, respectively. The metadata are stored in the XML files of the model. They should not be disregarded for management of the models. The property name is a short name that can</pre>
 Comments: "Bioconcentration factor (in L/Kg), today's date"; Property name: "BCFlog". 	be used for referencing the model in an external system.
Set the Min. Responsibility and Min.	The minimal responsibility is a threshold
Density values to 0 (Figure 14, area 3).	applied to the responsibility is a threshold applied to the responsibility of each molecule on each node. If this value is below or equal the threshold, it is ignored in the preparation of the model. The minimal density is a threshold applied to each node, when using the model. If the density of the training set on a node is below or equal to the threshold, then the node is associated to an out of applicability domain label (OutAD). This means that the responsibilities of a compound on such node will contribute to an "OutAD" score and if this score is large, then the compound is considered out of applicability domain. With this setup, the applicability domain is neutralized, except for those compounds covered by empty nodes (density equal to 0) for which the model cannot compute a prediction. The concept of applicability domain is out of the scope of this tutorial.
The setup should look like on Figure 15. Click the OK button (Figure 14, area 6)	This starts the calculations. They are very fast since, they only need to accumulate the contributions of each compounds to each class.
	A message appears in the log to summarize the calculations. Three files are also created: - trainBCFlog_reg.xml: this file records the regression model

	 trainBCFlog_regDens.mat: this
	is a matrix file that stores the x and y
	coordinates of each node and the
	density value on the node of the
	training data
	- trainBCFlog regls mat this is a
	matrix file that stores the x and y
	coordinates of each node and the
	coordinates of each node and the
	weighted average value the
	bioconcentration factor logarithm
	from compounds contributing to this
	node. The out of applicability domain
	is the last column.
Click the Cross-validate radio-button.	This operation generates a cross-validation
Check that:	procedure to evaluate the predictive
• The GTM file is the file train.xml	property of the map. The compounds are
• The Responsibilities file is	divided in 10 non-overlapping subsets, each
the file trainR.svm	being recursively allocated as a test set while
• The Property file is the file	the others are merged into a training set.
trainBCFlog.prp	The manifold is not modified, only the
• The Output is set to	content of the dataset used for training the
trainBCFlog reg CV.	landscape and for estimating predictive
• The number of folds is set to the	performances are changing.
value 10.	The models and predictions generated at
The setup should look as in Figure 16	each fold are saved using the Output as
Click the button OK	base name.
	On average across folds, the reported RMSE
	should be 1.1 (Figure 17). This value is fairly
	large, although the model is indicative of the
	trend as illustrated by the determination
	coefficient measured about 0 54
Click the Predict radio-button	This setup applies the landscape to estimate
Check that:	the BCE logarithm to the training data. Thus
The Landscane model file is the	the performances are overestimated with a
• The Landscape model file is the	balanced accuracy value of 0.6. (Figure 10)
	balanceu accuracy value of 0.0. (Figure 19).
• The Responsibilities file is	
the file trainR.svm	
• The Property file is the file	
trainBCFlog.prp	
• The Output is set to	
<pre>trainBCFlog_reg_pred.</pre>	
The setup should look as in Figure 18.	
Click the button OK .	
Click the Predict radio-button.	This setup applies uses the landscape to
Check that:	estimate the logarithm of BCF value to the
	test data. The performances are close to

 The Landscape model file is the file train_cls.xml The Responsibilities file is the file testR.svm The Property file is the file testBCFlog.prp The Output is set to testBCFlog_reg_pred. The setup should look as in Figure 20. Click the button OK. 	those observed in cross-validation (Figure 21). If the Properties file field in not filled, the model is applied and the software returns the predicted classes in the *.tsv file. But the predictive performances cannot be estimated.
--	---

In this exercise, the GTM is used to prepare a property landscape to predict the logarithm value of the bioaccumulation factor expressed in L/Kg. The performances on the test set are weak (RMSE on test set about 1.05) compared to published models (RMSE about 0.6). However, it is sufficient to provide with a trend that can be visually translated in landscapes as in the next exercise.

*	xGTMReg	- + ×		
GTM file:				
Enter a GTM model file	name (XML)			
Responsabillities file:				
Enter a responsibilities	file name (*R.svm)			
Property file:	1			
Enter a property file na	me (.PRP)			
Outputs:				
Output base file name				
 Train 	Property name: Short property name			
🔵 Predict 🛛 🔱	Author: Author name and surnam	e		
Cross-validate	Title: Title of the model			
10 🗘 folds	10 0 folds			
,	Comments about the mod			
	Min. Responsibility: 0,000	000		
	3 Min. Density: 0,000	000		
<pre>************************************</pre>				
* University of Strasbourg, 2020 * *********************************				
		6 OK Quit		

Figure 22: Interface of the xGTMReg software. The inputs and outputs are setup in area 1. The meta-data are provided in aread 2. The control of applicability domain is provided through the region 3. The model building and validation is chosen in area 4. The log are written in 5 and the calculations are launch with buttons in region 6.

-		xGTMReg		- +	×
GTM file:					
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/train.xml			
Responsabillities file:					
/home/marcou/Docum	ents/CS3-2020/Tuto	rial/dataset/trainR.svm			
Property file:					
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/trainBCFlog.prp			
Outputs:					
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/trainBCFlog_reg			
 Train 	Property name:	BCFlog			
Predict	Author:	G. Marcou			
Cross-validate	Title:	logarithm of Bioconcentration factor			
10 folds	Comments:	Bioconcentration factor (in L/Kg)			
	I	Min. Responsibility: 0,000000	^		
		Min. Density: 0,000000	^		

Figure 23: Preparation of a regression predicting the bioaccumulation factor logarithm.

•		xGTMReg	- + :
GTM file:			
/home/marcou/Docun	nents/CS3-2020/Tuto	rial/dataset/train.xml	
Responsabillities file:			
/home/marcou/Docun	nents/CS3-2020/Tuto	rial/dataset/trainR.svm	
Property file:			
/home/marcou/Docun	nents/CS3-2020/Tuto	rial/dataset/trainBCFlog.prp	
Outputs:			
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/trainBCFlog_reg_CV	
🔵 Train	Property name:	BCFlog	
Predict	Author:	G. Marcou	
Cross-validate	Title:	logarithm of Bioconcentration factor	
10 💭 folds	Comments:	Bioconcentration factor (in L/Kg)	
		Min. Responsibility: 0,000000	0
		Min. Density: 0,000000	Ŷ

Figure 24: Cross-validation setup to measure the performances of the bioaccumulation factor logarithm landscape.

* f	fold 10*
RMSE =	1.0181
MAE =	0.7570
Relative RM	SE=0.8481
Relative MA	E =0.7724
R2det =	0.4964
CCC =0	0.2808
R2cor =	0.2941
******	***** Averaged performances *************
RMSE =	1.0997
MAE =	0.8461
Relative RM	SE=0.8067
Relative MA	E =0.7393
R2det =	0.5468
CCC =0	0.3412
R2cor =	0.3760
Cal	culations complete

Figure 25: Performances measures on the last fold and average performance across all folds of the log(BCF) landscape.

v		xGTMReg		- +	×
Landscape model file:					
/home/marcou/Docum	nents/CS3-2020/Tutor	ial/dataset/trainBCFlog_reg.xml			
Responsabillities file:					
/home/marcou/Docum	nents/CS3-2020/Tutor	ial/dataset/trainR.svm]	
Property file:					
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/trainBCFlog.prp			
Outputs:					
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/trainBCFlog_reg_pred			
🔵 Train	Property name:	BCFlog			
 Predict 	Author:	G. Marcou			
Cross-validate	Title:	logarithm of Bioconcentration factor			
10 folds	Comments:	Bioconcentration factor (in L/Kg)			
	N	Ain. Responsibility: 0,000000	\sim		
		Min. Density: 0,000000	~		

Figure 26: Configuration of the xGTMClass software to apply the model to training set data and estimate the performances.

Figure 27: Performances of the logarithm of BCF landscape on the training dataset.

~		xGTMReg	- + :	
Landscape model file:				
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/trainBCFlog_reg.xml		
Responsabillities file:				
/home/marcou/Docum	nents/CS3-2020/Tuto	rial/dataset/testR.svm		
Property file:				
/home/marcou/Docun	nents/CS3-2020/Tuto	orial/dataset/testBCFlog.prp		
Outputs:				
/home/marcou/Docun	nents/CS3-2020/Tuto	rial/dataset/testBCFlog_reg_pred		
 Train 	Property name:	BCFlog		
Predict	Author:	G. Marcou		
Cross-validate	Title:	logarithm of Bioconcentration factor		
10 tolds	Comments:	Bioconcentration factor (in L/Kg)		
		Min. Responsibility: 0,000000	~	
		Min. Density: 0,000000	\sim	

Figure 28: Configuration of the xGTMClass software to apply the model to test set data and estimate the performances.

/	- Performances\	
RMSE	=1.0527	
MAE	=0.8164	
Relative	RMSE=0.7624	
Relative	MAE =0.7018	
R2det	=0.4188	
CCC	=0.6346	
R2cor	=0.4360	
	Calculations complete	

Figure 29: Performances of the BCF classification landscape on the test dataset.

1.6. Exercise 6. Property and activity landscapes

This GTM can be used to build predictive models for classification and regression as illustrated in the previous exercises. These models can be transferred to the map, providing a z-axis used to color the map. When a quantitative estimation is transferred to the map, the result is termed a property landscape; when it is a score estimating the population of a class on the map, it is termed and activity landscape.

Input:

- trainBCFlog_reg.xml, trainBCFcl_cls.xml, trainPrj.mat, train.sdf
- testPrj.mat,test.sdf

Instructions	Comments
Open the application xGTMLandscape .	The interface should look as illustrated in
	the Figure 30. Input management is located
	in (1). The landscape is displayed in (2). The
	displayed activity or property, as well as
	some controls over the display are provided
	in region (3). The area (4) of the interface

	controls the navigation through the loaded chemical structures. The logs generated are recorded in the region (5) and the calculations are launched in the region (6).
 Setup the input files to process (Figure 30, area 1 and Figure 31). Click the GTM landscape model file (.xml) button and chose the file trainBCFlog_reg.xml. Click the Projection file (Prj.mat) button and chose the file trainPrj.mat. Click the Chemical structures file (SDF) button and chose the file train.sdf. Click the OK button (Figure 30, area 6). 	This setup loads the property landscape representing the logarithm of the bioconcentration factor (trainBCFlog_reg.xml), the projections of the training dataset (trainPrj.mat) and the corresponding chemical structure file (train.sdf). After loading the projections of the chemical compounds are displayed and the chemical structures can be navigated (Figure 32). Besides, the property selector in the area 3 of Figure 30 is updated and becomes useable. The density map is displayed in gray scale
Density.	(Figure 33), the dark regions being the most populated. The colors are located on the GTM nodes, so the maps based the 8000 nodes version of the map can be used to generated more resolved visuals.
In the property selector, select the item BCFlog .	The property map of the bioconcentration factor is displayed (Figure 34). The dark colored regions are those with the lower logBCF value. The white areas are unpopulated regions and are out of applicability domain. Therefore, they are not drawn.
 Setup the input files to process (Figure 30, area 1 and Figure 35). Click the GTM landscape model file (.xml) button and chose the file trainBCFcl_cls.xml. Click the Projection file (Prj.mat) button and chose the file trainPrj.mat. Click the Chemical structures file (SDF) button and chose the file train.sdf. Click the OK button (Figure 30, area 6). 	This setup loads the activity landscape locating the regions of the chemical space that are populated by compounds that are likey to bioconcentrating or not (trainBCFc1_cls.xml). After loading the projections of the chemical compounds are displayed and the chemical structures can be navigated (Figure 32). The property selector in the area 3 of Figure 30 is updated. It is more complicated because for activity landscapes, two marginal probabilities distribution per class can be plotted (termed in the interface as "Likelihood" and "Class"). Additionally, the applicability domain appears as an additional class.

In the property selector, select the item Likelihood class=BCF.	The activity landscape is displayed in blue scale (Figure 36), the dark regions are low probability density value and the more light regions are high probability density value. The map is obtained by summing up the responsibilities of compounds labeled as bioconcentrating. It is interpreted as a measure of the marginal probability of the nodes to be activated by bioconcentrating compounds. Here the most visible region are PCBs.
In the property selector, select the item Likelihood class=notBCF.	This map represents the activated nodes, but for the non-bioconcentrating chemical structures. This is the major class of the dataset, so it tends to cover a larger part of the map. They cover simple benzene derivatives, various thiophosphates and silicates (Figure 37).
In the property selector, select the item Class class=BCF. Then select the item Class class=notBCF.	This time, the landscape represents the probability of a compound located at a given node, to belong to the BCF class (Figure 38) or notBCF class (Figure 39). It is related to the "Likelihood" maps by a Bayes formula. The score population is also much more concentrated over extreme values. In contrast to the property landscape, the applicability domain appears as regions of zero probability (dark) for both BCF and notBCF classes.
In the property selector, select the item Class class=OutOfAD	The applicability domain is more visible when displayed using the item Class class=OutOfAD (Figure 40). Typically, there are no compounds from the training set that are considered as out of applicability domain. Therefore, the Likelihood landscape is flat and almost null. Therefore, each class is equiprobable on these regions of the map. However, the decision is to set the probability of both classes (BCF/notBCF) to 0 and the probability of OutOfAD to 1. Therefore, the Class landscape actually represents the null density regions of the map. This picture become more complicated when modifying the parameters of the model defining the applicability domain.

In this exercise, the regression and classification GTM models are visualized, leading to property and activity landscapes, respectively. The projections of the training set compounds are used interpret the map chemically. The applicability domain and density maps are main information from the landscape analysis. They locate those regions where the chemical space has not been explored yet concerning the bioconcentration property.

In the classification exercise, the classes BCF and notBCF are mutually exclusive. It translates on the map through the shape complementarity between the classes. This is true as long as the classes are not normalized, of course. Another aspect of activity landscapes is that they can represent two kinds of marginal probabilities: probability to of a node considering a class (Likelihood) and probability of class considering a node (Class). The former quantity is more convenient to compare the populations of classes, as for instance when comparing chemical libraries. The latter is better suited to illustrate the classification model. However, they ultimately are convertible one into the other through a Bayes formula so they basically encode the same information.

Figure 30: Interface of the xGTMLandscape software. The inputs and outputs are setup in area 1. The landscape is displayed in area 2. The choice of the landscape to display and some rendering control are provided through the region 3. The navigation through the chemical structures is located in area 4. The log are written in 5 and the calculations are launch with buttons in region 6.

GTM landscape model file (.xml):	
/home/marcou/Documents/CS3-2020/Tutorial/dataset/trainBCFlog_reg.xml	
Projection file (Prj.mat):	
/home/marcou/Documents/CS3-2020/Tutorial/dataset/trainPrj.mat	
Chemical structures file (SDF):	
/home/marcou/Documents/CS3-2020/Tutorial/dataset/train.sdf	

Figure 31: Preparation for loading the logarithm of bioconcentration factor property landscape.

Figure 32: State of the xGTMLandscape software interface after loading a property or activity landscape.

Figure 33: Density landscape of the training dataset using the standard map, or the improved map using 8000 nodes.

Figure 34: Property landscape of the training dataset of the logarithm of the bioconcentration factor, using the standard map, or the improved map using 8000 nodes.

/home/marcou/Documents/CS3-2020/Tutorial/dataset/trainBCFcl_cls.xml	
Projection file (Pri.mat):	
/home/marcou/Documents/CS3-2020/Tutorial/dataset/trainPrj.mat	
/home/marcou/Documents/CS3-2020/Tutorial/dataset/trainPrj.mat	
Chemical structures file (SDF):	
/home/marcou/Documents/CS3-2020/Tutorial/dataset/train.sdf	

Figure 35: Preparation for loading the bioconcentration factor activity landscape.

Figure 36: Activity landscape as the density of compounds labeled as bioconcentrating, using the standard map or the improved map using 8000 nodes.

Figure 37: Activity landscape as the density of compounds labeled as not bioconcentrating, using the standard map or the improved map using 8000 nodes.

Figure 38: Activity landscape as a probability of compounds to be labeled as bioconcentrating, using the standard map or the improved map using 8000 nodes.

Figure 39: Activity landscape as a probability of compounds to be labeled as not bioconcentrating, using the standard map or the improved map using 8000 nodes.

Bibliography

- [1] ECHA, (Ed.: ECHA), **2017**.
- [2] E. Commission, in R. (EC) N. 1907/2006, R. (EC) N. 1907/2006
 (Ed.: EC), 2006.
- [3] N.-N. I. o. T. a. Evaluation.
- [4] CEFIC.
- [5] E. Canada.
- [6] U. EPA.
- [7] OASIS.
- [8] OECD.
- [9] J. A. Arnot, F. A. P. C. Gobas, *Environ. Rev.* **2006**, *14*, 257–297.
- [10] S. Dimitrov, N. Dimitrova, T. Parkerton, M. Comber, M. Bonnell, O. Mekenyan, *SAR QSAR Environ. Res.* **2005**, *16*, 531–554.
- [11] W. Fu, A. Franco, S. Trapp, *Environ. Toxicol. Chem.* **2009**, *28*, 1372–1379.