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Introduction to fragment docking 

Drug discovery starts with the identification of 

molecules that binds the target, followed by the 

optimization of the binding and pharmacokinetics 

properties of the most promising molecule. The likelihood 

of success in the medicinal chemistry program is influenced 

by the quality of the lead compound. To that respect, 

fragments have a number of potential advantages over the 

larger drug-like compounds. In particular, fragments are 

easier to elaborate owing to their small size.  

Fragment growing is largely facilitated by the 

knowledge of the binding mode to the target 
1,2

. The best 

models come from X-ray crystallography. For targets which 

crystallize without difficulty, up to hundreds of three-

dimensional (3D) structures are determined to enable the 

medicinal chemist to take decisions about optimization. 

When crystallography is not possible, NMR and 

computational approaches are good alternative methods.  

Molecular docking is the most popular 

computational technique to predict the atomic coordinates 

of a protein-ligand complex
3,4

. Virtual screening of 

chemical libraries by high-throughput docking has shown 

to be a powerful tool for drug-like hit identification
5,6

. 

However, docking scoring functions are fairly able to 

prioritize the most relevant solutions in first place, making 

compound raking a serious limitation of the method
7
. 

Scoring problem is exacerbated for small ligands
8–11

. 

Several benchmarks and docking challenges have 

been proposed by the docking community to aid 

computational chemists to refine their practices and 

rescoring methods
7,12–15

. One successful approach to pose 

filtering is based on the principle that the knowledge of the 

binding mode of a ligand can help the prediction of the 

binding mode of another compound.  A state-of-the-art 

rescoring method is GRIM
16

, which converts protein-ligand 

interactions into graphs and score docking solutions by 

maximal similarity of predicted interaction graphs to that 

already visited in the Protein Data Bank (PDB)
17

. However 

there is a caveat when rescoring fragment poses: while 

drug-like molecule binding modes yield complex graphs 

that are easy to compare, fragment binding modes yield 

simple and potentially unselective graphs that are prone to 

generate irrelevant 3D-alignment of ligand/protein 

complexes upon graphs comparison. 

 In this tutorial, we will use a novel knowledge-based 

method which is applicable to fragment scoring. The 

method, named LID for Local Interaction Density, builds a 

consensus interaction map from all experimental 

observations. All reference complexes are 3D-aligned in a 

common frame, then the density of interactions is encoded 

into a grid. Docking pose are scored from the matching of 

fragment atoms to the grid. 

Here we asked whether information on binding mode 

can help selecting the correct fragment pose of fragment 

docked into human carbonic anhydrase II (HCA II). 

 

Human carbonic anhydrase II 

The carbonic anhydrases comprise several well 

studied classes among which is the α class, including the 

human and animal enzymes. HCA II is the most extensively 

studied of these enzymes and it is essential for bone 

resorption and to maintain acid-base balance in kidney.  

HCA II catalyzes the reversible hydration of carbon 

dioxide (CO2), therefore helping its transport out of tissues. 

The interconversion of carbon dioxide and water to 

bicarbonate and protons (or vice versa) involves a zinc ion.  

The catalytic mechanism
18

 and the intramolecular proton 

transfer is widely speculated to occur between the zinc-

bound solvent and the side chain of His 64, that sits on the 



rim of the active site, through a network of ordered active 

site waters to an ‘in’ conformer of His 64 (pointing towards 

the active site) which then rotates to an ‘out’ conformer 

(pointing towards the bulk solvent)
19,20

 (Fig. 1).  

 

 

Figure 1: The active site of HCA II from the data of Fisher et al., 
2005. The side chain of His64 is shown in both the inward and 
outward conformations. The red spheres represent oxygen 
including the oxygen atoms of ordered water molecules involved 
in the proton transfer. Image generated with PyMOL25. 

 

CA inhibitors (CAIs) are currently used in the 

treatment of glaucoma, high blood pressure, epilepsy, 

altitude sickness, gastric and duodenal ulcers, neurological 

disorders and osteoporosis
21,22

. CAIs can be divided into 

two classes: those who bind to the enzyme active site 

anchoring to the catalytic zinc ion, and those who do not 

interact directly with the zinc. Four groups of zinc binding 

inhibitors have been studied by X-ray crystallography: 

ureates/hydroxamates, the mercaptophenols, the metal-

complexing anions and the sulfonamides with their 

bioisosteres, such as sulfamates and sulfamides
23

.  

To date, the sulfonamide group is the most largely 

used zinc binding function for the design of CAIs and 

constitute the majority of the clinically used drugs. One of 

the earliest and most frequently prescribed CAI is 

acetazolamide
24

 (AZM; 5-acetamido-1,3,4-thiadiazole-2-

sulfonamide) (Fig. 2), marketed as Diamox and indicated to 

treat glaucoma.  

Acetazolamide has a Ki of 10 nM for CA II. Sulfonamides 

mechanism of binding lies on the coordination of the 

negatively charged deprotonated sulfonamide nitrogen to 

the catalytic Zn
2+

, with consequent substitution of the zinc-

bound water molecule, and by two H-bonds of the 

sulfonamide moiety with residue Thr199
22,23

 (scene 4, at 

Intro.pse and Fig. 2). 

 

Figure 2: 2D chemical representation of the drug acetazolamide 
(AZM) bound to the active site residues (Thr199 and Thr200) of 
HCA II. Dashed lines represent H-bonds/metal coordination. PDB 
ID: 3HS4. Image generated with Poseview26. 

 

INSTRUCTION: OBSERVATION OF HCA II 3D-STRUCTURE 

At the PyMOL session file Intro.pse, at folder 

PyMOL_sessions, you can notice at scenes 1 and 2 the HCA 

II structure and active site, with the conserved water 

molecules and the zinc ion that participates on the proton 

transfer. In addition, notice His64 with its side-chain in 

both states (in/out). Scene 3 shows the superposition of 

some of the many available protein structures for HCA II, 

notice the conservation of the active site residues side-

chains.  

  



Purpose of the tutorial 

Here we compare pose ranking by the empirical 

Chemplp score and by the LID method. We consider two 

possible contexts:  

1. There are several reference binding modes to 

HCA II. All the reference ligands are drug-like 

molecules sharing a common substructure 

interacting with the protein binding site, here a 

sulfonamide group interacting with the zinc 

cation.  

2. There are no reference ligands and therefore we 

use as references all the additive molecules 

crystallized with the apo-protein (e.g. glycerol 

which is a cryoprotectant). 

The rescoring exercise is exemplified with two 

chemically unrelated fragments docked into HCA II (Fig. 3). 

The first fragment, 1H-benzimidazole-2-sulfonamide (EVE), 

contains the sulfonamide group required to anchor the zinc 

cation of HCA II. Note that the sulfonamide group of EVE 

has been negatively charged to facilitate docking. The 

second ligand, 2-(4-phenylmethoxyphenyl)ethanoic acid 

(IO2) has a different chemical structure, which is not 

similar to any of the reference drug-like ligand structures.  

 

 

Figure 3: 2D chemical structures of fragments 1H-benzimidazole-
2-sulfonamide (EVE) and 2-(4-phenylmethoxyphenyl)ethanoic 
acid (IO2). The ionization states of docking input are shown. 

 

 

INSTRUCTION: OBSERVATION THE REFERENCE LIGANDS 

AND THEIR BINDING MODE TO HCA II 

Open the file References.html at folder html into your 

favorite web browser and observe the chemical structure 

of the 48 drug-like ligands and the 10 additives crystallized 

with HCA II. Note the number and type of interactions 

made by the two ligand classes. 

Go back to the PyMOL session file Intro.pse. Scene 4 

and 5 show the co-crystallized drug-like ligands (magenta) 

and additives (green), respectively, that will be used as 

reference ligands on the exercises. Use the keyboard 

arrows to move through the different ligands. The 

interaction points are also represented for each drug-like 

and additive ligand. 

 

Although the 48 drug-like ligands all include a 

sulfonamide group, they represent a chemically diverse 

ensemble. Their molecular weight ranges from 304 to 473 

Da. By comparison, fragment molecular weights are 

significantly smaller (197 and 242 Da for EVE and IO2, 

respectively). Note that the AZM drug shown in Figure 1 is 

also a fragment (molecular weight = 222 Da), which has a 

very high ligand efficiency. There are 7 different additives 

crystallized with HCA II apo-enzyme: carbonic dioxide, 

glycerol and small acids (cyanic, acetic, carbonic, sulfuric 

and perchloric acids) which are in their deprotonated form 

at physiological pH. 

The drug-like ligands all anchor to the zinc cation of 

HCA II. Many of them also sits into the hydrophobic pocket 

formed by Phe 131, Val 135 and Pro 202. Nevertheless, 

considered as a whole, the drug-like ligands set explore the 

full protein active site, each ligand being engaged in both 

hydrophobic contact and at least one hydrogen bond. By 

contrast additives are principally clustered near the zinc 

cation. They also reveal five H-bonded amino acids (Asn 62, 

His 64, His 94, Asn 67, and Thr 199) and a small 

hydrophobic patch near Val 121. 

Material and methods 

For the sake of simplicity, you are provided with 

the docked poses pre-generated with PLANTS. In addition, 

the interaction points for references and docked poses 

were also previously calculated using IChem. Folder 

organization with a description of the inputs and output 

files is available at Table 1. 



Materials 

Inputs 

 Reference interaction files: 48 for drug-like 

molecules and 10 for additive molecules; 

 Docking interaction files: generated for each 

docked conformation of EVE and IO2 into the 

multiple PDB structures. 

Methods 

1. Preparation of PDB structures. Hydrogens were added to 

all protein-ligand complexes using Protoss
28

. Protoss 

identifies missing hydrogen atoms in a protein-ligand 

complex by a detection of free valences of all heavy atoms; 

Protein structures preparation also involved the removal of 

all bound molecules, including water; Protein structures 

are aligned with the CE algorithm
29

 against a reference 

(determined by a hierarchical clustering, average linkage, 

Cα-RMSD as distance); 

2. Docking. Docking was performed using PLANTS
30

, v1.2 

with the following parameters: scoring function Chemplp; 

accuracy set to “speed1” (most accurate); binding site 

center -0.631 x 4.763 x 13.579 Å; binding site radius 10.0 Å, 

cluster_rmsd 2.0 Å, 10 poses. 

3. Detection of ligand/protein interactions. Interaction 

graphs were generated using the module GRIM, calculated 

with IChem v5.9.2. Each interaction is encoded by a triplet 

of pseudo-atoms: one matching the protein atom, one 

matching the ligand atom and one at the center of these 

two. Depending on ligand and protein atom typing, 

distance and angle, five interaction types could be 

detected (Hydrophobic, π-stacking, hydrogen bond, salt 

bridge and metal chelation). IChem is freely distributed to 

academia upon license request to Dr. Didier Rognan (mail 

to rognan@unistra.fr ). 

4. Rescoring of docking poses. LID rescoring involves two 

steps:  

(1) Generation of the hashed map. In practice, space 

is discretized into 0.1 Å-binned grid. Each cube is 

annotated with the count of all the reference 

pseudo-atoms it contains (one annotation per 

interaction type and mode). The cube density is 

then computed considering annotation of all 

neighboring cubes within a radius of 0.5 Å. 

(2) Rescoring of docking poses by placing predicted 

pseudo-atoms in the grid and summing density of 

cubes which are hit. 

 Free energy of binding were predicted using HYDE
31

. HYDE 

estimates binding free energy based on two terms for 

dehydration and hydrogen bonding only. The essential 

feature of this scoring function is the integrated use of 

log P‐derived atomic increments for the prediction of free 

dehydration energy and hydrogen bonding energy
31

. HYDE 

is developed by BioSolveIt and a trial license for HYDE can 

be requested upon registration at their website 

(https://www.biosolveit.de/). 

5. Evaluation of rescoring. The performance of the 

rescoring method is evaluated by the calculation of the 

Root Mean Square Deviation (RMSD) of the selected poses 

against the 3D coordinates of the crystallized target ligand.  

A prediction is considered good when RMSD between the 

docked pose and the crystallographic pose is inferior to 2.0 

Å. RMSD values were calculated using all non-hydrogen 

atoms. 

Program files and installation 

For this training, we will use PyMOL, an 

molecular visualization system on an open-source 

foundation, maintained and distributed by Schrödinger. To 

install PyMOL: 

Windows 

Download PyMOL for Windows: 

https://PyMOL.org/installers/PyMOL-2.1.1_0-Windows-

x86_64.exe. Do not check the cases for “Advanced 

options” 

Before starting the tutorial, open the Windows Command 

prompt and type: 

doskey python=C:\Users\<username>\PyMOL\python.exe $* 

 

For those who do not want to install PyMOL and prefer 

using another molecular visualization program, be aware 

that a python-interpreter is needed to run LID. It is possible 

to download the installation file: 

https://www.python.org/ftp/python/2.7.15/python-

2.7.15.amd64.msi  

Linux 

cd <target directory> # a PyMOL directory will be created 

here 

wget https://PyMOL.org/installers/PyMOL-2.1.1_0-Linux-

x86_64.tar.bz2 

tar -xjf PyMOL-2.1.1_0-Linux-x86_64.tar.bz2 

MacOS 

Download PyMOL for MacOS 

https://PyMOL.org/installers/PyMOL-2.1.1_0-MacOS.dmg  

mailto:rognan@unistra.fr
https://www.biosolveit.de/
https://pymol.org/2/
https://pymol.org/installers/PyMOL-2.1.1_0-Windows-x86_64.exe
https://pymol.org/installers/PyMOL-2.1.1_0-Windows-x86_64.exe
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi
https://pymol.org/installers/PyMOL-2.1.1_0-Linux-x86_64.tar.bz2
https://pymol.org/installers/PyMOL-2.1.1_0-Linux-x86_64.tar.bz2
https://pymol.org/installers/PyMOL-2.1.1_0-MacOS.dmg


Folders organization 

Table 1: Folders and content description. 

lid_tutorial Content Description 

docs Tutorial.pdf Text file for the tutorial 

html References.html 2D visualization of the drug-like and additive 
references 

outputs 

intgrid/ 
lid/ Exercises outputs will be written here 

progs rescoring.py, help.txt The script necessary to generate maps and run 
LID and a text file with the command lines 

PyMOL_sessions intro.pse, exercise_1.pse, exercise_2.pse PyMOL session files.  

interactions references/[additives/druglike]/PDBID_ints.mol2 
docked/ [EVE/IO2]/ PDBID_conf_[1to10]_ints.mol2 

Input interaction files used for LID scoring 

results 

intgrid/druglike_all.iva, druglike_all.gri, druglike_all.mol2 
intgrig/additive_all.iva, additive_all.gri, additive_all.mol2 
lid/ [druglike/additive]_all_EVE.csv, [druglike/additive]_all_IO2.csv 
hyde/hyde_EVE.csv, hyde_IO2.csv 

Pre-calculated exercises  and HYDE outputs 

xray_structures additives/PDBID_[protein/ligand].mol2 
druglikes/ PDBID_[protein/ligand].mol2 
 

Input structures used for docking and 
interaction points generation 

docking inputs/PDBID_protein.mol2, EVE.mol2, IO2.mol2 
outputs/[EVE/IO2]/PDBID/PDBID_conf_[1to10]_protein.mol2, 
outputs/[EVE/IO2]/PDBID/PDBID_conf_[1to10]_ligand.mol2 

Inputs used for docking; output structures 
generated with PLANTS for each fragment and 
interaction points files generated for each 
docked pose 

   

   

Exercise 1: EVE pose prediction 

The purpose of this tutorial is the rescoring of docking 

generated poses using the LID method.  

In this first exercise, we are going to predict the 

binding mode of the sulfonamide containing fragment EVE 

(Fig. 3), using two different scenarios: 

(1) using drug-like sulfonamide containing molecules as 

references; 

(2) using miscellaneous additive molecules as references.

 

INSTRUCTION: OBSERVATION OF CRYSTALLOGRAPHIC 

STRUCTURE AND DOCKING POSES 

Open the PyMOL session file exercise_1.pse located at 

PyMOL_sessions. Scenes 1 and 2 shows you the 

crystallographic structure of the fragment EVE (PDB ID: 

3S72), represented as sticks colored in cyan, complexed 

with HCA II. Scene 3 shows you the interaction points 

generated with IChem.  

At scene 4 you can see the top ranked pose predicted 

by the docking scoring function Chemplp (colored in green) 

and the pose with the best RMSD (colored in marine blue). 

At scene 5 you can see all the docked poses colored by the 

Chemplp score, ranging from red to blue (worse to better). 



Observing the crystal structure of the complex 

between EVE and HCAII, you can notice the interactions 

made with the active site residues, and the metal 

coordination by the sulfonamide and histidine residues. 

You can see that it accounts not only the polar interactions 

(hydrogen bonds and metal coordination) but also 

hydrophobic contacts with residue Leu 197. 

The docking proposed multiple binding modes of EVE 

in HCA II. Chemplp scoring function did not identify the 

best solution as the top ranked pose. 

 

INSTRUCTION: RESCORING POSES 

Go to the root folder (lid_tutorial/) 

a) Generate the interaction map from 48 drug-like 

sulfonamide.   

Execute the scripts:  

Note: for Windows users, use “\” instead of “/”. 

python progs/rescoring.py intgrid  
 –r druglike 

AND 

python progs/rescoring.py intgrid 
 –r additive 

b) Score the docking poses 

Execute the scripts: 

python progs/rescoring.py lid 
 –p EVE 
 -r druglike 

AND 

python progs/rescoring.py lid 
 –p EVE 
 -r additive 

c) Visualize the results at the outputs/lid folder 

Take a look at the output files druglike_all_EVE.csv and 

additivs_all_EVE.csv. 

At the file druglike_all_EVE.csv you can see the 

ligands named according to their docking rank (conf_01,02, 

etc) and re-classified by their LID score, followed by the 

corresponding RMSD value in reference to the 

crystallographic structure of EVE. You can notice that LID is 

capable of retrieving a near-native conformation of the 

target ligand: the best pose, 3N0N_EVE_conf_03, with 

score 0.45 has a RMSD of 0.54 Å in comparison to the 

crystal structure. Also, see that in the most cases, the top 

ranked pose predicted by docking (conf_01) are not the 

ones with the lowest RMSD to the crystallographic 

structure. 

As for the drug-like scenario, LID is capable of finding 

the correct pose also by using as references the additive 

molecules. At the file additives_all_EVE.csv, you see that 

the best pose, 2H15_EVE_conf_06, with score 0.57 has an 

RMSD of 0.293 Å in comparison to the crystal structure. 

This exercise highlights the use of additive molecules when 

there are no other small molecules complexed with the 

protein of interest. 

 

INSTRUCTION: OBSERVATION OF POSES RANKING BY LID  

Go back to the PyMOL session, at scenes 6 and 7 you can 

see all the generated docking poses for EVE, colored by the 

LID score, using the drug-like and additive references, 

respectively. They are colored ranging from red to blue 

(worse to better). Higher the LID score, the closest are the 

poses to the crystallographic structure of EVE, showing the 

powerfulness of the method.  

At scene 8 you can find the top ranked pose predicted by 

LID, using drug-like references (colored in magenta), the 

top ranked pose predicted by LID, using additives as 

references (colored in orange) to compare with the lowest 

RMSD and crystallographic poses. 

Exercise 2: IO2 pose prediction 

In this exercise, we are going to predict the 

binding mode of the fragment IO2. Like in Exercise 1, we 

are going to use drug-like and additive molecules as 

references in the rescoring procedure. However, in this 

case the drug-like references don’t share structural 

similarity with IO2. 

INSTRUCTION: OBSERVATION OF CRYSTALLOGRAPHIC 

STRUCTURE AND DOCKING POSES 

Open the PyMOL session file exercise_2.pse located at 

PyMOL_sessions. Scenes 1 and 2 shows you the 

crystallographic structure of the fragment IO2 (PDB ID: 

5FLQ), represented as sticks colored in cyan, complexed 

with HCA II. Scene 3 shows you the interaction points 

generated with IChem.  

At scene 4 you can see the top ranked pose predicted 

by the docking scoring function Chemplp (colored in green) 

and the pose with the best RMSD (colored in marine blue). 

At scene 5 you can see all the docked poses colored by the 

Chemplp score, ranging from red to blue (worse to better).  



You can notice the interactions made by IO2 with the 

Zn ion through its carboxylic portion. Apart from the metal 

coordination, the interactions are predominately 

hydrophobic, with residues Val 134 and Leu 197. 

The docking proposed multiple binding modes of IO2 

in HCA II. Again, the docking scoring function failed in 

correctly ranking the best solution as the top ranked pose. 

 

INSTRUCTION: RESCORING POSES 

Note that the maps required for LID scoring have 

already been computed during exercise 1. 

Go to the root folder (lid_tutorial/) and execute the scripts: 

python progs/rescoring.py lid 
 –p IO2 
 -r druglike 

AND 

python progs/rescoring.py lid 
 –p IO2 
 -r additive 

 

 Looking at the file druglike_all_IO2.csv, you can 

notice that the best pose 4IWZ_IO2_conf_06, with score 

0.47 has low RMSD value (1.24 Å) in comparison with the 

crystallographic IO2 conformation. Nevertheless, in 

comparison with the rescoring for EVE, there are lower 

RMSD poses that were not rescored as the top ranked 

poses.  

The same can be observed for rescoring using 

additives. At the file additives_all_IO2.csv, you see that the 

top ranked pose, 3N4B_IO2_conf_08 with score 0.52 has a 

RMSD of 3.386 Å, while the following poses in the rank 

have lower RMSD values (under 2.0 Å). 

 

INSTRUCTION: OBSERVATION OF POSES RANKING BY LID  

Go back to the PyMOL session, at scene 6 and 7 you can 

see all the generated docking poses for EVE, colored by the 

LID score, using the drug-like and additive references, 

respectively. They are colored ranging from red to blue 

(worse to better).  

Poses bearing a high LID score (blue) show all the ionic 

interaction between IO2 carboxylic acid group and the Zn 

ion, yet position of phenyl rings is variable. The drug-like 

map positively scores the well-positioned aromatics rings, 

but also tilted ones because in this pocket sub-site the map 

is mainly populated by hydrophobic points, which do not 

encode directional interaction by contrast to aromatic 

points. In the additive map the information in this 

subpocket is limited, therefore not sufficient to correctly 

place an aromatic group in this part of the pocket.  

In order to identify the correct poses, we are going to 

combine LID with another rescoring method, based on the 

calculation of the free energy of binding. We took the 

three top ranked poses predicted by LID and submitted to 

the energy estimation. The output file (hyde_IO2.csv) is at 

the outputs folder. By using a combined rescoring 

approach, the pose previously ranked at the third position 

by LID, now is the best predicted pose, according to HYDE. 

INSTRUCTION: OBSERVATION OF POSES RANKING BY LID 

AND HYDE 

At scene 8 of PyMOL session you can find the top 

ranked pose predicted by LID, using drug-like references 

(colored in magenta) and the best three poses predict by 

LID, using additive references (colored from orange to 

yellow, respectively) and the best pose predicted by HYDE 

(colored in wheat).  

The top ranked LID pose using additives (orange) has a 

larger deviation from the crystal structure when compared 

to the poses 2 and 3 by LID ranking. The best pose 

predicted using HYDE corresponds to pose 3 at LID ranking, 

representing a good match with the crystallographic 

conformation of IO2 (cyan). 

 

 

Conclusion 

 LID is efficient in pose prediction and can be used 

for scaffold hoping in a medicinal chemistry campaign. If 

experimental information on binding mode is scarce, LID 

can still be advantageously used to prioritize poses for 

scoring using a slower but more accurate approach such as 

free energy calculation. 
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