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*Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design." 

arXiv preprint arXiv:1711.10907 (2017); Science Advances, 2018, in press



y = f(x)

• Training: given a training set of labeled examples {(x1,y1), 
…, (xN,yN)}, estimate the prediction function f by 
minimizing the prediction error on the training set

• Testing: apply f to a never before seen test example x and 
output the predicted value y = f(x)

output prediction 

function

Molecular 

features

Machine Learning Framework



The newly-appointed President-Elect of the Royal Society 

of Chemistry today forecast the impact of advances in 

modelling and computational informatics on chemistry
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The growing appreciation of 

molecular modeling and 

informatics



Automated Retrosynthesis 

(Chematica)
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The growing appreciation of 

molecular modeling and 

informatics



Promise of dramatic acceleration 

of drug discovery



Rise of the machines in 

legal industry



The ultimate dream of a 

computational chemist



~106 – 109

molecules

VIRTUAL 

SCREENING

CHEMICAL

STRUCTURES

CHEMICAL

DESCRIPTORS
PROPERTY/

ACTIVITY

PREDICTIVE

QSAR MODELS

Confirmed inactives

(non-toxic)

QSAR

MAGIC

Confirmed 

actives 

(toxic)

CHEMICAL DATABASE

The chief utility of computational models: 

Annotation of new compounds
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QSAR Modeling Workflow: the 
importance of rigorous validation

M o d e l i n g   m e t h o d s

5-fold 

External 

Validation

1

4

3

2

5

12354

courtesy of L. Zhang

Combi-QSAR 
modeling

Datasets

K-Nearest 
Neighbors (kNN)

Random 
Forest (RF)

Support Vector 
Machines (SVM)

Dragon MOE

Internal validation
Model selection

An ensemble of 
QSAR Models

Modeling set

External set

D e s c r i p t o r s

Evaluation of 
external performance
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Tropsha, A. Best Practices for QSAR Model Development, Validation, 

and Exploitation Mol. Inf., 2010, 29, 476 – 488

Fully implemented on CHEMBENCH.MML.UNC.EDU

Virtual screening 
(with AD threshold)

Experimental 
confirmation



• Explosive growth of materials data, both experimental 

databases and computational repositories.

– Structural data: 160,000 entries in the Inorganic Crystal Structure 

Database (ICSD) 

– Experimental data: Numerous commercial and open 

experimental databases NIST, MatWeb, MatBase etc.

– Computational data: Huge databases such as AFLOWLIB, 

Materials Project, and Harvard Clean Energy

– Chemical space of possible materials is HUGE ~10100 

candidates [Nat. Chem. 7, 274-275 (2015)]

• Materials Genome Initiative or MGI (US Govt): Need for 

new high performance materials

Material Science and the Rise of Materials Informatics



Materials

Quantitative Structure Activity Relationship approaches (QSAR)

Quantitative Structure-Property Relationships (QMSPR)

theoretical 

fingerprint

x –ray diffraction 

pattern
property

modeling

Closing the gap: materials structure-

property relationships

Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and 

Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., 2015, 27: 735–743



Material Informatics/MQSAR Workflow

Descriptor 

generation

Fingerprints, clustering,

and modeling

Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and 

Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., 2015, 27: 735–743



Material Map (B-Fingerprints)

Orphans

Orphans

Cluster B: bimetals, 

polymetals

Cluster A: insulators, ceramics, 

complex oxides

Cluster C: metallic 

comp.  with non-

metallic atoms 

Cluster D: small band 

gap comp.,

semiconductors

Band gap, eV

>15000 materials from ICSD

DFT PBE calculations from aflowlib.org

Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and 

Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., 2015, 27: 735–743



Systematic representation of 

materials using fragment descriptors

Atoms in materials fragments are identified by their reference values of IP, EA, 

electronegativity, polarizability, heat of vaporization, melting temperature, etc.

Isayev O,  et al. The materials genome of electronic structure: universal machine learning method of band gap prediction. Submitted

A. Crystal Structure

B. Voronoi tessellation and
neighbors search

C. Infinite periodic graph 
construction and property labeling

(EA, IP, En, Rcov, etc)

Nodes (atoms)

D. Decomposition 
to fragments

Edges (bonds, vDW contacts)

Path fragments of length N,
N = 2, 3, … 

Circular fragments (polyhedrons)

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.



All models are trained based on DFT-computed

properties (VASP s/w from U. Vienna)

ML Workflow for Materials Property 

Prediction 

Only!

- Bulk modulus

- Shear modulus

- Thermal expansion

- Heat Capacity

- Thermal conductivity, etc.

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.



Learning approach for all models: 

Gradient Boosting Decision Trees (GBT)

Prediction of Electronic Properties

Classification accuracy 95%

ROC Curve (AUC) 0.98

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.



Prediction of Thermomechanical Properties

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.

(EBG - band gap energy; BVRH- bulk modulus; GVRH -shear modulus; tD - Debye temperature; CP -

heat capacity at constant pressure; CV - heat capacity at constant volume; aV -thermal expansion 

coefficient



• Fast, accurate general purpose machine learning methods for 
material’s property prediction. Milliseconds on laptop vs. days on 
HPC cluster

• Universal applicability to different materials: currently covered 85 
elements (H – Pu, without noble gases, Tc, Fr, Ra). All types of crystal 
lattices and symmetries.

• Most competing approaches are specific to one prototype/family of 
materials or single property

• Works for other properties: elastic, thermoelectric, etc.

• Possible to gain some chemically/physically interpretable insight into 
“black box” model.

• Possible to derive materials design rules

• User friendly web app and RESTful API (http://aflow.org/aflow-ml/)

Summary of Materials Informatics: 

Methods



Photocathode materials

Dye-sensitized solar cells (DSSCs)

Evaluated as DSSCs



A materials informatics approach

Design of alternate photocathodes

(AFLOWLIB)

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16



A materials informatics approach

(AFLOWLIB) PbTiO3 was identified as very similar to NiO

AND

It is has a dielectric constant >100

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16

Design of alternate photocathodes



A materials informatics approach

(AFLOWLIB) PbTiO3 was identified as very similar to NiO

AND

It is has a dielectric constant >100

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16

Design of alternate photocathodes



Identifying top hit: PbTiO3

Materials informatics

PbTiO3 was identified as very similar to NiO in terms of 

electronic properties despite different crystal structures

PropertiesStructure

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16



PbTiO3 is identified as a new 

photocathode material.

Successful experimental validation

Record fill factors of >50

First fully aqueous DSSC device

Currently, device performance is low; 

possible improvement by designing a 

new dye

Summary of Materials Informatics:

Supporting Experimental Discovery



The eternal philosophical question: 

Which came first? 

?

?

R or R2 ?

?



The eternal question: Which came first? 

In the beginning was the Word…

embeddedAnd the Word was…

“You should know a word by the company it keeps” 

J.R.Firth 1957

British linguist; formulated the 

notion of the “context-

dependent nature of meaning” 

(freely adopted from the Gospel of John)  



Learning semantic context with 

Word2Vec

• Mikolov, Tomas; et al. "Efficient Estimation 
of Word Representations in Vector 
Space". arXiv:1301.3781

Word2Vec Images courtesy of Chris 

McCormick:  

http://mccormickml.com/2016/04/19/word2v

ec-tutorial-the-skip-gram-model/

C=# words of context

Can be used to learn:

CBOW: 

• Pr(word_k|words_context)

Skip-Gram:  

• Pr(words_context|word_k)

https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1301.3781


Word embedding and similarity in 

the semantic space



Aspirin, also known as acetylsalicylic acid, is 
a medication used to treat pain, fever, and 
inflammation.

Penicillic acid is a mycotoxin that is produced 
by Aspergillus flavus and Penicillium
roqueforti mold.

O=C(C)Oc1ccccc1C(=O)O

CC(=C)C1(C=CC(=O)O1)O

O=C(C)Oc1ccccc1C(=O)O
CCOc1cc(C)ccc1OCC=CF 
COc1ccccc1OCCO 
CC(N)Sc1ccc(Cl)nc1 
COC(=O)NCc1ccccc1Cl
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Active
Inactive
Inactive

Inactive
Active

SMILES are words that uniquely 
describe sentence-molecules!

1
0
0
0
1



ReLeaSE* design principles: learning 

and exploiting structural linguistics of 

SMILES notation

• SMILES notations reflect rules of Chemistry 

• SMILES notation embeds linguistic rules

• Neural nets could learn both of the above types of rules 

• This knowledge can be transformed into the generation of 
new SMILES corresponding to novel chemically feasible 
molecules (generative model)

• One can build QSAR models based solely on SMILES 
notation (predictive model)

• QSAR models can be used as a reward function for 
reinforcement learning to bias the design of novel libraries

*Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design." 

arXiv preprint arXiv:1711.10907 (2017). Science Advances, in press (2018)



Design of the ReLeaSE* method
(Reinforcement Learning for Structural Evolution)

Elements of the 
thought cycle 
(molecules->models-
molecules):

• Generate chemically 
feasible SMILES

• Develop SMILES-
based QSAR model

• Employ QSAR model 
to bias library 
generation

• Produce new 
SMILES

*Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design." 

arXiv preprint arXiv:1711.10907 (2017); Science Advances (in press).



Generative model: training mode

Did the 

training 

converge

?

NO

YES

<START>

c

<START>c1ccc(O)cc1<END>

c
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<END>
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1.5M 

molecules 

from 

ChEMBL

c1ccc(O)cc1



Generative model: training 

mode

• Training 
continues until 
convergence

• Every SMILES 
from ChEMBL is 
used as training 
example ∼ 3-5 
times

1 32 4 50
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Are we making legitimate Smiles?

AI learning 

system

95% Valid 

Chemically-feasible 

molecules

SMILE strings

/

Smiles strings



O=C(C)Oc1ccccc1C(=O)O
CCOc1cc(C)ccc1OCC=CF 
COc1ccccc1OCCO 
CC(N)Sc1ccc(Cl)nc1 
COC(=O)NCc1ccccc1Cl

C
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0.531
1.299
0.946

-0.218
0.017

QSAR

Smile-ification of QSAR!

Quantitative Smiles – Activity Relationships



QSAR modeling using Smiles strings 

only*

RMSE:   0.57           0.53 
MAE:    0.37           0.35
R2ext:   0.90           0.91

CN2C(=O)N(C)C(=O)C1=C2N=CN1C

Neural 

Network

Property prediction

Predicted LogP

O
b
s
e
rv

e
d
 L

o
g
P

5CV RF model with 

DRAGON7 Descriptors

5CV NN model with 

SMILES directly

*LogP data for ~16K molecules from PHYSPROP (srcinc.com), Toxcast Dashboard 

(https://comptox.epa.gov/dashboard), and others.



Fc1ccc2c(Nc3ccc(F)c(F)c3)ncnc2c1

Generative model

Predictive model

Reinforcement learning for 

chemical design



Generative model

Predictive model
Fc1ccc2c(Nc3ccc(F)c(F)c3)ncnc2c1

Reinforcement learning for 

chemical design



Generative model

Predictive modelACTIVE!

Reinforcement learning for 

chemical design



Generative model

Predictive modelACTIVE!

Reinforcement learning for 

chemical design



Generative model

Predictive modelACTIVE!

Reinforcement learning for 

chemical design



Generative model

Predictive model

Reinforcement learning for 

chemical design



FC(F)COc1ccc2c(Nc3ccc(Cl)c(Cl)c3)ncnc2c1

Generative model

Predictive model

Reinforcement learning for 

chemical design



FC(F)COc1ccc2c(Nc3ccc(Cl)c(Cl)c3)ncnc2c1

Generative model

Predictive model

Reinforcement learning for 

chemical design



Generative model

Predictive modelINACTIVE!

Reinforcement learning for 

chemical design



Generative model

Predictive modelINACTIVE!

Reinforcement learning for 

chemical design



Generative model

Predictive modelINACTIVE!

Reinforcement learning for 

chemical design



Generative model

Predictive model

Reinforcement learning for 

chemical design



Technical details

• Models were trained on Nvidia Titan X and 
Titan V GPUs

• Training the generative model on ChEMBL
took ~ 25 days

• Training of predictive models took ~ 2 hours

• Biasing the generative model with 
reinforcement learning for one property ~ 1 
day

• Generative model produces 1000 compounds 
per minute



Results: Synthetic accessibility 

score* of the designed libraries

*Ertl, Peter, and Ansgar Schuffenhauer. "Estimation of synthetic accessibility score of drug-like molecules based on molecular 

complexity and fragment contributions." Journal of cheminformatics 1.1 (2009): 8.



Reward increase

A: increase in number of substituents 

B: increase in number of benzene rings

PoC: Structural Bias



Results: Biasing target properties 

in the designed libraries

4003002001000-100-200

Melting temperature (Tm), oC
Number of substituents

*



Optimized

Baseline

Partition coefficient (logP)

Results: Biasing target properties 

in the designed libraries

JAK2 Inhibition (pIC50)

4 86 10-2 120 2

*

4003002001000-100-200

Melting temperature (Tm), oC



Target predictions for generated 

compounds using SEA*

*Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand 

chemistry. Nat Biotech 25 (2), 197-206 (2007).



Target predictions for generated 

compounds using SEA*

*Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand 

chemistry. Nat Biotech 25 (2), 197-206 (2007).



Results: analysis of similarity
Distribution of Tanimoto similarity to the nearest neighbor in 
training dataset for compounds predicted to be active for 
EGFR by consensus of QSAR models:

1.00.90.80.70.60.5

Tanimoto similarity

T = 0.57

T = 0.69

T = 0.86



Model visualization for putative JAK2

inhibitors (projection using t-SNE)

ZINC19982368
pIC50 = 8.64

ZINC66347860
pIC50 = 3.31

pIC50 = 10.37

pIC50 = 0.63

ZINC2876515
pIC50 = 8.39
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ZINC469992
pIC50 = 8.23



Summary

• AI methods coupled with SMILES 
representation (only!) afford biased library 
generation

• The system naturally embeds reinforcement 
learning to produce novel structures with the 
desired property

• The system can be tuned to bias libraries 
towards specific property ranges

• Next phase is experimental validation of hits



Summary of recent AI-based 

studies on chemical library design

Molecular 

representations

Generative models Method of biasing 

generated compounds

• Fingerprints

• SMILES

• Graphs

• Autoencoders

• Generative 

adversarial 

models

• Recurrent 

neural networks

• Convolutional 

neural networks

• None

• Latent space 

optimization

• Fine-tuning on 

small subset of 

molecules with the 

desired property

• Reinforcement 

Learning



An example of experimental 

validation of AI-based models*

• First training on large dataset

• Then fine-tuning on small subset 
of active compounds

• “These observations corroborate 
the ability of the generative AI 
model to produce novel 
chemical entities within the 
training data domain”. 

* D. Merk, L. Friedrich, F. Grisoni, G. Schneider, Mol. Inf. 2018, 37, 1700153.



Cheminformatidia

Drug 
discovery

Toxicity 
prediction

Nano-
technology

Student 
Performance

Text and 
Social 
Media 
mining

Patient 
Outcomes

Materials 
Science

Drug 
Delivery

Many virtues of Cheminformatics
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