

Applications of machine learning and artificial intelligence to designing chemicals and materials with the desired properties

Alexander Tropsha UNC Eshelman School of Pharmacy

Outline

- Brief notes on machine learning/QSAR
- Materials Informatics and Materials Design
- Design, development and application of the <u>Re</u>inforcement <u>Lea</u>rning for <u>Structural Evolution</u> (ReLeaSE)*
- Summary and future work: QSAR without borders

*Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design." arXiv preprint arXiv:1711.10907 (2017); Science Advances, 2018, in press

- Training: given a *training set* of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- **Testing:** apply **f** to a never before seen *test example* **x** and output the predicted value **y** = **f**(**x**)

The growing appreciation of molecular modeling and informatics

Next RSC president predicts that in 15 years no chemist will do bench experiments without computer-modelling them first

The newly-appointed President-Elect of the Royal Society of Chemistry today forecast the impact of advances in modelling and computational informatics on chemistry

LIBERTY UNIVERSIT ONLINE

Christian counselors are needed to guide people through the toughest times of their lives.

Will you answer the call?

Professor Dominic Tildesley, who will become president in 2014, said: "The speed and development of computers is now so rapid, and the advances in modelling and informatics are so dramatic that in 15 years' time, no chemist will be doing any experiments at the bench without trying to model them first."

Professor Tildesley is a world-leading expert in large-scale computational modelling and

Automated Retrosynthesis (Chematica)

Chem Volume 4, Issue 3, 8 March 2018, Pages 390–398

CelPress

Backstory

Chematica: A Story of Computer Code That Started to Think like a Chemist

Bartosz A. Grzybowski, Sara Szymkuć, Ewa P. Gajewska, Karol Molga, Piotr Dittwald, Agnieszka Wołos, Tomasz Klucznik

Show more

https://doi.org/10.1016/j.chempr.2018.02.024

Get rights and content

 Refers To
 Tomasz Klucznik, Barbara Mikulak-Klucznik, Michael P. McCormack, Heather Lima, Sara Szymkuć, Manishabrata Bhowmick, Karol Molga, Yubal Zhou, Lindsey Rickershauser, Ewa P. Gajewska, Alexei Toutchkine, Piotr Dittwald, Michał P. Startek, Gregory J. Kirkovits, Rafał Roszak, Ariel Adamski, Bianka Sieredzińska, Milan Mrksich, Sarah L.J. Trice, Bartosz A. Grzybowski

 Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory

 Chem, Volume 4, Issue 3, 8 March 2018, Pages 522-532

 ♥ PDF (2659 K)
 Supplementary content

The growing appreciation of molecular modeling and informatics

'synthesiser farms' awaits

NEWS

Wanted: synthetic chemists (humans need not apply)

24 JANUARY 2018

Automation could free chemists from tedious lab work – if _____ they're ready to think differently about research

Promise of dramatic acceleration of drug discovery Pharma OICE.com

READ. THINK. PARTICIPATE.

News	Blog	R&D Co		mmercial	Operatio	ns		
Magazine	Phar	maVOICE	100	Resources	Events	Editorial	Advertise	Subscribe

GSK Has Developed A New Analytics Platform That Can Reduce The Time It Takes To Analyze Clinical Data From Months To Clicks

Source: Thomas Macaulay, CIO UK March 12, 2018

The platform uses large-scale data analytics to drive better decisions about the drug discovery pipeline, by allowing the pharmaceuticals giant to test the potential for new drugs before it begins clinical trials.

Rise of the machines in legal industry

Added on the 16th Mar 2016 at 10:28 am

Over 100,000 jobs in the legal sector have a high chance of being automated in the next twenty years, according to extensive new analysis by Deloitte.

The Deloitte Insight report, which predicts "profound reforms" across the legal profession within the next 10 years, finds that 39% of jobs (114,000) in the legal sector stand to be automated in the longer term as the profession feels the impact of more "radical changes."

The ultimate dream of a computational chemist

The chief utility of computational models: **Annotation of new compounds** PREDICTIVE **CHEMICAL CHEMICAL PROPERTY**/ **QSAR MODELS** DESCRIPTORS **STRUCTURES** ACTIVITY **QSAR** MAGIC CHEMICAL DATABASE Confirmed VIRTUAL actives SCREENING (toxic) $10^6 - 10^9$ molecules **Confirmed inactives** (non-toxic)

Material Science and the Rise of Materials Informatics

- Explosive growth of materials data, both experimental databases and computational repositories.
 - <u>Structural data</u>: 160,000 entries in the Inorganic Crystal Structure Database (ICSD)
 - <u>Experimental data</u>: Numerous commercial and open experimental databases NIST, MatWeb, MatBase etc.
 - <u>Computational data</u>: Huge databases such as AFLOWLIB, Materials Project, and Harvard Clean Energy
 - Chemical space of possible materials is HUGE ~10¹⁰⁰ candidates [*Nat. Chem.* 7, 274-275 (**2015**)]
- Materials Genome Initiative or MGI (US Govt): Need for new high performance materials

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	н				110	Oth	er nonmet	als		Halogens	ŧV							He
	Introduction	-		Ds		Alk	ali metals			Transitio	n metals		1	6	7	•	-	Alitza
2	Li	Be Beryflam 5.012182	Der	Alkaline earth metals			Post-transition metals Lanthanoids Actinoids			Barren	Carbon NJ. 0087	N Minuter 14.0067	O Chrysper 12 Million	F	N			
3	Na	Mg								Al Alexandress Statestates	Silese Silese	P Presentence accelerate	S Lutter 12 Mil	CI	A			
4	R R Princestam 20.0042	Ca Cablan st.en	SC Scandure 44 200912	Ti Ti Thereare 47,897	V Venaties Status	Cr Cr Drumans 11, 1981	Mn Mangarata Mangarata	Fe	Co Cotort IN NOTION	Ni Ni Mital Mital	Cu Cu Cupper 11.540	30 Zn 2012	Ga Ga Salun 19.721	Sectored States	AS Anasie Material	See	Br	K
5	BD Batedown BL.MC18	Sr Sr Hundard BT A2	29 Y TELLAR 50 ADDES	Evenium 11.224	Nb Noteset No Notes	MO Bindy Linderson	43 Tc Technarthan (NT.WITZ)	Rue Butterinen 191.87	A5 Rh Median Ico. Honda	Pd Pd Pathodase 100.43	Ag Silver Set and a	Cd Cidenasti	In the second	50 Sn 76 118 758	Sb Andrewsy ULL 2006	Te Te Telatan	50 	X
6	55 CS 52,5054515	Ba Bassum 137.327	sr-n La-Lu	72 Hf Hefsien 178.40	73 Ta Tattalute 100.94708	Tangastan 1933 Ba	Re Re Manager 198,207	76 OS 00784400 190,23	Ir hitten HELIII	78 Pt Flatinum 130,054	AU Cold 196, Nerves	High States and States	41 TI Dadian 204.3833	Pb Last 2012	Bi Bi Biarrath 200, 58040	Polyadam Cliffi M24	At Accession (CONTRACT)	RI 1222.0
7	B7 Fr Transient SEE	Ra Ra Madeen (226)	Ac-Lr	104 Rf matheediseduan	105 Db Datasian (362)	106 Sg Deatherpers (206)	Bh Batesere (254)	108 HS Messicum (1775)	109 Mt Metherium (364)	DS (271)	Rg Internation (272)	II2 Cn Septements	Unactivated (2004)	FI Flatter	Uup Ubergenteet	116 LV Liverresolum (JND	Ulus Universities (204)	UL
							100	a state of the	100000	stable isoti	-		er of the is		h the longe	Sector Street		
				Larthanan 130.99547	Contart Set 116	Pr Pr	Nd Neather Lan	Pm	Samanan Samanan 110.30	Eu Eu European 191.986	Gd Endeliner	Tb Turbaam 190.92330	Dy Bysereters	Ho Holmann Int 19822	Er Erteum 167 200	Tm Thedam 168 55521	Yb Ybadaare	Luni
				AC	Th	Pa Pa Protectores	U U U U U U U U U U U U U U U U U	Np	Pu Pu Pharman	Am	Cm Castant Castant	Bk Beteken (247)	Official Contracts	Es Enstatement	Fm	Md Mendelater	No Notestare	Lawren

Closing the gap: materials structureproperty relationships

Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., **2015**, 27: 735–743

Material Informatics/MQSAR Workflow

Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., **2015**, 27: 735–743

Material Map (B-Fingerprints)

>15000 materials from ICSD DFT PBE calculations from aflowlib.org

Orphans

Cluster C: metallic comp. with nonmetallic atoms Cluster B: bimetals, polymetals

Cluster D: small band gap comp., semiconductors

Orphans

Cluster A: insulators, ceramics, complex oxides

Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., **2015**, 27: 735–743

Band gap, eV

ML Workflow for Materials Property Prediction

Thermal conductivity, etc.

All models are trained based on DFT-computed properties (VASP s/w from U. Vienna)

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.

Prediction of Electronic Properties

Learning approach for all models: Gradient Boosting Decision Trees (GBT)

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.

Prediction of Thermomechanical Properties MML

(E_{BG} - band gap energy; B_{VRH} - bulk modulus; G_{VRH} -shear modulus; t_{D} - Debye temperature; C_{P} - heat capacity at constant pressure; C_{V} - heat capacity at constant volume; a_{V} -thermal expansion coefficient

property	RMSE	MAE	r^2
$E_{ m BG}$	$0.51 \; (eV)$	$0.35~(\mathrm{eV})$	0.90
$B_{ m VRH}$	14.25 (GPa)	8.68 (GPa)	0.97
$G_{ m VRH}$	18.43 (GPa)	10.62 (GPa)	0.88
$ heta_{ m D}$	56.97 (K)	35.86 (K)	0.95
$C_{ m P}$	$2.31~(k_{ m B}/{ m cell})$	$0.84~(k_{ m B}/{ m cell})$	0.99
$C_{ m V}$	$2.01~(k_{ m B}/{ m cell})$	$0.70~(k_{ m B}/{ m cell})$	0.99
$lpha_{ m V}$	$1.47 \times 10^{-5} (\mathrm{K})^{-1}$	$5.69 \times 10^{-6} (\mathrm{K})^{-1}$	0.91

TABLE I. Statistical summary of the *five-fold cross-validated* predictions for the seven regression models (Figure 3).

Summary of Materials Informatics: <u>Methods</u>

- Fast, accurate general purpose machine learning methods for material's property prediction. Milliseconds on laptop vs. days on HPC cluster
- Universal applicability to different materials: currently covered 85 elements (H – Pu, without noble gases, Tc, Fr, Ra). All types of crystal lattices and symmetries.
 - Most competing approaches are <u>specific to one prototype/family of</u> <u>materials or single property</u>
- Works for other properties: elastic, thermoelectric, etc.
- Possible to gain *some* chemically/physically interpretable insight into "black box" model.
- Possible to derive materials design rules
- User friendly web app and RESTful API (http://aflow.org/aflow-ml/)

Photocathode materials Evaluated as DSSCs

Dye-sensitized solar cells (DSSCs)

Design of alternate photocathodes MIL A materials informatics approach

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16

Design of alternate photocathodes MIL A materials informatics approach

It is has a dielectric constant >100

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, **2016**, 6, 9-16

Design of alternate photocathodes

PbTiO₃ was identified as very similar to NiO AND It is has a dielectric constant >100

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16

Materials informatics Identifying top hit: PbTiO₃

Structure

Properties

PbTiO₃ was identified as very similar to NiO in terms of electronic properties despite different crystal structures

Summary of Materials Informatics: Supporting Experimental Discovery

PbTiO3 is identified as a new photocathode material.

Successful experimental validation

Record fill factors of >50

First fully aqueous DSSC device

Currently, device performance is low; possible improvement by designing a new dye

The eternal philosophical question: Which came first?

The eternal question: Which came first?

In the beginning was the Word... And the Word was... **embedded**

(freely adopted from the Gospel of John)

"You should know a word by the company it keeps" J.R.Firth 1957

British linguist; formulated the notion of the "contextdependent nature of meaning"

Learning semantic context with Word2Vec

Can be used to learn:

CBOW:

Pr(word_k|words_context)

Skip-Gram:

Pr(words_context|word_k)

 Mikolov, Tomas; et al. "Efficient Estimation of Word Representations in Vector Space". <u>arXiv:1301.3781</u> Word2Vec Images courtesy of Chris McCormick: http://mccormickml.com/2016/04/19/word2v ec-tutorial-the-skip-gram-model/

Word embedding and similarity in in the semantic space

Male-Female

Verb tense

Country-Capital

SMILES are words that uniquely describe sentence-molecules!

Aspirin, also known as O=C(C)Oc1ccccc1C(=O)O, is a medication used to treat pain, fever, and inflammation.

^{cc(=c)c1(C=CC(=O)O1)O} is a mycotoxin that is produced by Aspergillus flavus and *Penicillium roqueforti* mold.

C	O=C(C)Oc1ccccc1C(=O)O	Active	1	Α
0			_	С
M	CCOc1cc(C)ccc1OCC=CF	Inactive	0	Ţ
Р 0	COc1ccccc1OCCO	Inactive	0	L V
U	CC(N)Sc1ccc(Cl)nc1	Inactive	0	I
N D	COC(=O)NCc1cccc1Cl	Active	1	T V
S				

ReLeaSE* design principles: learning and exploiting structural linguistics of SMILES notation

- SMILES notations reflect rules of Chemistry
- SMILES notation embeds linguistic rules
- Neural nets could learn both of the above types of rules
- This knowledge can be transformed into the generation of new SMILES corresponding to novel chemically feasible molecules (generative model)
- One can build QSAR models based solely on SMILES notation (predictive model)
- QSAR models can be used as a reward function for reinforcement learning to bias the design of novel libraries

^{*}Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design." arXiv preprint arXiv:1711.10907 (2017). Science Advances, in press (2018)

Design of the ReLeaSE* method

(Reinforcement Learning for Structural Evolution)

*Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design." *arXiv preprint arXiv:1711.10907* (2017); Science Advances (in press).

Generative model: training mode

Generative model: training mode

- Training continues until convergence
- Every SMILES from ChEMBL is used as training example ~ 3-5 times

Are we making legitimate Smiles?

Quantitative <u>Smiles</u> – Activity Relationships

Predicted LogP

5CV NN model with 5CV RF model with DRAGON7 Descriptors SMILES directly

RMSE:	0.57	0.53
MAE:	0.37	0.35
R ² ext:	0.90	0.91

*LogP data for ~16K molecules from PHYSPROP (srcinc.com), Toxcast Dashboard (https://comptox.epa.gov/dashboard), and others.

Technical details

- Models were trained on Nvidia Titan X and Titan V GPUs
- Training the generative model on ChEMBL took ~ 25 days
- Training of predictive models took ~ 2 hours
- Biasing the generative model with reinforcement learning for one property ~ 1 day
- Generative model produces 1000 compounds per minute

Results: Synthetic accessibility score* of the designed libraries

Synthetic accessibility score

*Ertl, Peter, and Ansgar Schuffenhauer. "Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions." *Journal of cheminformatics* 1.1 (2009): 8.

Results: Biasing target properties in the designed libraries

Results: Biasing target properties in the designed libraries

Target predictions for generated compounds using SEA*

Query	Target Key	Target Name	Description	P-Value	MaxTC
	NPM_HUMAN+5	NPM1	Nucleophosmin	3.118e-74	0.49
	CCNH_HUMAN+5	CCNH	Cyclin-H	2.571e-32	0.38
	PAK1_HUMAN+5	PAK1	Serine/threonine-protein kinase PAK 1	5.277e-24	0.39
	ALK_HUMAN+5	ALK	ALK tyrosine kinase receptor	3.714e-23	0.54
	JAK2_HUMAN+5	JAK2	Tyrosine-protein kinase JAK2	1.136e-21	0.61
	INSR_HUMAN+5	INSR	Insulin receptor	2.36e-17	0.54
	CCNB1_HUMAN+5	CCNB1	G2/mitotic-specific cyclin-B1	2.22e-16	0.38

*Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. *Nat Biotech* **25** (2), 197-206 (2007).

Target predictions for generated compounds using SEA*

Query	Target Key	Target Name	Description	P-Value	MaxTC
	EGFR_HUMAN+5	EGFR	Epidermal growth factor receptor	8.688e- 244	0.61
	ERBB2_HUMAN+5	ERBB2	Receptor tyrosine-protein kinase erbB-2	8.544e- 169	0.55
	ERBB2_RAT+5	Erbb2	Receptor tyrosine-protein kinase erbB-2	5.893e-87	0.42
	VGFR2_HUMAN+5	KDR	Vascular endothelial growth factor receptor 2	6.294e-65	0.58
	ERBB4_HUMAN+5	ERBB4	Receptor tyrosine-protein kinase erbB-4	1.354e-64	0.49

*Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. *Nat Biotech* **25** (2), 197-206 (2007).

Results: analysis of similarity

Distribution of Tanimoto similarity to the nearest neighbor in training dataset for compounds predicted to be active for EGFR by consensus of QSAR models:

Model visualization for putative JAK2 inhibitors (projection using t-SNE)

Summary

- AI methods coupled with SMILES representation (only!) afford biased library generation
- The system naturally embeds reinforcement learning to produce novel structures with the desired property
- The system can be tuned to bias libraries towards specific property ranges
- Next phase is experimental validation of hits

Summary of recent AI-based studies on chemical library design

Molecular representations	Generative models	Method of biasing generated compounds
FingerprintsSMILESGraphs	 Autoencoders Generative adversarial models Recurrent neural networks Convolutional neural networks 	 None Latent space optimization Fine-tuning on small subset of molecules with the desired property Reinforcement Learning

An example of experimental validation of AI-based models*

- First training on large dataset
- Then fine-tuning on small subset of active compounds
- "These observations corroborate the ability of the generative AI model to produce novel chemical entities within the training data domain".

Table 1. In vitro activity of designs 1–5 on RXRs and PPARs (EC₅₀ values \pm SEM [μ M]; n=2 (when inactive) or 4 (when active) independent experiments in duplicates; *inactive*, no statistically significant reporter transactivation at a compound concentration of 30 μ M).

Compound no.	RXRα	RXRβ	RXRγ	ΡΡΑRα	ΡΡΑRγ	PPARδ
1	0.13±0.01	1.1 ± 0.3	0.06 ± 0.02	inactive	2.3 ± 0.2	inactive
2	13.0 ± 0.1	9 ± 2	8.0 ± 0.7	inactive	2.8 ± 0.3	inactive
3	inactive	inactive	inactive	4.0 ± 1.0	10.1 ± 0.3	inactive
4	inactive	inactive	inactive	inactive	9 ± 3	14 ± 2
5	inactive	inactive	inactive	inactive	inactive	inactive
reference agonists ^{a)}	0.033 ± 0.002	0.024 ± 0.004	0.025 ± 0.002	0.006 ± 0.002	$\textbf{0.6}\pm\textbf{0.1}$	0.5 ± 0.1

^{a)} Reference agonists, literature data: bexarotene^[17] for RXRs, GW7647^[18] for PPARα, pioglitazone^[19] for PPARγ, L165,041^[19] for PPARδ

* D. Merk, L. Friedrich, F. Grisoni, G. Schneider, Mol. Inf. 2018, 37, 1700153.

Many virtues of Cheminformatics

Acknowledgements

Principal Investigator Alexander Tropsha

Research Professors Alexander Golbraikh <u>Olexander Isayev</u> Eugene Muratov

Postdoctoral Fellows

Vinicius Alves Stephen Capuzzi Joyce Borba

Graduate students

Sherif Faraq Kyle Bowers <u>Maria Popova</u> Andrew Thieme

Duke University

- Stefano Curtarolo
- Corey Oses

UNC Chemistry

- Jim Cahoon
- Taylor Moot
- Aaron Taggart

MAJOR FUNDING

NIH

- 1U01CA207160

- R01-GM114015
- 5U54CA198999
- 10T3TR002020

ONR - N00014-16-1-2311