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 Brief notes on machine learning/QSAR
« Materials Informatics and Materials Design

« Design, development and application of the
Reinforcement Learning for Structural Evolution

(ReLeaSE)*

« Summary and future work: QSAR without
borders

*Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design."
arXiv preprint arXiv:1711.10907 (2017); Science Advances, 2018, in press



Machine Learning Framework

y = 1(x)
RN

output  prediction Molecular
function features

« Training: given a training set of labeled examples {(x,,y,),
..., XY}, estimate the prediction function f by
minimizing the prediction error on the training set

« Testing: apply f to a never before seen test example x and
output the predicted value y = f(x)



The growing appreciation of
molecular modeling and
informatics
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Next RSC president predicts that in 15 years no chemist will do
bench experiments without computer-modelling them first

Jul 17, 2013
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Automated Retrosynthesis

camptothecin
CAS: 7689-03-4

Occurrences In Databade: 140
BRN: [ 631069 and 2 more]

Chem

Vidurme 4, [ssua 38 March 2018, Pages 350-398

Bachkstony

Chematica: A Story of Computer Code That Started to Think

camptothecin

® nr like a Chemist
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The growing appreciation of
molecular modeling and
Informatics
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NEWS

A brave new world of robot chemists and
'synthesiser farms' awaits

NEWS

Wanted: synthetic chemists (humans
need not apply)

24 JANUARY 201

Automation could free chemists from tedious lab work —1f .

theyv’re ready to think differently about research



Promise of dramatic acceleration
of drug discovery

READ. THINK. PARTICIPATE.

News Blog R&D Commercial Operations

Magazine PharmaVOICE 100 Resources Ewvents Editorial Advertise Subscribe

GSK Has Developed A New Analytics Platform That Can
Reduce The Time It Takes To Analyze Clinical Data From
Months To Clicks

Source:

Thomas Macaulay, CIO UK

March 12, 2018

The platform uses large-scale data analytics to drive better
decisions about the drug discovery pipeline, by allowing the

pharmaceuticals giant to test the potential for new drugs before it
begins clinical trials.



Rise of the machines In
legal industry

legali® insider _ .

Deloitte Insight: Over 100,000 legal roles to be automated

Added on the 16th Mar 2016 at 10:28 am

lin S

Over 100,000 jobs in the legal sector have a high chance of being automated in the next

twenty years, according to extensive new analysis by Deloitte.

The Deloitte Insight report, which predicts “profound reforms™ across the legal profession within
the next 10 years, finds that 39% of jobs (114,000) in the legal sector stand to be automated in

the longer term as the profession feels the impact of more “radical changes.”




The ultimate dream of a
computational chemist




The chief utility of computational models:

Annotation of new compounds MML
CHEMICAL CHEMICAL PREDICTIVE PROPERTY/
STRUCT@ DESCRIPTORS /- /RSELL[O]b] SRS ACTIVITY

QSAR

CHEMICAL DATABASE MAGIC

Confirmed
actives
(toxic)

Confirmed inactives
(non-toxic)

10



QSAR Modeling Workflow: the _A
Importance of rigorous validation| Exerimental

( Datasets

5-fold
External

courtesy of L. Zhang

4

1
Validation ‘

confirmation

T
Virtual screening

(with AD threshold)

7 Evaluation of
/ External set external performance
1
An ens¢mble o
QSAR Models
/ Modeling set // i

Internal validation
Model selection

Modeling methods T
| ' Combi-QSAR
K-Nearest Random Support Vector )
Neighbors (kNN) Forest (RF) Machines (SVM) modellng
Descriptors Tropsha, A. Best Practices for QSAR Model Development, Validation,
Dragon MOE and Exploitation Mol. Inf., 2010, 29, 476, - 488

Fully implemented on CHEMBENCH.MML.UNC.EDU



Material Science and the Rise of Materials Informatic

- Explosive growth of materials data, both experimentai
databases and computational repositories.

Structural data: 160,000 entries in the Inorganic Crystal Structure

Database (ICSD)
Experimental data: Numerous commercial and open

experimental databases NIST, MatWeb, MatBase etc.
Computational data: Huge databases such as AFLOWLIB,

Materials Project, and Harvard Clean Energy

Chemical space of possible materials is HUGE ~10%°
candidates [Nat. Chem. 7, 274-275 (2015)]

« Materials Genome Initiative or MGI (US Govt): Need for

new high performance materials
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Closing the gap: materials structure-
property relationships

x —ray diffraction property
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Materials

theoretical
fingerprin

modeling

—

predictive QSPR modeling

Quantitative Structure Activity Relationship approaches (QSAR)
Quantitative Structure-Property Relationships (QMSPR)

Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and
Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., 2015, 27: 735-743



Material Informatics/MOSAR Workflow =
&

c@ ICSD Properties DBs

Experimental structures Commercial/Open DBs
Literature & reference data

Data parsing

Error checking ~ Error check
Duplicate removal

File conversion
AFLOWLIB.ORG Unit conversion

N
Geometry optimization
Band structure & Band structures, .
Property calculations DOS, Symmetry, Descriptor

generation

Data Integration

\

] Unit cell

Aflowlib database Fingerprints, clustering,

Geometry,

UNC Database

REREN and modeling
I
1 .
| New Materials 2 b
I Mat 1B T BT T T 1T ]
' With Desired
\, ~——=1predicted Mot 2B LT LI T T
If /""" Properties Mat 30 L T T
- F Probe BT TN
hg o N ) Similarity Search
Experimental validation Predictive QSPR modeling

Data driven discovery

Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and
Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., 2015, 27: 735-743



Material Map (B-Fingerprints)
>15000 materials from ICSD

DFT PBE calculations from aflowlib. Org 4 Orphans
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Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo, Materials Cartography: Representing and
Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater., 2015, 27: 735-743



Systematic representation of
materials using fragment descriptors
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Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.



ML Workflow for Materials Property
Prediction

Electronic Properties Thermo-Mechanical Properties

no EBG

crystal structure

classification k% A
model ’- 3 Q’ -

regression
models
{EBc ER: ¢— regression - Bulk modulus
Epg > 0} model - Shear modulus
- Thermal expansion

- Heat Capacity
Thermal conductivity, etc.

{X e R}

Yo

All models are trained based on DFT-computed
properties (VASP s/w from U. Vienna)

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.



Prediction of Electronic Properties

electronic properties

a) 1 _ b p
( x = 8 .
0.75 , Z
5 26
2 0.50 ‘ S
~= .
025| T2y
D-‘ -
0} 0
0 0.25 050 0.75 1 0 2 4 6 8
1 — specificity calculated Fpg (eV)

Classification accuracy 95%
ROC Curve (AUC) 0.98

Learning approach for all models:
Gradient Boosting Decision Trees (GBT) o TREE —"

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.



Prediction of Thermomechanical Proper

(Eec - band gap energy; Bvrs- bulk modulus; Gvr: -shear modulus; t. - Debye tempera
heat capacity at constant pressure; Cv - heat capacity at constant volume; av -thermal expansion
coefficient

property RMSE MAE re
Fxq 0.51 (eV) 0.35 (eV) 0.90
Byru 14.25 (GPa) 8.68 (GPa) 0.97
Gvyru 18.43 (GPa) 10.62 (GPa) 0.88
On 56.97 (K) 35.86 (K) 0.95
Cp 2.31 (kg/cell) 0.84 (kg/cell) [0.99
CYy 2.01 (kg/cell) 0.70 (kg/cell) [0.99
ay  [1.47x107° (K)”[5.69 x 10~° (K)~"[0.91

TABLE 1.

Statistical summary of the five-fold cross-validated

predictions for the seven regression models (Figure 3).

Isayev et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nature Comm, 2017, 8, 15679.




Summary of Materials Informatics:
Methods

* Fast, accurate general purpose machine learning methods for
material’s property prediction. Milliseconds on laptop vs. days on
HPC cluster

* Universal applicability to different materials: currently covered 85
elements (H — Pu, without noble gases, Tc, Fr, Ra). All types of crystal
lattices and symmetries.

* Most competing approaches are specific to one prototype/family of
materials or single property

* Works for other properties: elastic, thermoelectric, etc.

 Possible to gain some chemically/physically interpretable insight into
“black box” model.

e Possible to derive materials design rules
* User friendly web app and RESTful API (http://aflow.org/aflow-ml/)
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Design of alternate photocathoad
A materials informatics approach

Virtual
Screening
[ NiO J
Reference Material Similarity NO BT T
/ Assessment very -Enm Im
A~ M"\m
f , BaNbO
= » o, B
—tégg \_:::——/ Ni
\ p

Database of Band Structures

(AFLOWLIB)

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16



Design of alternate photocathode

A materials informatics approach

Virtual Rational

Screening Selection
e 8
B-Fingerprint
o Nio ) ( T \
c
2 PbTiO; [JOISHN v~
NiBoO4  0.72
NiO MgGeO3 0.71
Reference Material Slmllanty NiO m . g'ég
e Assessment Query IIm Hi . g.gg -
TN A ) o |
RhoMgO4 | 0.42
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2 S O S B4NiO7 0347
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N )\ emmrmr—" N
Database of Band Structures Screening Library
(AFLOWLIB) PbTiO; was identified as very similar to NiO

AND
It is has a dielectric constant >100

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16




Design of alternate photocathodes

A materials informatics approach

Virtual Rational Experimental
Screening Selection Verification

B-Fingerprint Synthesis DSSC
NiO [EU303000873507  iE 007 5 mizN3 ) ( Characterization
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PbTiO: OIS v~
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TN o
é RhoMgO4 = 0.42
PbBiAsOs | 0.35
g B4Ni
= KCl 1 4NiO7 [10:34
%Sfﬁ- /MQSO4 g H EHHEE L¥F] T 2\ \ / Film DSSC
B / BaNbO; [ZZOSWWi4zZ080mi i 080205520504 3 Tanimoto Similarity At oo
L4 GeS LF¥] EF] KL 1 HEL 1 4 Fabrication Fabrication
| ] ] . AlsFeSi, [T0E020322080W1472080017220680014] 5
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Database of Band Structures Screening Library Electrolyte Optimization
(AFLOWLIB) PbTiO; was identified as very similar to NiO

AND
It is has a dielectric constant >100

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16



Materials informatics
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PbTiO; was identified as very similar to NiO in terms of
electronic properties despite different crystal structures

Moot, Isayev, Tropsha, Cahoon, Materials Discovery, 2016, 6, 9-16



Summary of Materials Informatics:
Supporting Experimental Discovery

PbTiO3 is identified as a new
photocathode material.

Successful experimental validation
Record fill factors of >50

First fully aqueous DSSC device
Currently, device performance is low;

possible improvement by designing a
new dye
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it i il ol LTI T e e
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Database of Band Structures Screening Library




The eternal philosophical question:
Which came first?

Sequence e Ucture p
RorRZ ?

3

Strasbourg Summer V\
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2018




The eternal question: Which came first?

In the beginning was the Word...
And the Word was... embedded

(freely adopted from the Gospel of John)

“You should know a word by the company it keeps”
J.R.Firth 1957

British linguist; formulated the
notion of the “context-
dependent nature of meaning”



Learning semantic context with
Word2Vec

Training
Samples

Source Text

quick|brown |fox jumps over the lazy dog. == (the, quick)

(the, brown) Can be used to learn:

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)

(quick, fox) C BOW:
The quiok-fox jumps|over the lazy dog. == (brown, the) ° Pf(WOI'd_leOrdS_COnteXt)

(brown, quick)
(brown, fox)
(brown, jumps)

The| quick brown-jumps over|the lazy dog. == (fox, quick)
(fox, brown)

o, jumps Skip-Gram:
'  Pr(words_context|word_k)
C=# words of context - -
« Mikolov, Tomas; et al. "Efficient Estimation Word2Vec Images courtesy of Chris
of Word Representations in Vector McCormick:
Space". arXiv:1301.3781 http://mccormickml.com/2016/04/19/word2v

ec-tutorial-the-skip-gram-model/


https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1301.3781

Word embedding and similarity in ]
the semantic space

man
o
-~
®. ‘ag
king
-~
A
O
queen

/'\-.

Male-Female

’ sSwam
O

walking =

/\o\*

swimming

Verb tense

Berlin
Turkey et
Ankara
Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital



SMILES are words that uniquely
describe sentence-molecules!

Aspirin, also known as| 0=C(C)Ocicceec1C(=0)0
a medication used to treat pain, fever, and
inflammation.

cc=ocic=ce=0)010 [is g mycotoxin that is produced
by Aspergillus flavus and Penicillium
roqueforti mold.

cc> 0=C(C)OclccccclC(=0)0 Active 1 ﬁ
'2 CCOclcc(C)ccc10CC=CF Inactive 0 T
o COclccecc10CCO Inactive o
‘I\’I CC(N)Sclccc(Cl)ncl Inactive 0 I
p COC(=0O)NCclccccclCl Active 1 \T(
S



RelLeaSE* design principles: learning
and exploiting structural linguistics of
SMILES notation

« SMILES notations reflect rules of Chemistry
« SMILES notation embeds linguistic rules
« Neural nets could learn both of the above types of rules

« This knowledge can be transformed into the generation of
new SMILES corresponding to novel chemically feasible
molecules (generative model)

e One can build QSAR models based solely on SMILES
notation (predictive model)

« (QSAR models can be used as a reward function for
reinforcement learning to bias the design of novel libraries

*Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design."
arXiv preprint arXiv:1711.10907 (2017). Science Advances, in press (2018)



Design of the ReLeaSE* method =

(Reinforcement Learning for Structural Evolution)

Elements of the

thought cycle

(molecules->models- /" Generative model
Oc (cclcc2) ccclce2N

molecules): _—

« Generate chemically /" {WRNN:W}}_i
feasible SMILES b W

« Develop SMILES- E Reward } - = - [Generated}
based QSAR model / Predictive model \ SMILIES

« Employ QSAR model \ rop'er_y
to bias library [{a}{wlj,f w,) }

. |
TR
SMILES

SMILES

*Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de-novo drug design."
arXiv preprint arXiv:1711.10907 (2017); Science Advances (in press).



Generative model: training mode

1.5M
molecules
from <START>clccc (O) ccl<END>
ChEMBL clcc)(F)ccl<END>
RNN: P ]-_“““““E
[{WO WOJ » clccc (0)ccl —m— i_ RNN: | —
E— \ Wy, ..., W)
<START>clccc(O)ccl
NO
+ loss
id the
[ RNN: }YES training [ RNN: } _
Wy, .., W3} converge Wy, .., W5}

?



Generative model: training

mode

e Training
continues until 6
convergence A5
4.0
n 3.5
 Every SMILES 2 20
from ChEMBLis — 55

used as training 2.0
example ~ 3-5 15
times 10

0 1 2 3 4 5
Training epoch



Are we making legitimate Smiles?

Pub©hem/ChEMBL_

‘\ﬂ Smiles strings
/ m 95% Valid

Al learning ', 4 ChemAXOnChemnﬁlgg Jleea;smle
system | Y —r == /

b



Smile-ification of QSAR!

5 0=C(C)OclcececlC(=0)0 0531 |
':,' CCOclcc(C)ccc1OCC=CF 1.299 T
o COclccecc10CCO 0.946 |
: CC(N)Sclccc(Cl)ncl -0.218 =
p COC(=0)NCclccceclCl . 0.017 \T,
S

Quantitative Smiles — Activity Relationships



QSAR modeling using Smiles strings

only*

Property prediction

Neural
Network
<1 17

CN2C(=0)N(C)C(=0)C1=C2N=CN1C

=
(5] o

o

Observed LogP

Predicted LogP

5CV RF model with 5CV NN model with
DRAGONY7 Descriptors SMILES directly

RMSE:  ©.57 0.53
MAE:  ©.37 0.35
R2,,..: ©0.90 0.91

*LogP data for ~16K molecules from PHYSPROP (srcinc.com), Toxcast Dashboard
(https://comptox.epa.gov/dashboard), and others.



Reinforcement learning for
chemical design

Generative model

Oc (cclce2) cecclce2N

............ ——

[ RNN: }
wy, .., W, ‘
(W : } /@:
<START> /[::j:%\”
r )

Pred |Ct|Ve model Fclccc2c (Ne3cec (F) ¢ (F) e3) nenc2el

Property

|

RNN =
{OGVVh:VVk}

I

clccccecel




Reinforcement learning for
chemical design

Generative model

Oc (cclce2) cecclce2N

S B

| [ RNN: } |

Wi, ..., W,

e pes
00

Fclccc2c (Nc3cece (F)c(F) e3)nenc2cel

Predictive model
Property
! /
o)

{OGVVh:VVk}
I

clccccecel




Reinforcement learning for
chemical design

Generative model

Oc (cclce2) cecclce2N

N — ]' E——

i [ RNN: |
(W, ., W)
I

<START>

ACTIVE! Predictive model
Property
\ |
RNN =
{O‘, Wh' Wx}

I

clcccce 1




Reinforcement learning for
chemical design

Generative model

Oc (cclce2) cecclce2N

N S
; RNN:
) {Wl,...,Wn}}
'\ '
ACTIVE! Predictive model

\ PropIerty
RNN =
{O‘, Wh' Wx}
I

clcccce 1




Reinforcement learning for
chemical design

Generative model

Oc (cclce2) cecclce2N

f

<START>

ACTIVE! Predictive model

Property

|

RNN =
{OUVVE;VVk}

I

clcccce 1




Reinforcement learning for
chemical design

Generative model

A

Predictive model

Property

|

RNN =
{OGVVh:VVk}

I

clcccce 1




Reinforcement learning for
chemical design

Generative model

Oc (cclce2) cecclce2N

) e
<START> - &Q‘n
| >__/ Q‘@Jg .

. _ FC (F)COclccc2c (Nc3cee (Cl)c(Cl) e3)nenc2el
Predictive model

Property

|

RNN =
{OGVVh:VVk}

I

clccccecel




Reinforcement learning for
chemical design

Generative model

Oc (cclce2) cecclce2N

[ RNN: )|
Wy, ..., W, }
f
<START> o %Qo
X

=
FC (F)COclccc2c (Nc3cec(Cl)c(Cl) e3) nenc2cel

Predictive model
Property
I /
o)

{OGVVh:VVk}
I

clccccecel




Reinforcement learning for
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Technical detalls

« Models were trained on Nvidia Titan X and
Titan V GPUs

 Training the generative model on ChEMBL
took ~ 25 days

 Training of predictive models took ~ 2 hours

 Biasing the generative model with

reinforcement learning for one property ~ 1
day

« Generative model produces 1000 compounds
per minute



Results: Synthetic accessibility
score* of the designed libraries

ChEMBL
ZINC
Generated

0 1 2 3 4 5 6 7 8

Synthetic accessibility score

*Ertl, Peter, and Ansgar Schuffenhauer. "Estimation of synthetic accessibility score of drug-like molecules based on molecular
complexity and fragment contributions.” Journal of cheminformatics 1.1 (2009): 8.



PoC: Structural Bias

A: increase in number of substituents
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Reward increase

B: increase in number of benzene rings



Results: Biasing target properties
IN the designed libraries

Minimized

Maximized

Baseline
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Melting temperature (Ty), °C Number of substituents



Results: Biasing target properties
INn the designed libraries

Minimized Optimized
Maximized Baseline

Baseline

-2 0 2 4 6 8 10 12 2 0 2 4 6 8 10 12
JAK2 Inhibition (pIC50) Partition coefficient (logP)



Target predictions for generated

compounds using SEA*

Query Target Key

Target Name Description P-Value MaxTC
NPM_HUMAN+5 NPMH1 Nucleophosmin 3.118e-74 0.49
CCNH_HUMAN+5 CCNH Cyclin-H 2.571e-32 0.38
PAK1_HUMAN+5 PAK1 Serine/threonine-protein kinase PAK1  5.277e-24 0.39
ALK_HUMAN+5 ALK ALK tyrosine kinase receptor 3.714e-23 0.54
I JAK2_HUMAN+5 JAK2 Tyrosine-protein kinase JAK2 1.136e-21 0.61
INSR_HUMAN+5 INSR Insulin receptor 2.36e-17 0.54
CCNB1_HUMAN+5 CCNB1 G2/mitotic-specific cyclin-B1 2.22e-16 0.38

*Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand

chemistry. Nat Biotech 25 (2), 197-206 (2007).



Target predictions for generated

compounds using SEA*

Target
Query Target Key Name Description P-Value MaxTC

I EGFR_HUMAN+5 EGFR Epidermal growth factor receptor 8.688e- 0.61

244
ERBB2_HUMAN+5 ERBB2 Receptor tyrosine-protein kinase erbB-2 8.544e- 0.55

169
_L\__ 4%?:(“4@ ERBB2_RAT+5 Erbb2 Receptor tyrosine-protein kinase erbB-2 5.893e-87 0.42

) M

-y VGFR2_HUMAN+5  KDR Vascular endothelial growth factor receptor 2 6.294e-65 0.58
ERBB4_HUMAN+5 ERBB4 Receptor tyrosine-protein kinase erbB-4 1.354e-64 0.49

*Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand

chemistry. Nat Biotech 25 (2), 197-206 (2007).




Results: analysis of similarity

Distribution of Tanimoto similarity to the nearest neighbor 1
training dataset for compounds predicted to be active for
EGFR by consensus of QSAR models:

o0

05 06 07 038 0.9 1.0
Tanimoto similarity



Model visualization for putative JAK
inhibitors (projection using t-SNE) -
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Summary

e Al methods coupled with SMILES
representation (only!) afford biased library
generation

» The system naturally embeds reinforcement
learning to produce novel structures with the
desired property

« The system can be tuned to bias libraries
towards specific property ranges

« Next phase is experimental validation of hits



Summary of recent Al-based
studies on chemical library design

Molecular Generative models Method of biasing
representations generated compounds

. Fingerprints |° Autoencoders |+ None

« Generative « Latent space
* SMILES adversarial optimization
. Graphs models * Fine-tuning on
* Recurrent small subset of
neural networks molecules with the
« Convolutional desired property

neural networks |+ Reinforcement
Learning




An example of experimental
validation of Al-based models*

 First training on large dataset

« Then fine-tuning on small subset

of active compounds Existing New

« “These observations corroborate compounds chemical entities

the ability of the generative AT gpaiping * * Sampling
model to produce novel

chemical entities within the [ Generative Al Model ]
training data domain”.

Table 1. In vitro activity of designs 1-5 on RXRs and PPARs (ECs, values = SEM [uM]; n=2 (when inactive) or 4 (when active) independent
experiments in duplicates; inactive, no statistically significant reporter transactivation at a compound concentration of 30 uM).

Compound no. RXRa RXRpB RXRy PPARa PPARy PPARS

1 0.13+0.01 1.14+0.3 0.06 £0.02 inactive 23+0.2 inactive
2 13.0£0.1 9+2 8.0+0.7 inactive 28403 inactive
3 inactive inactive inactive 404+1.0 10.1+£0.3 inactive
4 inactive inactive inactive inactive 9+3 1442

5 inactive inactive inactive inactive inactive inactive
reference agonists® 0.033+0.002 0.024 +0.004 0.025+0.002 0.006 +0.002 0.6 +0.1 0.54+0.1

? Reference agonists, literature data: bexarotene"” for RXRs, GW7647"® for PPARa, pioglitazone” for PPARY, L165,041"% for PPARS

* D. Merk, L. Friedrich, F. Grisoni, G. Schneider, Mol. Inf. 2018, 37, 1700153.
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