

Chemoinformatics and Molecular Modeling Lab

State-of-the-Art in Chemical Reaction Characteristics Prediction Using Condensed Graph of Reaction

Dr. Timur I. Madzhidov

Kazan Federal University, Department of Organic Chemistry

tmadzhidov@gmail.com

(Almost not) a dream

The reality

Some practical questions:

What is the rate of reaction ?

Which catalyst\reagent\ \solvent\temperature are optimal?

What is a reaction yield ?

Which is the major product?

Some practical questions:

Goal: to built predictive models for rate constant as a function of structure of reactants and experimental conditions.

Here we demonstrate this approach for the case of S_N^2 reactions

Reaction rate assessment: QM approach

Quantum Chemistry

- Time-consuming (~I day-I week per one reaction per CPU core)
- Description of reaction in solvent complicates and slows down calculations, accuracy decreases substantially
- Reaction rate could hardly be quantitatively reproduced

 $k = \kappa \left(\frac{k_B T}{\hbar}\right) e^{-\frac{\Delta G^{\neq}}{RT}}$

$$K = e^{-\frac{\Delta G}{RT}}$$

Reaction rate assessment: chemoinformatics approach

QSAR/QSPR approaches are usually applied to individual molecules.

What about chemical reactions ?

Chemical reactions: complexity issue

- many species of two types: reactants and products;
- dependence of characteristics on reaction conditions (catalyst, solvent, etc)

Condensed Graph of Reaction

CGR: a pseudo-molecule representing a given reaction

Varnek A., et al. (2005) J Comput Aided Mol Des 19:693. doi: 10.1007/s10822-005-9008-0

Modeling workflow

I. Data collection

II. Data curation

III. Descriptors calculations

IV. Models building and validation

Datasets

Problem: lack of data

- No public databases (like ChEMBL, PubChem) for reactions
- Commercial databases (Reaxys, SciFinder) don't annotate kinetic or thermodynamic characteristics of reactions
- Only yield is annotated in databases. However, this is very noisy parameter and it could hardly be directly modelled.

QSRR-DB: comprehensive reactions database

I. Data collection

QSRR-DB: comprehensive reactions database

- Substitution (S_N2) reactions rate constants: >7000
- Substitution (S_N1) reactions rate constants: >7000
- Elimination (E2) reaction rate constants: >2500
- Ester hydrolysis reaction rate constants: ~4000
- Cycloaddition (Diels-Alder etc) reactions rate constants and Arrhenius eqn parameters: for ~1500 reactions
- Tautomeric equilibrium constants: >1000 equilibria
- Acidity in non-aqueous solvents: > 2000 equilibria

>25,000 records have been collected

Data curation strategies for individual molecules

1189

J. Chem. Inf. Model. 2010, 50, 1189-1204

Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research

Denis Fourches,[†] Eugene Muratov,^{†,‡} and Alexander Tropsha*,[†]

Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, and Laboratory of Theoretical Chemistry, Department of Molecular Structure, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa, 65080, Ukraine

Received May 5, 2010

1. INTRODUCTION

With the recent advent of high-throughput technologies for both compound synthesis and biological screening, there is no shortage of publicly or commercially available data to the prediction performances of the derivative QSAR models. They also presented several illustrative examples of incorrect structures generated from either correct or incorrect SMILES. The main conclusions of the study were that small structural errors within a data set could lead to

Perspective

Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation

Denis Fourches,*'[†] Eugene Muratov,[‡] and Alexander Tropsha*'[‡]

[†]Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States

⁺Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States

Supporting Information

ABSTRACT: There is a growing public concern about the lack of reproducibility of experimental data published in peerreviewed scientific literature. Herein, we review the most recent alerts regarding experimental data quality and discuss initiatives taken thus far to address this problem, especially in the areas of chemical commiss. Cance have do use compared

correspondence

Curation of chemogenomics data

To the Editor: With the rapid accumulation of data in all areas of chemical biology research, scientists rely increasingly on historical chemogenomics data and computational models to guide smallmolecule bioactivity screens and chemical probe development. However, there This workflow begins with chemical data curation following a previously established protocol⁵ (step 1 in Fig. 1), resulting in the identification and correction of structural errors. Duplicate analysis (step 2) assesses data quality and removes duplicate chemical structures and contradictory records. Analysis of intra- and interlab experimental variability (step 3) and exclusion of unreliable data sources (step 4) help increase data quality and aid decision-making about combination of data from different sources. Detection and verification of activity 'cliffs' (step 5)

multifaceted approaches to ensure the quality and reproducibility of chemogenomics data through better data generation and reporting. The Nature family of journals⁴ have taken steps in this direction by removing space restrictions for method sections and having external statisticians verifying the correctness of statistical tests reported in some manuscripts considered for publication. The NIH is also developing plans to stimulate researchers to enhance reproducibility of their research results (http://grants.nih.gov//grants/ guide/notice-files/NOT-OD-15-103.html).

It is also crucial for journals to support and encourage the use of standardized electronic protocols and formats (such as MIABE⁵) for chemical data sharing and to require authors to upload their data electronically to public repositories at the time of manuscript submission

Denis Fourches¹, Eugene Muratov² & Alexander Tropsha²

¹Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA. ²Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. e-mail: alex_tropsha@unc.edu or dfourch@incsu.edu

535

Chemistry databases are widely available on the internet which is potentially of high value to researchers, however the quality of the content is variable and errors proliferate and we suggest there should be efforts to improve the situation and provide a chemistry database as a gold standard.

Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation

Antony J. Williams¹, Sean Ekins² and Valery Tkachenko¹

¹ Royal Society of Chemistry, US Office, 904 Tamaras Circle, Wake Forest, NC 27587, USA
² Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA

In recent years there has been a dramatic increase in the number of freely accessible online databases serving the chemistry community. The internet provides chemistry data that can be used for data-mining, for computer models, and integration into systems to aid drug discovery. There is however a responsibility to ensure that the data are high quality to

authored or ≥ 120 peer reviewed papers and book chapters on NMR, predictive ADME methods, internet-based tools, crowdsourcing and database curation. He is an active blogger and participant in the internet chemistry network.

NATURE CHEMICAL BIOLOGY | VOL 11 | AUGUST 2015 | www.nature.com/naturechemicalbiology

II. Data curation

Data curation strategies for reactions

Structure standardization

- Aromatization
- Functional group standardization
- Atom-to-atom mapping and checking

Condition standardization

- Solvent name standardization
- Irrelevant information (concentration, etc) deletion
- Temperature curation

- Detection of big differences
- Averaging

II. Data curation

Duplicate analysis

II. Data curation

Matched Molecular Pairs

II. Data curation

Matched Reaction Pair example

H / NO_2 substitution in substrate leads to:

Increase of reaction rate

ISIDA/CGR fragment descriptors

Condensed graph of reaction

ISIDA fragment descriptors

J. Bajorath, Ed., Springer, 2010

III. Descriptors calculations

Descriptor vector combing structure & conditions

~70 - 10 000	13	1
Structural descriptors	Solvent descriptors	Temperature descriptor
ISIDA fragments on CGRs	 Kamlet-Taft solvent descriptors Catalan solvent descriptors, Polarity parameters Polarizability parameters Molar fraction of organic solvent in water-organic solution 	Inverse temperature of reaction, I/T(in K)

Madzhidov TI, et al (2014) Russ J Org Chem 50:459-463. doi: 10.1134/S1070428014040010

SVR model for rate constant of $S_N 2$ reaction

IV. Models building and validation

Why so good?

Cross -validation

IV. Models building and validation

Why so good?

Cross -validation

IV. Models building and validation

Unbiased estimation of model performance

IV. Models building and validation

Unique data points in validation

IV. Models building and validation

Other published projects

Bimolecular elimination reaction 1.0 0.9 \mathbf{Q}^2 0.8 0.7 Q²/Coverage Validation protocol - reaction-out --- product-out 0.3 coverage 0.2 0.1 PD3 É MG2 SIDACGR eact-SiPMS-diff Models

Polishchuk P, et al (2017) J Comput Aided Mol Des 31:829–839. doi: 10.1007/s10822-017-0044-3

Tautomeric equilibria

Table 5	Comparison	of th	e predictiv	e performance	of	SVR	models
and DF1	Calculations						

Method	Dataset	N	RMSE	R ²	MT (%)
DFT	TEST1	20	1.1	-0.3	65
	TEST2	26	3.00	0.13	54
SVR	TEST1	20	0.66	0.55	70
	TEST2	26	1.63	0.74	58

The number of data points (N), determination coefficients (\mathbb{R}^2) and root-mean squared errors ($\mathbb{R}MSE$ in $\log K$ units) and success rate of major tautomer prediction (MT, %)

Gimadiev TR, et al (2018) J Comput Aided Mol Des 32:401–414. doi: 10.1007/s10822-018-0101-6

Conclusions

- Reaction curation is more tricky than for molecular datasets.
- Curation of structural data should be accompanied by curation of conditions and trustworthness of predicted property value.
- Correct validation techniques should be used. Classical cross-validation overestimates model quality!

Project 14-43-00024:

Российский научный фонд

"Chemoinformatics approaches to organic and metabolic reactions: from empirical to predictive chemistry"

Prof.Alexandre Varnek (UniStra)

Prof. Igor Antipin (Kazan)

lgor Baskin (MSU)

Pavel Polishchuk (UniOlomouc)

lgor Tetko (HZM)

Ramil Nugmanov (KFU)

Timur Gimadiev (KFU, UniStra)

Olga Klimchuk (UniStra)

Data collection: Nail Khafizov Andrey Bodrov Maria Knyazeva Nikita Shalin Firuza Bekmuratova Daria Malakhova etc