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Cheminformatics @ AstraZeneca

« HTS work-up

« Library design
 Virtual screening

« Machine learning & Al



High Throughput Screening

From Millions to just a few

Low cost/compound

Primary Screening
(Millions)

Confirmation (tens of
thousands)

Dose
Response (a
few Thousand

Triage
(Hundreds)

~0-4 Chemical Series

High cost/compound

Slide modified from Mark Wigglesworth, AZ, with permission
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HTS Analysis: Clustering analysis

IHAT: An Spotfire add-in for HTS Analysis

Early days 7
Heavily dependent on computational chemistry u + ‘

resources
Linux, scripts, static workflows, data in flat files

Cutting, pasting and reformatting between
applications

Difficult to revisit or take over an analysis from a
colleague

Time-consuming




IHAT: Clustering and Reclustering

IHAT v1.9.39
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Library design @ AstraZeneca

» Diversity library is generally out of fashion
* Focused library fit for specific project need

* DNA encoded libraries become popular, but analysis is challenging, >60M to 8B library sizes

Currently, use classical library design method to reduce to 50M
preferred AZ library size

“Bad property profile”
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Definition of VS

* Virtual screening refers to any in-silico techniques used to search large
compound databases (available chemicals or virtual libraries) to select a
smaller number for biological testing

» Virtual screening can be used to
— Select compounds for screening from in-house databases
— Choose compounds to purchase from external suppliers
— Select compounds from virtual libraries to be synthesized

» The technique applied depends on the amount of information available
about the particular disease target and the desired outcome



VS methods

3D Structure of Target

Unknown

Known

Ligand-based methods

Lots of actives and

Actives known

structure-based methods

inactives known

QSAR
models

conformation

. Co-crystallized
Aligned |igandyconf. Protein structure

2D ligand
*Substructure search;
*Fingerprint-based
similarity search

core replacement

3D ligand Binding pocket
*Shape similarity search *Docking and scoring
*Pharmacophore mapping *Pharmacophore mapping

*shape similarity

!

*Expand SAR
sImprove affinity

!

*Scaffold hopping
«filter, improve hit rate

!

«filter, improve hit rate




VS example

2=

Ca
(‘;L- HBA2 AstraZeneca available
(? . compounds (900k cpds)
HBA1
@ MW <300, ClogP<3.0
A

Fragment db (300K cpds)

Aromatic ring center

Docking and pharmacophore
model biased pose selection

4K docking pose for
1275 cpds

Manual inspection

198 cpds selected

NMR screening
"

IC50 (NMR) 20uM

20 hits

« Identification of SPLA2X inhibitors using ligand and
structure based virtual screening

10 H. Chen et al/ Bivorg. Med Chem. Lett. 24 (2014) 5251-5255



Virtual screening platform @ AZ

Chemical space

Theoretical chemical space
(10%)

AZ-Virtual space 10%°

» Diverse: > 4000 libraries

» Synthesizable: historic
AZ-reactions

» Searchable in subsets of

108-11

Known existing
compounds
108

MJ Vainio J. Chem. Inf. Model., 2012, 52 (7), pp 1777-1786.
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Iterative virtual screening workflow

VS chemical
space 10%°
|

Sub-sets 10811

Ligand Primary VS 1081t \
Virt. hits 108 Virt. NN 1068
Structure, Secondary VS /
Ligand, 106
Properties,
Novelty
20-30 virt. lib.s

Reactions,
reagents ‘
1-3 libs./50-100
cpd. ordered



Computational strategy

3D similarity search
Structure based workup

e

1015

Representative subset

(as large as possible)
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Virtual
Synthesis

=>

Few libraries are enriched
specifically to the query
project
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Selection of libraries
(3D similarity and
structure based workup)



Al & Machine Learning Today
Context, Definition & Advances

deep learning

=~._ _Mmachine learning

o — | o predictive analytics 7
translation
e . natural language
classification & clustering processing (NLP)
information extraction \
speech to text . .
B speech Artificial Intelligence
text to speech ( Al)
expert systems -
planning, scheduling &
optimization
robotics
image recognition o
“~._ Vision

machine vision _~

Source: http://lwww.geeks
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The rise of deep learning in drug discovery

Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3

Input
P Convolutions Subsampling Convolutions Subsampling Fully connected
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Deep learning technologies have
been adopted in drug discovery
Various forms of NN have been
applied so far




De novo molecular generation with deep learning has

developed very rapidly

pharmaceutics

druGAN: An Advanced Generative Adversarial Autoencoder Model
for de Novo Generation of New Molecules with Desired Molecular
Properties in Silico

Artur Kadurin,*’T’§’|| Sergey Ni.kolenko,m'“ Kuzma Iﬂ"u'albrorv,l Alex A]iper,T and Alex Zhavoronkoy* 1

pubs.acs.org/molecularpharmaceutics
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ﬁ Browse the Journal Articles ASAP Current Issue Submission & Review Open Access Abo
Research Article <
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules
Rafael Gomez-Bombarellit# (), Jennifer N. Weit# (7, David D i, José Miguel Hernandez-
LobatoS#, jamin Sa L ing?, Dennis ), Jorge Aguilera-Iparraguirref, Timothy D.

Hirzelf, Ryan P. Adams™, and Alan Aspuru-Guzik'++ (
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Research Article
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science

Generating Focused Molecule Libraries for Drug Discovery with
Recurrent Neural Networks
Marwin H. S. Segler,*‘f Thierry Kogej,i Christian Tyrchan,§ and Mark P, Waller®!

& Cite This: ACS Cent. Sci. 2018, 4, 120-131

Molecular De-Novo Design through Deep
Reinforcement Learning

Marcus Olivecrona®, Thomas Blaschke!, Ola Engkvist’ and Hongming Chen'

The rise of deep learning in drug

discovery

Hongming Chen’, Ola Engkvist', Yinhai Wang®, Marcus Olivecrona' and
Thomas Blaschke'

" Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D Gothenburg, Mélndal 43183, Sweden
2Quantitative Biology, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Unit 310, Cambridge Science Park,
Milton Road, Cambridge CB4 OWG, UK




Deep learning @ AstraZeneca: Vision

 Creating an integrate Al platform to impact drug discovery projects

Al design platform

@ Al reaction platform

Automatic make and
test (iLab)

Data

foundation Augmented

design

Formalize
chemical
intuition

Autonomous
design

“Learn from
everything”

Automatic
design

Integration

Segler M.H.S. et al. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction, Chemistry, 2017, 23(25), 5966-5971
Segler M.H.S. et al. Planning chemical syntheses with deep neural networks and symbolic Al, Nature, 2018, 555, 604-610
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Deep learning @ AZ: De Novo Molecular Augmented Design Platform (REINVENT)

Reinforcement learning to generate
project relevant compounds

Agent model
o o o Ly o <
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Deep learning at AstraZeneca: Reaction informatics

ARTICLE _—
¢ FiI’St Steps, bUI|d|ng Planning chemical syntheses with deep
— World-class Reaction Knowledge Base et symbolie &

— On our work (past collaboration with M. Segler) e B

chemistry. ided
AB fest, chemists on

-
MedChem ELN U
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|+ Predictive chemical

Reaxys Reaxys

iLab
AZ Reaction Connect
~20mill reactions @ @ e




Becoming FASTER with Al
Through unsupervised learning for hit identification

Manifold
Learning
(t-SNE)

Deep CNN
autoencoder

Deep CNN
classifier
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Becoming CHEAPER W|th ML/AI
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Becoming FASTER and CHEAPER with Al
Al augmented de novo molecule design

Pt ® Journal of Cheminformatics g{':’/{/%“ ~ : ‘JL ; N
e
Molecular de-novo design through deep @
reinforcement learning
Marcus Olivecrona’(®, Thomas Blaschke, Ola Engkvist and Hongming Chen R
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AZ’s first DMTA automation platform

First protype built during 2017
* All DMTA steps fully integrated

* Suited for 100s of
uninterrupted DMTA cycles.
ML/AI module is integrated.

Purification &
Analysis

* Cycle times of ca. 2h

 Successfully applied in ongoing
research project i
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Screening data

Compound design | ||



Conclusions
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Cheminformatics is widely applied in Pharmaceutical industry
Cheminformatics includes various aspects across different disciplines

Adoption of machine learning and Al technologies will help
Cheminformatics to better fit current and future research needs
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