Deep Learning: What Makes Neural Networks Great Again?

Igor I. Baskin

M. V. Lomonosov Moscow State University
The First Neural Network (Perceptron) and the First Neurocomputer (Mark I), 1957

Frank Rosenblatt (1928-1971)

- Designed for image recognition
- “Knowledge” is encoded as weights in potentiometers (variable resistors)
- Weights are updated during learning performed by electric motors

Mark I Perceptron

Diagram showing a perceptron with weight update, error, net input function, and activation function.
The First Use of Neural Networks (Multilayer Perceptron) in Chemoinformatics (1971)

Projection of structural formula onto retina (2D fingerprint)

Prediction of anticonvulsant activity of 1,3-dioxanes (antagonism to corasol)

The First Period of Disappointment with Neural Networks (1972-1986)

Marvin Lee Minsky (1927-2016)
Seymour Papert (1928-2016)

XOR truth table

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• 0, false
• 1, true

(Re)Discovery of Backpropagation Algorithm (1986)

- By replacing the threshold activation function with the sigmoid function and applying the backpropagation algorithm, it is possible to train multilayer neural networks with one or several (few) hidden layers.
- Such networks can approximate any dependence between variables, including the XOR function.

The “Linear Growth Law” for the Number of Papers Published per Year on the Use of Neural Networks in Chemoinformatics [2]

Any mapping from molecular graphs to properties can be approximated with the combination of such neural networks with fragment descriptors (Baskin et al., *J. Chem. Inf. Comput. Sci.*, 1995, 35, 527-533)
Neural Device for Searching Direct Correlations between Structures and Properties of Chemical Compounds

Neural device in application to the propane molecule:

EYE 1 ("looks" at atoms)

EYE 2 ("looks" at bonds)

SENSOR FIELD (each sensor detects the number of the attached hydrogen atoms)

The Second Period of Disappointment with Neural Networks (1997-2010)

Vladimir Vapnik (b. 1936)

- Statistical learning theory
- Support vector machines (SVM)

Leo Breiman (1928-2005)

- Decision trees
- Ensemble modeling
- Random forest (RF)

- Higher computational efficiency
- Comparable or higher predictive performance
- Strong mathematical foundation
- Models are better and easier interpretable
Deep Learning (2006-)

Deep learning is the application of artificial neural networks with multiple hidden layers that form multiple levels of representations corresponding to different levels of abstraction.

- New activation functions (ReLU, etc)
- New regularization techniques (dropout, etc)
- New learning techniques (SGD, Adam)
- Unsupervised representation learning and autoencoders
- Convolutional neural networks (CNN)
- Recurrent neural networks (RNN)
- Generative adversarial networks (GAN)

Jeffrey Hinton
Yoshua Bagnio
Yann LeCun
Evolution of Image Recognition Performance

ILSVRC top-5 error on ImageNet

Successful Applications of Deep Learning

- Image recognition
- Speech recognition
- Natural language processing
- Playing games (Go, etc)
- Self-driving cars
- Medical diagnostics
- etc

Deep learning beats humans

Revolution in the field of artificial intelligence

Big hype in media
Open Questions and Problems with Deep Learning
(Why are we still far from general (strong) AI?)

• Causality *(the number of storks vs the birth rate)*
• Extrapolation *(the problem of AD of QSAR models)*
 • DL models can easily be fooled
• No strong mathematical foundation *(contradicts statistical learning theory)*
• DL requires a lot of labelled data
• No neurophysiological evidence for backpropagation
• etc
Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set

Eelke B. Lenselink¹†, Niels ten Dijke², Brandon Bongers¹, George Papadatos³⁴, Herman W. T. van Vlijmen¹, Wojtek Kowalczyk², Adriaan P. IJzerman¹ and Gerard J. P. van Westen¹†**

Random split validation
Creativity is the ability to create new objects based on generative models.

Neural networks can create?
- New pictures (images)
- New music
- New posts in twitter
- New stories
- New poems
- New movie plots
- New dances
- etc
- …
- New molecules with desired properties
Creative Neural Networks

Recurrent Neural Networks
(repetitive running of neurons)

Long Short Term Memory (LSTM)

Gated Recurrent Units (GRU)

Energy-Based Neural Networks
(sampling form statistical distributions)

Restricted Boltzmann Machine (RBM)

Variational Autoencoder (VAE)

Neural Turing Machine (NTM)

Generative Topographic Mapping (GTM)
Recurrent Neural Networks (RNN)

Unfolding RNN in Time
The network is producing SMILES strings, character by character (or token by token). During training, the network is learned to predict the next character in the current SMILES string.

A. Gupta et al., *Mol. Inf.*, 2017, 36, 1700111
1. RNN is trained to generate valid SMILES strings with high accuracy
2. The model is fine-tuned to specific ligand subsets with certain biological activity
3. The model can perform fragment-based drug discovery by growing molecules starting from a known active fragment
Reinforcement learning (RL) is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize reward (or minimize penalty).

- For successfully accomplished missions, the agent will be rewarded, and his experience will be learned by another agents.
- If he will be killed, the next agents will not repeat his mistakes.
- Agent 008 will be smarter.
Deep Reinforcement Learning for *De-Novo* Drug Design

Mariya Popova1,2,3, Olexander Isayev1*, Alexander Tropsha1*

Mission – build SMILES strings character-by-character

Success – SMILES corresponds to an active molecule
Generative adversarial networks (GANs) are a class of artificial intelligence algorithms used in unsupervised learning, implemented by a system of two neural networks contesting with each other (Wikipedia)

- Generator (forger) tries to fool discriminator (detective) with fake objects (pictures)
- Discriminator (detective) tries to improve its ability to detect fake objects (pictures)

The generator G is trained to maximize two rewards at the same time:
1. one that improves the activity of molecules
2. another one that tries to mimic real structures by fooling the discriminator D

D – convolutional neural network (CNN)
G – long short term memory recurrent neural network (LSTM)

Guimaraes et al. arXiv:1705.10843
Latent vector
Encoder transforms chemical structure into a **Latent vector** - unique *reversible* representation in real numbers

- Is an artificial neural network
- Trained to accurately reconstruct its input object
Variational Autoencoder (VAE)

R. Feynman: “What I cannot create, I do not understand”

T. Blaschke et al. Mol. Inf., 2017, 36, 1700123
Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik

Problems with SMILES-Based Molecule Generation

1. **Correct SMILES** should be generated, so their grammar should be learned from data*
2. **SMILES** are not unique for a molecule, but their latent representations should be the same
3. SMILES cannot be formed for generalized structures
4. SMILES have **bad neighborhood** behavior

*fixed with GrammarVAE (arXiv:1703.01925)

Canonical SMILES:

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1
Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12
Graph-Based Generation of Molecules by Neural Networks

5. J. You et al. “Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation”, arXiv:1806.02473, 7 Jun 2018

- Molecular graphs are generated at once
- GAN, VAE and RL frameworks are combined with “isomorphism-aware” approaches
Two Kinds of Creativity

Disruptive creativity
New ideas completely replace the old ones

Conservative creativity
New ideas are added and combined with the old ones proved to be useful
Generative Topographic Mapping (GTM)

• GTM relates the 2D or 3D latent space with a manifold embedded in the high-dimensional data space.

• The visualization plot is obtained by projecting the data points onto the manifold and then unfolding it.

Christopher M. Bishop

GTM – Swiss Army Knife of Chemoinformatics

- Comparison of chemical databases
- Visualization and cartography of chemical space
- Classification models
- Regression (QSAR) models
- Virtual screening
- Inverse QSAR
Implementation of Autoencoder Architecture

- **Encoder** consists of two bidirectional LSTM layers followed by a dense layer.
- **Decoder** consists of two unidirectional LSTM layers and several dense layers.
- Trained on 1.2 M ChEMBL compounds.
- Reconstruction accuracy: **95.81%** on test set (300 K).
Generation of Focused Library for A2a Receptor

Adenosine A2a receptor activity dataset

Structures

Active 3618
Inactive 1303

SMILES

Trained ENCODER

Latent Vectors

Active Zone

Active

Inactive

Focused library: 27034 synthesizable* molecular structures

SMILES

Trained DECODER

“Active” Latent Vectors

*synthetic accessibility estimated by P.Etrl (2009) model
Validation Using Pharmacophore Model

- Structure-based pharmacophore model based on PDB structures of A2a receptor with co-crystallized ligands has been developed.

- This model was applied to (i) generated molecules and (ii) a subset randomly extracted from ChEMBL database.

Results of virtual screening using pharmacophore:

<table>
<thead>
<tr>
<th>Generated library, hits rate, %</th>
<th>CheMBL23, hits rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.05 (i)</td>
<td>5.37 (ii)</td>
</tr>
</tbody>
</table>

De novo generated library is 3 times more likely to comply to the developed pharmacophore model than ChEMBL23 random baseline.
Validation Using Ligand-Protein Docking

Docking was performed on 2YDO PDB x-ray structure of A2a receptor using the S4MPL tool

Top scored docking pose of one of generated molecules

- Distribution of the docking scores of generated structures closely follows distribution of real active molecules
- Average score of generated molecules is even higher than for real actives
Conclusions

• It is creativity that makes neural networks great again in chemoinformatics

• Conjunction of DL with GTM results in a novel de novo molecular design method that combines the creative character of RNN with unique data visualization capabilities of GTM
CREATIVITY is contagious. Pass it on.

~ Albert Einstein
Acknowledgement

Boris Sattarov

Alexandre Varnek

Dragos Horvath

Gilles Marcou