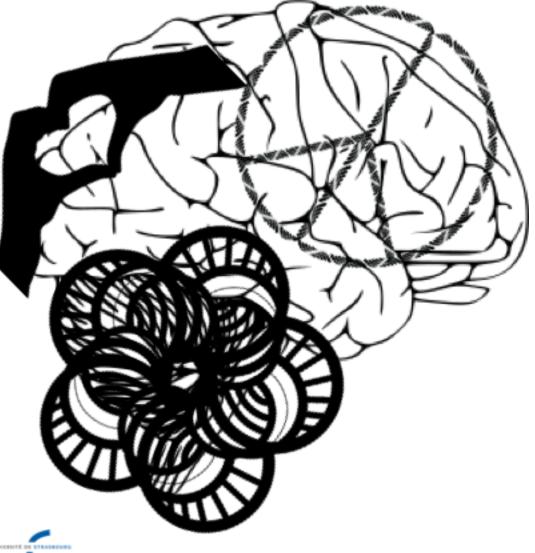
Tutorial: From chemical structures to outlier analysis

G. Marcou, D. Horvath, A. Varnek

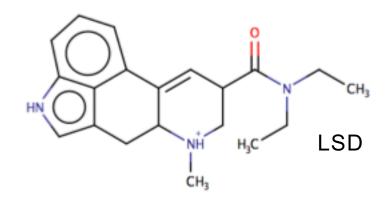
Download your materials

- Download URL (tinyURL to Renater FileSender repository):
 - https://tinyurl.com/y99km3nd
- Content (<150Mo when unziped)
 - ✓ Softwares
 - ExtCV.exe, xFragmentor.exe, xModelAnalyzerR.exe
 - ✓ Datasets
 - Datamining
 - 5-HT2B (a database) Iter0 (tutorial directory) Iter1 (result after the tutorial)
 - Pubmed
 - **Relevant articles**


Introduction

The IUPHAR 5-HT2B dataset

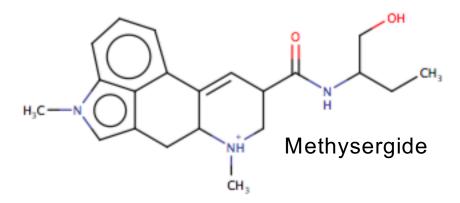
- ✓ 88 compounds
- ✓ Affinity values
 - pKi, pKd
 - Mostly human
- ✓ Type
 - Agonist
 - Antagonist
- Bibliography
 - PubMed Ids

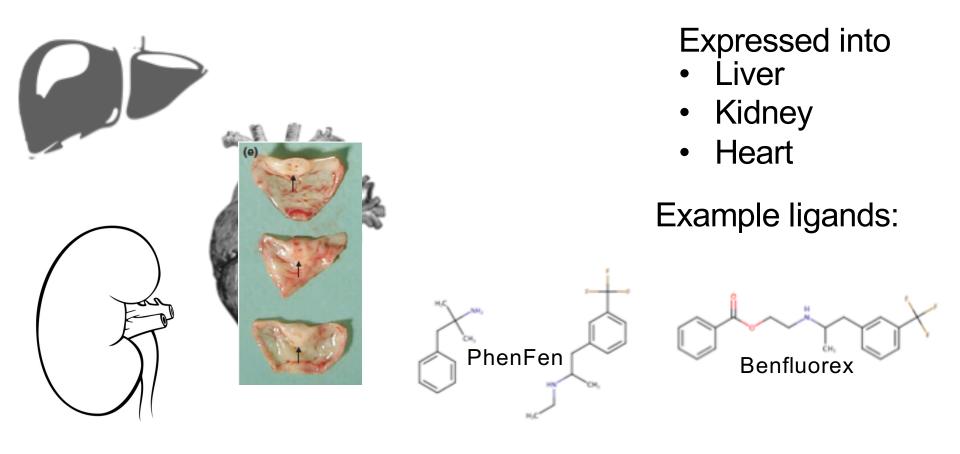


5-HT2A

Expressed in forebrain cerebral cortex

Famous 5-HT2A agonist


İMPLİCATED İN FLGWER PGWER


Expressed in CNS

Example 5-HT2C antagonist

Implicated into: obesity, seizure, psychotic disorder

5-HT2B, the anti-target

Drug induced valvular heart disease

Goal:

✓ Create a database of 5-HT2B ligand

Software:

InstantJChem

File

- ✓ IUPHAR_5HT2B.sdf
- Output
 - ✓ Directory 5-HT2B

Create a local database

1. 2.	Choose Project 	Categories:	Projects: UC Project (empty) UC Project (with local database) UC Project (local database with demo data

Instant JChem

Description:

New Instant JChem project with local database

Configure local database

Steps		IJC Project Name				
1. 2.	Choose Project IJC Project Name	Project Name:	5-HT2B			
		Project Location:	/Users/marcou/Desktop/Tutorial	Browse		
		Project Folder:	/Users/marcou/Desktop/Tutorial/5-HT2B			
			Close Already Opened Projects			

Instant JChem

Load an SDF into the database

Steps

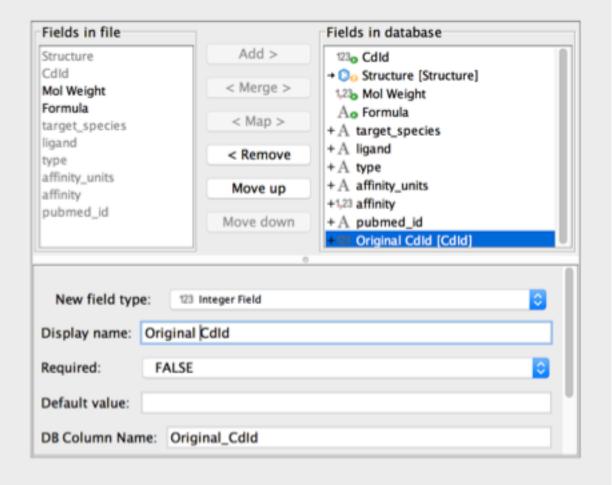
File and new table details

- 1. Select schema
- File and new table details

Instant JChem

- 3. Field details
- 4. Monitor import

Database:	localdb					
File to import:	/Users/marcou/Desktop/Tutorial/IUPHA	R_5HT2B.sdf	G			
File type: Structure file – SDF						
Table details: INew structure entity (using JChemBase table)						
Summary: IUPHAR_5HT2B [APP.IUPHAR_5HT2B] Type: Molecules						
10 fields found	:					
Structure [Text,Structure,List (Text)] Cdld [Text,List (Text),Boolean,Decimal,Integer] Records read:						
Mol Weight [Text	Read more	100				
Formula [Text,List (Text)] target_species [Text,List (Text)]						
ligand [Text,List type [Text,List (1						
affinity_units [Text,List (Text)]						
affinity [Text,List (Text),Decimal] pubmed_id [Text,List (Text)]						
pubmed_id [rext, ust (rext)]						



SDF field management

Steps

Field details

- 1. Select schema
- File and new table details
- 3. Field details
- Monitor import

Instant JChem

Grid view column management

	Cdld	Available fields:	9	Selected fields:
••••	Culu	$\begin{array}{c} a \\ z \\ z \\ a \\ z \\ a \\ z \\ z \\ z \\ z \\$	Add ->	Oo Structure
-	New Standard Fiel New Chemical Ter New Calculated Fi New Row	A Formula	Add All -> <- Remove	A target_species A ligand A type A affinity_units 1,23 affinity A pubmed_id 123 Original CdId
1	Data			
	✓ Fit table to screen Adjust columns w			
	Open Column Mai	n		
	Customize Widget		Move Up	
	customize widge		Move Down	
2	Zoom:			Cancel OK

Final state of the interface

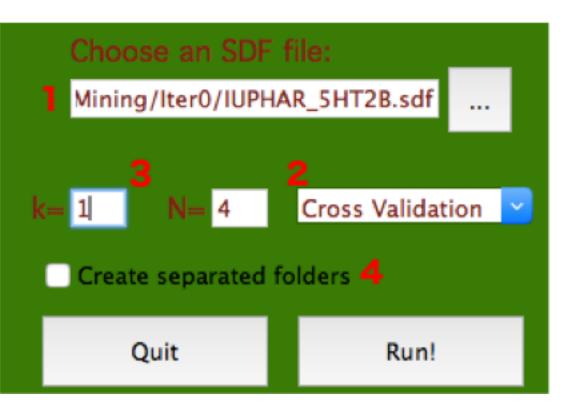
Dashbaard C III Grid view for LUMVAL_SHT28 C									
Que	ry Browse Code 📑 🛒 📑	28.7 2	92 · · · · · · · · · · · · · · · · · · ·	<u>4</u>					C
	Structure	target_species	ligand	type	affinity_units	affinity	pubmed_id	Original Celid	
1		Human	tryptamine	Agonist	рКi	7,00			2
2		Human	5-hydroxytryptamine	Agonist	рКi	7,90	15322733 12954071 1110 4743 8078486 15466450 8450835		5
3	NG JOL ON	Rat	2-methyl-5-HT	Agonist	рКi	6,60	8450835		6

- A database of 5-HT2B ligands
- Access to chemical structures, affinity, type, identifier, bibliographic references
- Possibility to edit the dataset: structures, instances and values

Goal:

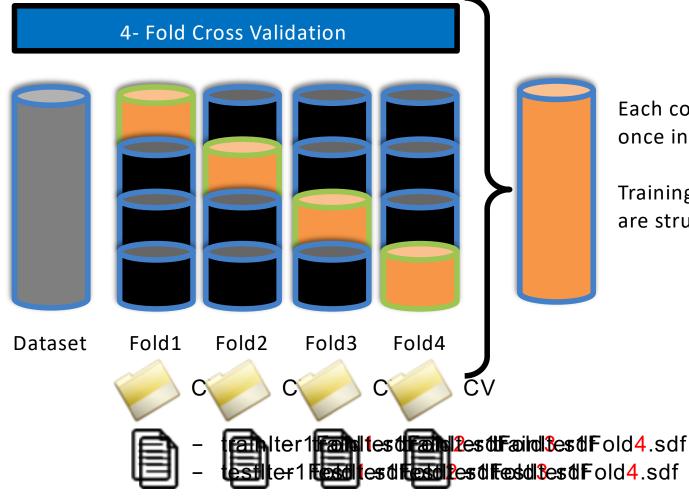
Set up an External Cross-Validation procedure

Software:


- ExtCrossValidate
- ✓ xFragmentor
- File
 - ✓ IUPHAR_5HT2B.sdf

Output

- Directories CVIter*i*Fold*j*, files train.sdf and test.sdf
- ISIDA Substructural Molecular Fragments, files *.hdr, *.svm, *.arff



Software: ExtCrossValidate

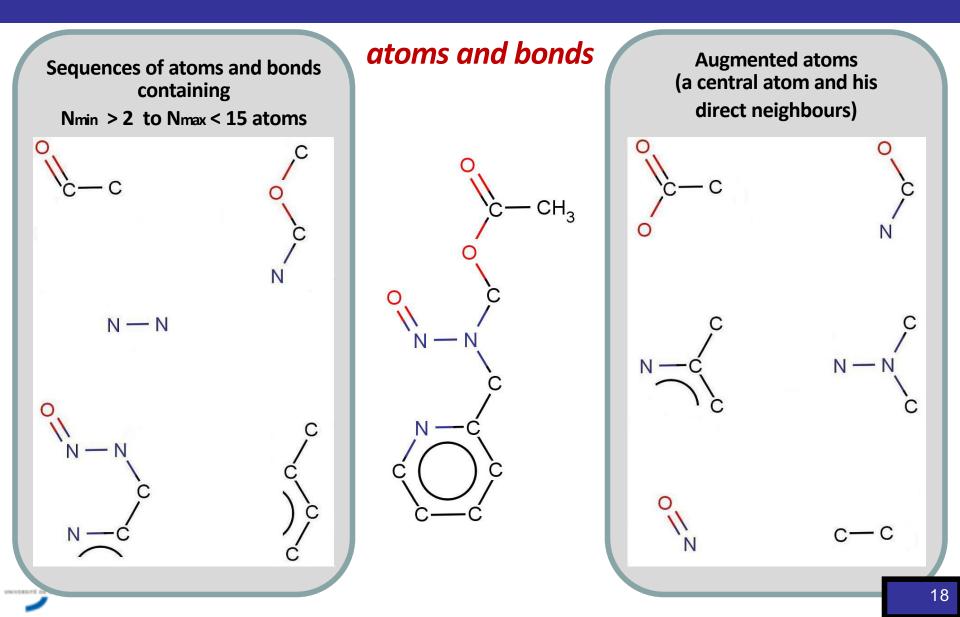
- 1 Select the IUPHAR_5HT2B.sdf file
- 2 Choose Cross Validation
- 3 Set 1 iteration to 1: **k=1** and 4 folds: **N=4**
- 4 Uncheck the tick-box. Store all train and test sets into a folder named CV

External Cross-Validation

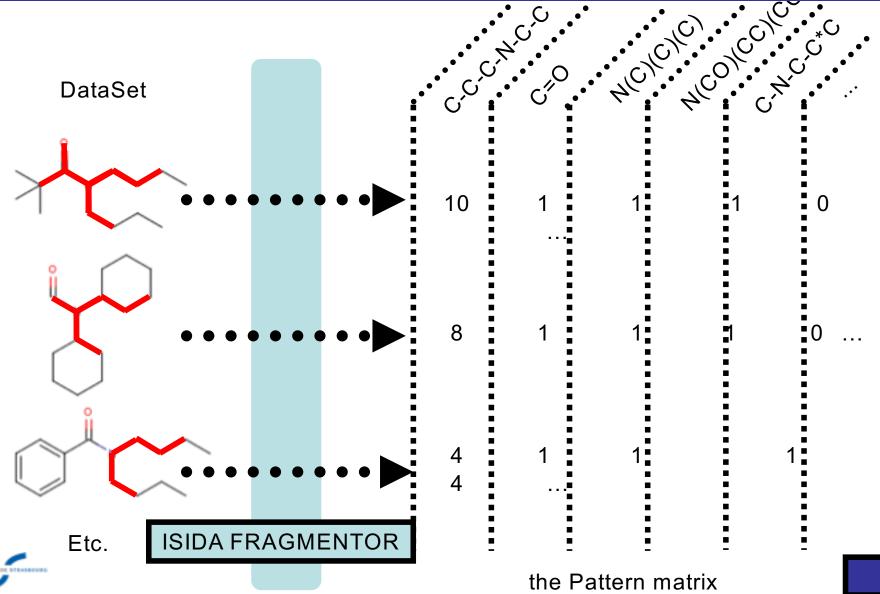
Each compound is used once in a test set.

Training and test sets are structural files.

Each fold produces a dedicated training and test files in a directory named CV.


Software: xFragmentor

ktop/Tutorial/CViter1Fold1/trains Add SDF IIR (Atom centered, homogeneous path s Add Fragment Ktop/Tutorial/CViter1Fold2/trains, Ktop/Tutorial/CViter1Fold4/trains, Ktop/Tutorial/CViter1Fold4/trains, Ktop/Tutorial/CViter1Fold4/trains, Ktop/Tutorial/IUPHAR_SHT28.sdf Min length Max length 2 elete Fragment 2 elete Fragment EMB_R(2-4)_FC Select a coloration scheme for atoms: affinityl Select a coloration scheme for bonds Read XML Select a coloration scheme for bonds Save XML Base name of header files Check O Do not use marked atom Get atom contribution to fragment 3	List of SDF files to process:	Select a topology:	
Select a coloration scheme for bonds B Bond type Save XML Atom Pairs Use predifined fragments Do All Ways Base name of header files Use only those fragments 0 0 Do not use marked atom Get atom contribution to fragment VisiDA/xFragmentor Université de Strasbourg, 2016	ktop/Tutorial/CVIter1Fold2/train.se ktop/Tutorial/CVIter1Fold3/train.se ktop/Tutorial/CVIter1Fold4/train.se ktop/Tutorial/IUPHAR_SHT28.sdf SDF field of in	Min length Max length 2 0 4 0 2	IIAB_R(2-4)_FC
Use Formal Charges Use only those fragments Use only those fragments 0 Do not use marked atom Get atom contribution to fragment SiDA/xFragmentor Université de Strasbourg, 2016		B Bond type	Save XML Use predifined fragments
90000000000000000000000000000000000000			Universite of the second second second second second second second second second second second second second se
ISIDA/xFragmentor Université de Strasbourg, 2016		0 Do not use marked atom	Get atom contribution to fragment
	ISIDA/xFragmentor Université de Strasbourg, 2016		

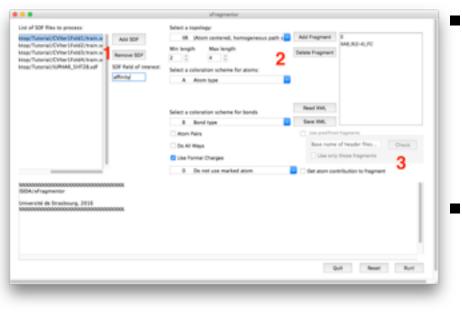


Quit

ISIDA fragments

ISIDA Substructural Molecular Fragments

Compute training set descriptors


- ✓ IUPHAR_5-HT2B.sdf
- CV/trainIteriFoldj.sdf

Add Fragmentations (area 2)

- ✓ Atom count: E
- Atom centered of length 2 to 4: IIAB(2-4)
- ✓ Use formal charge: FC

Save configuration

- Click the Save XML button
- Name the file train_E_IIAB_R(2-4)_FC.xml
- Click the Run button

Compute test set descriptors

• • •		afragmentor			
List of SDF files to process		Select a topology:			
Mapy/Tururial/CVMm/EM4E2/Markie Mapy/Tururial/CVMm/EM2E2/Markie Mapy/Tururial/CVMm/EM2E2/Markie Mapy/Tururial/CVMm/EM2E2/Markie Mapy/Tururial/CMMAR_SHT28.adf	Ani 107 Renove 107 SOF Reld of interest: ufficing	IR. (Atom centered, homopressus path) Mix length Mix length III. In the control of t	Add Fragment Delete Fragment	848,8(2-4),PC	
		Select a coloration scheme for bonds	Read XXA,		
		8 Bond type	Save IMI,		
		C Atom Pairs	Pairs		
		Do All Ways	Base name	of header files Check	
		Dee Formal Charges	Use only	those fragments	
		0 Do not use marked atom	Out atom con	stribution to tragment	
Inconconcentration (50A): el segmenter Union: http://www.little Inconconcentrations/seconder/					
				All Reset Burl	

- Remove all SDF files and add test SDF files (area 1)
 - ✓ Remove IUPHAR_5-HT2B.sdf
 - Remove CV/trainIteriFoldj.sdf
 - ✓ Add CV/testIteriFoldj.sdf
- Check the tickbox Use Predefined Fragments (area 3)
 - Leave Basis name to default value or empty
- Use the Check button (optional)
 - You should receive the message All hear files were found.

Save configuration

- Click the Save XML button
- Name the file test_E_IIAB_R(2-4)_FC.xml
- Click the Run button

Files created by xFragmentor

```
@RELATION "/Users/marcou/Desktop/Tutorial/CVIter1Fold1/test.sdf"
       XML:
                                                                                 GATTRIBUTE "C" NUMERIC
          Configuration file.
                                                                                 GATTRIBUTE "N" NUMERIC
                                                                                  MATTRIBUTE "O" NUMERIC
                                                                                 MATTRIBUTE "(C-C), xC" NUMERIC
                                                                                           "(C-C-N), xC" NUMERIC
                                                                                           "(C-C-N-C),(C-C-N-C),xC" NUMERIC
                        <?xml version="1.0" encoding="U entribute
       HDF
                                                                                           "(C-C),(C-N),xC" NUMERIC
                                                                                           "(C-N-C),(C-N-C),xC" NUMERIC
                 <Fragmentation Max="2" Min="2"</pre>
                                                                         Atom GATTRIBUTE
                                                                                           "(C-N-C-C),(C-N-C-N),(C-N-C=O),xC" NUMERIC
          Lis
                                                                                            '(N-C),(N-C),(N-C),xN" NUMERIC
                 AtomFrg="False" Extended="NoFX"
                                                                                           "(N-C-C), (N-C-C), (N-C-N), (N-C+O), xN" NUMERIC
                                                                                 GATTRI
                                                                                       BUTE
                                                                                           "(N-C-N-C), xN" NUMERIC
                 AtomDaire-"Falco" DoAllWave-"Fal
                                                                                                 (C-N) (C-0) vC<sup>n</sup>
 1.
       SVM:
                                                                                              3:2 7:1 10:1 13:1 14:1 16:1 17:1 18:1 19:1 39:1 42:4 45:7 46:1
                                                                                              3:6 16:2 24:1 27:1 30:2 31:2 39:4 42:2 45:8 46:2 48:3 108:2 114:1 115:2 117:2
                                                                                                 4:1 8:1 13:1 16:1 17:1 19:2 45:5 58:2 52:1 55:1 62:1 66:1 78:1 86:1
 3.
4.
          Molecular descriptors (attributes)/
                                                                                                 24:1 39:1 42:1 45:3 50:1 52:1 53:1 55:1 58:1 62:1 63:1 64:1 65:1 66:1 67:
                                                                                              3:1 4:2 5:2 6:2 7:2 8:2 10:1 16:1 24:1 27:1 28:1 30:1 31:1 32:1 33:1 36:1 39
                                                                                      1:19 2:2 4:1 24:2 27:1 32:1 33:1 34:1 36:2 37:1 39:3 42:2 43:1 44:1 45:3 46:1 47:1 48:
          Property value (value) files in
                                                                                      1:22 2:4 3:2 4:2 7:1 10:1 13:1 14:1 16:1 17:1 10:1 19:1 39:1 42:3 45:6 46:1 62:2 65:2
 6.
                                                                                      1:22 2:3 3:2 4:1 7:2 16:1 19:1 24:3 27:1 28:1 36:1 39:5 42:1 45:4 48:2 50:1 52:1 55:1
          sparse format.
                                                                                       1:32 2:5 3:5 4:4 7:1 10:2 16:3 19:1 21:2 24:1 27:1 28:1 30:1 31:1 32:1 33:1 34:1 35:1
 7.
                                                                                      1:25 2:2 3:1 7:2 10:1 24:3 27:1 28:1 36:1 42:2 45:14 46:4 48:8 74:1
                                                                                               3:3 4:4 16:1 21:1 24:1 27:1 28:1 30:1 31:1
                                                                                                                                    32:1 33:1 34:1 35:1
                                                                                              3:1 24:3 27:1 28:1 39:4 42:2 45:8 46:2 48:4 50:1 52:1 53:1 55:1
          Each molecule correspond to one
                                                                                              1:2 4:1 7:2 10:1 24:3 27:1 28:1 42:2 45:7 46:3 48:3 88:2 91:1 108:2 110:1 149
                                                                                                     27:1 28:1 36:1 39:3 42:2 45:7 46:3 48:2 68:1 74:2 107:2
10.
          line, in order of appearance in the
                                                                                                                      32:1
                                                                                                                           33:1
                                                                                                                               3912 4215 4515 4613 4811
11.
                                                                                                         13:1 16:1 17:1 24:2 27:1 39:1 45:4 48:2 110:1 166:1
12.
                                                                                                             42:1 45:3 48:1 50:1 52:1 53:1 55:1 58:1 60:1 62:1 63:1 64:1
          SDF file.
                                                                                             3:1 24:2 39:1 42:1 45:3 50:1 52:1 53:1 55:1 62:1 63:1 65:1 66:1 67:1 70:1 84:
13.
                                                                                      1:16 2:1 3:1 24:1 39:1 42:2 45:9 46:4 48:3 68:3 108:2 110:2 111:3 115:2 117:1 118:1 12:3
14.
                                                                                  6.6 1:15 2:1 3:2 4:1 7:1 16:1 19:1 39:1 42:1 45:6 46:1 48:1 55:2 99:1 182:1 115:1 117:1 11/4
       ARFF:
                                                                                 2 8.95 1:27 2:3 3:1 4:1 16:1 24:3 27:1 28:1 39:3 42:3 45:8 46:4 48:2 62:1 63:1 65:1 68:2 78:
15
                                                                                 {8 22,
                                                                                       1 3, 2 2, 3 1, 6 2, 15 1, 18 1, 23 3, 26 1, 27 1, 35 1, 38 5, 41 1, 44 4, 47 2, 49
16.
                                                                                       1 5, 2 5, 3 4, 6 1, 9 2, 15 3, 18 1, 20 2, 23 1, 26 1, 27 1, 29 1, 30 1, 31 1, 32
          Molecular descriptors (attributes)/
                                                                                       1 2, 2 1, 6 2, 9 1, 23 3, 26 1, 27 1, 35 1, 41 2, 44 14, 45 4, 47 8, 73 1, 87 1,
17.
                                                                                 {0 23,
                                                                                       1 2, 2 3, 3 4, 15 1, 20 1, 23 1, 26 1, 27 1, 29 1, 30 1, 31 1, 32 1, 33 1, 34 1, 35
          Property value (value) files in
18.
                                                                                       1 2, 2 1, 23 3, 26 1, 27 1, 38 4, 41 2, 44 8, 45 2, 47 4, 49 1, 51 1, 52 1, 54 1,
                                                                                           2 2, 3 1, 6 2, 9 1, 23 3, 26 1, 27 1, 41 2, 44 7, 45 3, 47 3, 87 2, 90 1, 107
19.
                                                                                 <0 18,
                                                                                       14,
                                                                                           2 3, 23 3, 26 1, 27 1, 35 1, 38 3, 41 2, 44 7, 45 3, 47 2, 67 1, 73 2, 106 2,
          sparse format, compatible with the
                                                                                 10 ZZ.
20.
                                                                                           2 2, 23 1, 26 1, 27 1, 29 1, 30 1, 31 1, 32 1, 38 2, 41 5, 44 5, 45 3, 47 1,
                                                                                 {0 17,
                                                                                       1 1,
                                                                                 {0 19,
                                                                                       1 5, 2 1, 6 4, 9 2, 12 1, 15 1, 16 1, 23 2, 26 1, 38 1, 44 4, 47 2, 109 1, 165 1, 2
                              >/Users/marcou/Desktop/Tutor (e 11,
                                                                                           2 1, 3 1, 32 1, 38 1, 41 1, 44 3, 47 1, 49 1, 51 1, 52 1, 54 1, 57 1, 59 1, 61
          Weka software Jusers/marcou/Desktop/Tut (0 14,
                                                                                       1 2, 2 1, 23 2, 38 1, 41 1, 44 3, 49 1, 51 1, 52 1, 54 1, 61 1, 62 1, 64 1, 65 1,
                                                                                       1 1, 2 1, 23 1, 38 1, 41 2, 44 9, 45 4, 47 3, 67 3, 107 2, 109 2, 110 3, 114 2, 116
           Concatenate information from
                                                                                 {0 15, 1 1, 2 2, 3 1, 6 1, 15 1, 18 1, 38 1, 41 1, 44 6, 45 1, 47 1, 54 2, 98 1, 101 1, 11
                                                                                 {0 27, 1 3, 2 1, 3 1, 15 1, 23 3, 26 1, 27 1, 38 3, 41 3, 44 8, 45 4, 47 2, 61 1, 62 1,
           HDR and SVM
```


- Division of the dataset into 4 sets of training and test structural files
- Calculation of the ISIDA Substructural Molecular Fragments descriptors
 - Atom Count
 - ✓ Atom Centered fragment including from 2 to 4 atoms
 - Atoms and bonds standard annotation
 - ✓ Formal Charge

Goal:

 Setup Gaussian Processes models using only the training sets.

Software:

✓ Weka/Experimenter

File

CV/trainIteriFoldj.sdf and CV/train_IteriFoldj_*.arff

Output

- ✓ ExtCVtrain.arff
- ✓ ExtCVtrain.exp

Introduction to Gaussian Processes

Goal:

✓ Model a probability distribution of the property.

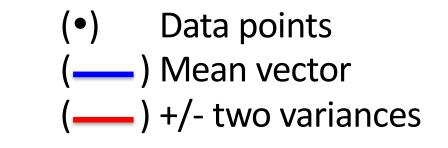
- Y^{train}, Y^{test} are random vectors representing properties
- X^{train} , X^{test} are the molecular descriptors matrices

$$\begin{bmatrix} Y^{train} \\ Y^{test} \end{bmatrix} = N \begin{pmatrix} 0, \begin{bmatrix} K(X^{train}, X^{train}) + \mathbf{1}\sigma^2 & K(X^{train}, X^{test}) \\ K(X^{test}, X^{train}) & K(X^{test}, X^{test}) \end{bmatrix}$$

Parameters of the method

✓ K(.,.) the kernel. In this tutorial, the linear kernel is used.

✓ σ^2 the noise level. Closely related to the experimental noise on the property.


Inference of Gaussian Processes

Two quantities are inferred for a test set

 $\langle Y^{test} \rangle = K(X^{test}, X^{train}) [K(X^{train}, X^{train}) + 1\sigma^2]^{-1} Y^{train}$ \checkmark The covariance

$$\sigma_{Y^{test}}^2 = K(X^{test}, X^{test}) -$$

 $K(X^{test}, X^{train}) \left[K(X^{train}, X^{train}) + \mathbf{1}\sigma^2 \right]^{-1} K(X^{train}, X^{test})$

Weka/Experimenter

Setup Run Analyse	
Experiment Configuration Mode Simple	
]	Save
Results Destination	•
ARTE file Filename: /Users/marcos/Desktop/Tutorial/ExtCVtrain.artf 2	Browse
Experiment Type	Iteration Control
Cross-validation	Number of repetitions: 4
Number of folds: 4	👰 🖲 Data sets first
Classification Regression	Algorithms first
Datasets	Algorithms
Add new. Edit selected Delete selected Use relative paths //Jsers/marcou/Desktop/Tutorial/CVIter1Fold1/train_f_BAB_RI2-41_FC.arff //Jsers/marcou/Desktop/Tutorial/CVIter1Fold3/train_f_BAB_RI2-41_FC.arff //Jsers/marcou/Desktop/Tutorial/CVIter1Fold3/train_f_BAB_RI2-41_FC.arff //Jsers/marcou/Desktop/Tutorial/CVIter1Fold3/train_f_BAB_RI2-41_FC.arff	Add new Edit selected Delete selected GaussianProcesses -1, 10.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 9.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 7.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 7.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 5.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 5.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 5.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 5.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 5.0 - N.0 - K. 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 5.0 - N.0 - K 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 5.0 - N.0 - K 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 1.0 - N.0 - K 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 1.0 - N.0 - K 'weka.classifiers.functions.supportVector.PolyKernel -E, 1.0 -C, 250007' - 5.1 GaussianProcesses -1, 1.0 - N.0 - K 'weka.classifiers.functio
	Load options Save options Up Down
	Notes

Weka/Experimenter

Setue [Run] Analyse]		
Experiment Carligaration Made (sergin 🔳		
gen.	1	u. 1 pr
Accels Destination		•
AND BE BERREY AND DESCRIPTION OF A DESCR	2	(400.)
Experiment Type		Installan Cantool
(Cress-validation	8	Number of repetitions: 4
Rumber of Table 4		B Das un but
Canification Bagement		C Algorithms first
Datasets		Signifies
Add new	a	All inse. Edit index. Bitters whereat Consumptions on a 1.0.0 - 0.0 -
		industry in the states
		An

Click New.

 Results destination: "ExtCVtrain.arff"

- ✓ 4-fold cross validation repeated 4 times.
- Experiment type: Regression
- Add the training files to the Datasets
- Add the ZeroR method to the Algorithms
- Add Gaussian Processes method to the Algorithms

Setup Gaussian Processes

r		Choose weka.classifiers.functions.GaussianProcesses									
	• (About									
		Implements Gaussian processes for regression without More hyperparameter-tuning. Capabilities									
		batchSize	100								
		debug	False	•							
		doNotCheckCapabilities	False	•							
		filterType	No normalization/standardization	•							
		kernel	Choose PolyKernel -E 1.0 -C 250007								
		noise	1.0								
		numDecimalPlaces	2								
		seed	1								
	-	Open	Save OK Cancel								

Add Gaussian Processes:

- no data transformations
- Noise level in the range [1..10]

Findize the experiment

- Click the button Save...
 - ✓ Save you setup as *ExtCVtrain.exp*
- Click the Run tab, then Start

Click the Analyse tab

Analyze the experiment on training data

- Click the *Experiment* button
- Set the Comparison field to Relative Absolute Error
- Click the *Perform test* button

Dataset	(1) rules.Ze	r (2) funct	(3) funct (4)	funct (5) funct	(6) funct (7) funct	(8) funct (9) funct	(10) func (11) func
CVIter1Fold1_affinity CVIter1Fold2_affinity	(16) 100.0 (16) 100.0		85.92 * 85 89.31 * 88	5.26 * 84.60 * 8.77 88.24	83.99 * 83.53 * 87.90 87.60	83.22 * 83.02 * 87.33 87.15	83.41 * 85.01 87.16 87.55
CVIter1Fold3_affinity CVIter1Fold4_affinity	(16) 100.0 (16) 100.0	90.35	89.75 89	9.16 88.62 3.41 * 82.64 *	88.11 87.65	87.28 87.50	88.88 91.09 81.90 * 83.23 *
	(v/ /*	0 (0/1/3)	(0/1/3) (0	0/2/2) (0/2/2)	(0/2/2) (0/2/2)	(0/2/2) (0/2/2)	(0/2/2) (0/3/1)

Key:

rules.ZeroR '' 48055541465867954

(2) functions.GaussianProcesses '-L 10.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (3) functions.GaussianProcesses '-L 9.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (4) functions.GaussianProcesses '-L 8.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (5) functions.GaussianProcesses '-L 7.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (6) functions.GaussianProcesses '-L 6.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (7) functions.GaussianProcesses '-L 5.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (8) functions.GaussianProcesses '-L 5.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (9) functions.GaussianProcesses '-L 4.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (9) functions.GaussianProcesses '-L 3.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (10) functions.GaussianProcesses '-L 3.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (10) functions.GaussianProcesses '-L 3.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (10) functions.GaussianProcesses '-L 3.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (10) functions.GaussianProcesses '-L 3.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545 (11) functions.GaussianProcesses '-L 3.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545

01:24:55 - Root, mean_squared_error - /Ukers/marco 01:25:42 - Available resultsets 01:25:45 - Root, mean_squared_error - functions.Gau 01:25:58 - Relative_absolute_error - functions.Gaussia	(9)	functions.GaussianProcesses '-L 3.8 -W 2 -K ("functions.supportVector.PolyKernel -E 1.8 -C 250007\" -S 1' -8820006949987678545 functions.GaussianProcesses '-L 3.8 -W 2 -K ("functions.supportVector.PolyKernel -E 1.8 -C 250007\" -S 1' -882006949987678545 I functions.GaussianProcesses '-L 1.8 -W 2 -K \"functions.supportVector.PolyKernel -E 1.8 -C 250007\" -S 1' -862006949967678545	
 01:20:35 - Relative_absolute_error - functions.Caussia 01:20:54 - Relative_absolute_error - functions.Caussia 01:28:14 - Relative_absolute_error - functions.Caussia •	-		

- The optimum noise level is deduced only from the internal cross-validation on training sets.
 - ✓ Optimal value about 4
- Different performances on different training sets
 Must be statistically demonstrated
- The test sets are fully independent.
 - The setup of the model building is complete without the help of the test sets

Exercise 4

Goal:

External validation of Gaussian Processes models.

Software:

✓ Weka/Experimenter

File

CV/trainIteriFoldj.sdf and CV/trainIteriFoldj_*.arff
 CV/testIteriFoldj.sdf and CV/testIteriFoldj_*.arff

Output

- ExtCVtrain.arff
- ExtCVtrain.exp

Weka/Experimenter Advanced mode

Setup Kun Analyse			
Experiment Configuration Mode	Advanced 💌		
		Save	New
Destination			
Choose InstancesResultLis	stener - O ExpCVtest.arff	2	
Result generator			
Choose ExplicitTestsetRes	ultProducer -R -O splitEvalutorOut.zip -dir /Users/marco	u/Desktop/Tutorial/testsets -suffix _test.arff -W w	eka.experiment.RegressionSplitEvaluator
Runs	Distribute experiment	3 Generator properties	
From: 1 To: 1	Hosts By data set By run By property	Disabled	Select property
Iteration control			
 Data sets first 	 Custom generator first 		
Datasets			
Add new Use relative paths	Edit selected Delete selected	Can'	t edit
/Users/marcou/Desktop/Tutorial/CVIter1Fold1/train_E_IIAB_R(2-4)_FC.arff /Users/marcou/Desktop/Tutorial/CVIter1Fold2/train_E_IIAB_R(2-4)_FC.arff /Users/marcou/Desktop/Tutorial/CVIter1Fold3/train_E_IIAB_R(2-4)_FC.arff /Users/marcou/Desktop/Tutorial/CVIter1Fold4/train_E_IIAB_R(2-4)_FC.arff			
Up	Down	Notes	

INVERSITÉ DE STRASBO

Weka/Experimenter Advanced mode

- Set the *Destination* to *ExpCVtest.arff*
- Set the *Runs* from 1 to 1
- Check or set the *Datasets*

2	ben	Save		New
Destination				
Choose InstancesResu	MListener -0 ExpCVtest.arff	2		
Result generator				
Choose ExplicitTestset	ResultProducer -R -O splitEvalutorOut.zip -dir /Users/marco	u/Desktop/Tutorial/testsets -s	uffix_test.arff -W weka.e	xperiment.RegressionSplitEvaluator
Runs	Distribute experiment	Generator properties		
From: 1 To: 1	Hosts By data set U By run By property	Disabled		Select property
teration control				
 Data sets first 	 Custom generator first 			
Datasets				
Add new	Edit selected		Can't edit	1
/Users/marcou/Desktop/Ti /Users/marcou/Desktop/Ti	utorial/CVIter1Fold1/train_E_IA8_R(2-4)_FC.arff utorial/CVIter1Fold2/train_E_IA8_R(2-4)_FC.arff utorial/CVIter1Fold3/train_E_IA8_R(2-4)_FC.arff utorial/CVIter1Fold3/train_E_IA8_R(2-4)_FC.arff			
L				

Setup the Results Generator

RegressionSplitEvaluator

weka.experiment	ExplicitTestsetResultProducer	 Set the value of
	ternal test set and calls the appropriate More More	<i>RelationFind</i> to (.*train \.sdf.*)
outputFile	splitEvalutorOut.zip	 Set the value of
randomizeData	False	testsetPrefix to test
rawOutput	False	 Set the value of
relationFind	(.*train \.sdf.*)	testsetSuffix to
relationReplace		E IIAB(2-4) FC.arff
splitEvaluator	Choose RegressionSplitEvaluator - W weka. classifiers.	• Set the <i>testsetDir</i> to CV
testsetDir	CV	 Click the
testsetPrefix	test	
testsetSuffix	_E_IIAB_R(2-4)_FC.arff	RegressionSplitEvaluato
Open	Save OK Cancel	
-		

RegressionSplitEvaluator: GP with optimum noise level

weka.classifiers.functions.GaussianProcesses

weka.experiment.Regression

About	About		
A SplitEvaluator that proc	hyperparameter-tunin	n processes for regression without More ng. Capabilities	More
noSizeDetermination False	batchSize	100	
Open	debug	False	Cancel
	doNotCheckCapabilities	False	
	filterType	No normalization/standardization	
	kernel	Choose PolyKernel -E 1.0 -C 250007	
	noise	4.0	
	numDecimalPlaces	2	
	seed	1	
UNIVERSITÉ DE STRABBOURD	Open	Save OK Cancel	

Findize the experiment

- Click the button Save...
 - ✓ Save you setup as *ExtCVtrain.exp*
- Click the Run tab, then Start

Click the Analyse tab

Analyze the experiment on training data

- Click the *Experiment* button
- Set the Comparison field to Relative Absolute Error
- Click the *Perform test* button

Constanting of Datasets: Resultsets: 1 Confidence: 0.05 (two tailed) Sorted by: -Date: 10/06/16 15:22 Dataset functions. CVIter1Fold1 affinity (1)80.30 CVIter1Fold2_affinity (1)74.91 CVIter1Fold3_affinity (1)73.11 CVIter1Fold4_affinity (1)84.02 (v/ /*)

Key:

(1) functions.GaussianProcesses '-L 4.0 -N 2 -K \"functions.supportVector.PolyKernel -E 1.0 -C 250007\" -S 1' -8620066949967678545

01:24:34 - Available resultsets
01:24:35 - Root_mean_squared_error - //Lers/marces
01:23:45 - Root_mean_squared_error - functions.GaussianProcesses '-L 8.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 290007\" -5 1' -052000604499007078545
(0) functions.GaussianProcesses '-L 3.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 290007\" -5 1' -052000604499007078545
(0) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 290007\" -5 1' -052000604499007078545
(0) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 290007\" -5 1' -05200060499007078545
(0) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 290007\" -5 1' -0520006049007078545
(1) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -0520006049007078545
(2) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -05200060490070778545
(2) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -05200060490070778545
(2) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -05200060490070778545
(2) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -05200060490070778545
(2) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -05200060490070778545
(2) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -052000604900707778545
(2) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -052000604900707778545
(2) functions.GaussianProcesses '-L 1.8 - N 2 - K \"functions.supportVector.PolyKernel -E 1.8 - C 29007\" -5 1' -052000604900707778545
(2) functions.GaussianProcesses '-L 1.8

- The optimum noise level is deduced only from the internal cross-validation on training sets.
 - ✓ Optimal value about 4
- The configuration is used to validate the models on the test sets
 - ✓ Relative absolute error about 80%
- Performances are dependent of the crossvalidation fold
 - ✓ Are there outliers?

Goal:

Outlier identification

Software:

- ✓ Weka/Explorer
- ✓ xModelAnalyzerR
- InstantJChem
- Files
 - ✓ ARFF files
- Output
 - Log files of Weka/Explorer
 - New SDF without an outlier.

Weka/Explorer

Load the file IUPHAR_5HT2B_E_IIAB_R(2-4)_FC.arff

NUMBER OF STREETS

Preprocess Classify Cluster Associate Select attributes V	/isualize	
Open file Open URL Open DB Gene	undo	Edit Save
Choose None		Apply
Current relation	Selected attribute	
Relation: /Users/marcou/Deskt Attributes: 1436 Instances: 88 Sum of weights: 88	Name: class Missing: 0 (0%) Distinct:	Type: Numeric 49 Unique: 24 (27%)
Attributes	Statistic	Value
All None Invert Pattern No. Name	Minimum Maximum Mean StdDev	5.2 10.05 7.339 1.156
1429 (0=C*N*N),(0=C*N-C),(0=C*0*C),x0 1430 (0*C),(0*C),x0 1431 (0*C*N),(0*C-C),(0*C=0),x0 1432 (0*C*N-C),(0*C-C*C),(0*C=C*C),x0 1433 (C-C-C),(C-C*C),(C-N*C),(C-N*N),xC 1434 (C-C-C-N&FC+1&),(C-C-C-N&FC+1&),(C 1435 (C-C-C-C),(C-C-N&FC+1&-C),(C-C-N&FC+)	Class: class (Num)	Visualize All
1436 class Remove Status	5.2 7	.63 10.05
ОК		Log 🛷 x 0

Setup a Gaussian Processes model

•			rs.functions.	GaussianProcesses	r instance 4)
•	Select the	About			
•	Click the		nts Gaussian ameter-tunir	ng. More Capabilities)7* -S 1
	Test option		batchSize	100	
	O Supplie		debug	False	
	Cross- Percen	doNotCheck	Capabilities	False	
			filterType	No normalization/standardization	
	(Num) class		kernel	Choose PolyKernel -E 1.0 -C 250007	
	Start Result list (noise	4.0	
	16:19:15 16:20:38	numDe	cimalPlaces	2	
	16:20:38		seed	1	
	-	Open		Save OK Cancel	

Weka/Explorer Gaussian Processes Cross-Validation results

Attributes: 1436 [list of attributes omitted] Test mode: 4-fold cross-validation

Gaussian Processes

Kernel used: Linear Kernel: K(x,y) = <x,y>

All values shown based on: No normalization/standardization

```
Average Target Value : 7.3390909090909044

Inverted Covariance Matrix:

Lowest Value = -0.01993988339279234

Highest Value = 0.04610399059836405

Inverted Covariance Matrix * Target-value Vector:

Lowest Value = -0.06391563323426866

Highest Value = 0.04158533375446235
```

Time taken to build model: 0 seconds

=== Cross-validation === === Summary ===

Correlation coefficient	0.5175
Mean absolute error	0.7924
Root mean squared error	0.9886
Relative absolute error	79.8931 %
Root relative squared error	85.4517 %
Total Number of Instances	88

Experiment summary

Description of the model

Cross-validation statistics

Setup a Gaussian Processes model

- Setup a Gaussian Processes model if needed
- Select the *Supplied test set* option and set the training file as test. This produces fitting results.
- Click the *More options...* button.

	et		
est options	Classifier output		
O Use training set	81,5.8,5.984,0.184		
Supplied test set Set	82,7.51,7.216,-0.294		
Supplied text set	83,6.2,6.221,0.021		
Cross-validation Folds 4	84,5.9,5.958,0.058		
O Percentage split % 66	85,7.48,7.569,0.089 86,8.7,8.274,-0.426		
C Percentage spine 3 00	87,6.05,6.064,0.014		
More options	88,7.3,7.598,0.298		
	=== Evaluation on test set ===		
Num) class	Time taken to test model on supp	lied test set: 0.02 seconds	
Start Stop	=== Summary ===		
esult list (right-click for options)	Correlation coefficient	0.979	
	Mean absolute error	0.2359	
16:19:15 - functions.GaussianPro	Root mean squared error	0.2917	
16:20:38 - functions.GaussianPro	Relative absolute error	23.9013 %	
16:21:44 - functions.GaussianProv	Root relative squared error Total Number of Instances	25.3818 % 88	
16:22:06 - functions.GaussianPro	Total Humber of Anatomets	00	
-	4		7.0

Weka/Explorer classifier options

Output model		
✓ Output per-class stats		
Output entropy evaluation measures		
✓ Output confusion matrix		
Store predictions for visualization		
Error plot point size proportional to margin		
Output predictions Choose CSV		
Cost-sensitive evaluation Set		
Random seed for XVal / % Split 1		
Preserve order for % Split		
Output source code WekaClassifier		
Evaluation metrics		
ОК		

- Set the Output predictions to CSV.
- Click OK then click the button Start.

Weka/Explorer Gaussian Processes Fitting results

75,8.05,8.003,-0.047 76,5.9,6.059,0.159 77,6.8,6.677,-0.123 78,8.9,8.504,-0.396 79,5.8,6.114,0.314 80,8.95,8.692,-0.258 81,5.8,5.984,0.184 82,7.51,7.216,-0.294 83,6.2,6.221,0.021 84,5.9,5.958,0.058 85,7.48,7.569,0.089 86,8.7,8.274,-0.426 87,6.05,6.064,0.014 88,7.3,7.598,0.298

=== Evaluation on test set ===

Time taken to test model on supplied test set: 0.02 seconds

=== Summary ===		٦
Correlation coefficient Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	0.979 0.2359 0.2917 23.9013 % 25.3818 % 88	

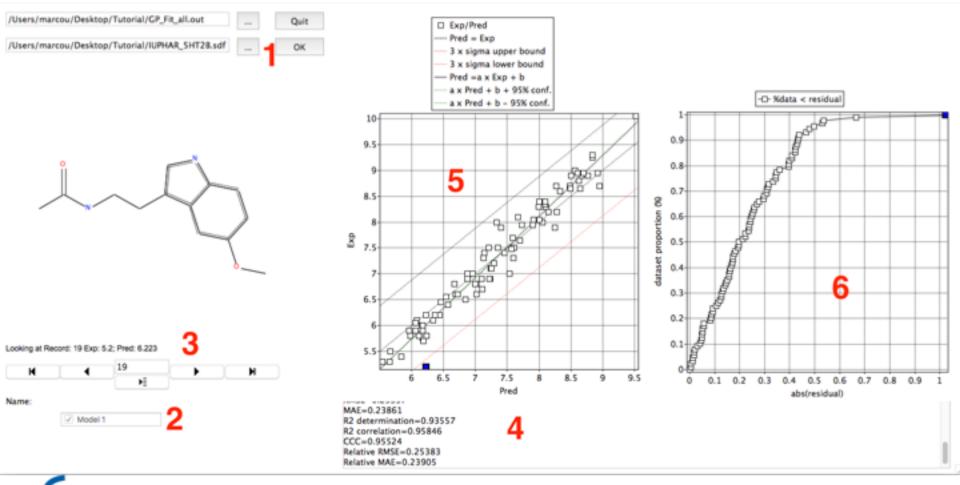
Estimation for each instance

 Weka/Explorer does not provide the covariance matrix.

Fit performances.

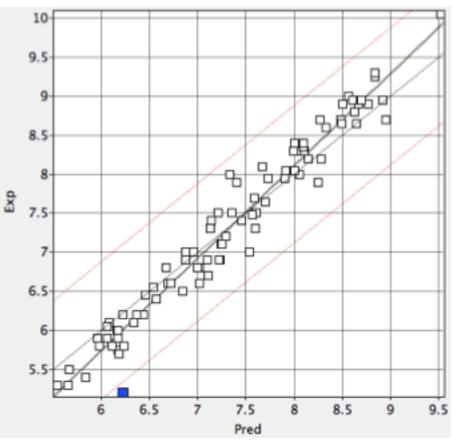
- As they are excellent, the outliers become visible
- ✓ Outliers do not fit.

Save Weka result buffer

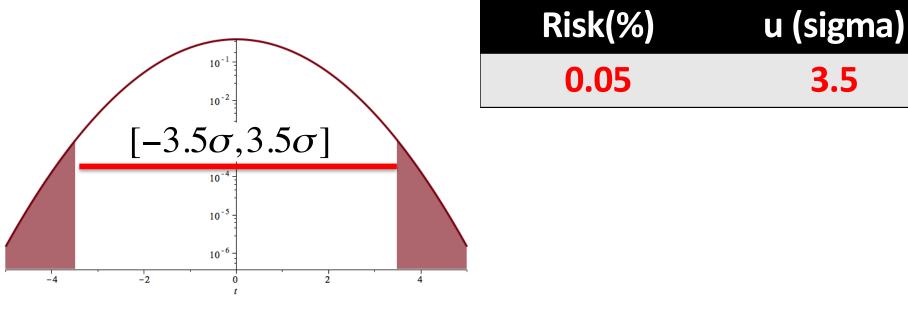

Preprocess Classify Classifier			
Choose Gaussia	nProcesses -L 4.0 -N 2 -K "weka classifiers functions su	oporti/ector PobKernel	E 1 0 -C 250007 -S 1
Test options	Classifier output		
 Use training set Supplied test set Cross-validation Percentage split 	Set 81, 5.8, 5.984, 0.184 Set 81, 5.8, 5.984, 0.184 82, 7.51, 7.216, -0.294 82, 7.51, 7.216, -0.294 83, 6.2, 6.221, 0.021 84, 5.9, 5.958, 0.058 85, 7.48, 7.569, 0.089 85, 7.48, 7.569, 0.089 86, 8.7, 8.274, -0.426 86, 8.7, 8.274, -0.426		Í
More opt	View in main window		
(Num) class	View in separate window		
Start	Save result buffer		2 seconds
Result list (right-cli	Delete result buffer		
16:19:15 - functio 16:20:38 - functio 16:21:44 -	Load model		
16:22:06 -	Re-evaluate model on current t	est set	
•	Re-apply this model's configura	ation	
Status OK	Visualize classifier errors		Log 🚙 X
	Visualize tree		
	Visualize margin curve		Save y
	Visualize threshold curve	►	
	Cost/Benefit analysis	►	
	Visualize cost curve	►	

 Right click on the model's line

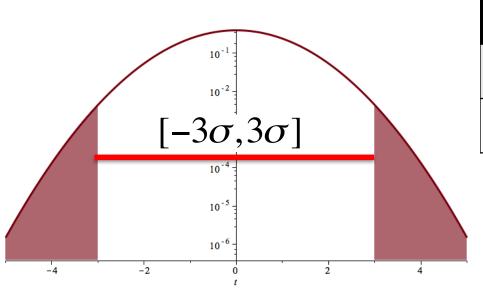
Save your file as GP_Fit_all.out


xMoldelAndyzerR

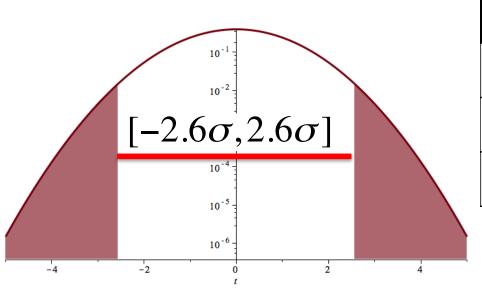
- Open the file GP_Fit_all.out and the file IUPHAR_5HT2B.sdf.
- Click the OK button.

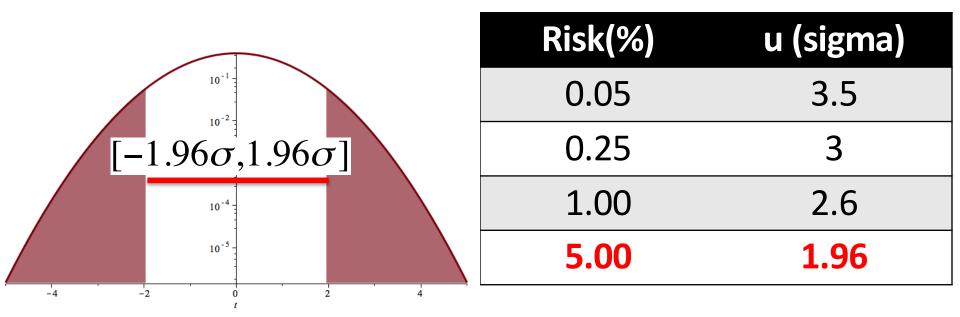

COLUMN DE STRABBOURD

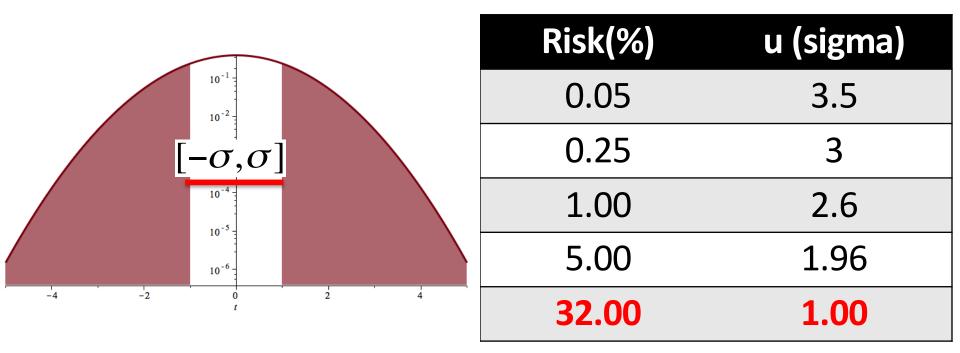
Outlier detection Example of a single step procedure



- All points outside the
 [-3σ, 3σ] range.
 - Assumption: data follow a normal distribution.
 - High impact of outliers on the mean (μ) and standard deviation (σ) values.




Risk(%)	u (sigma)
0.05	3.5
0.25	3



Risk(%)	u (sigma)
0.05	3.5
0.25	3
1.00	2.6

Outlier detection Example of sequential procedure

WR Thompson (?)

Formulation of the test in 1935

ES Pearson C Chandra Sekar

Domain of validity of the test, 1936

FE Grubbs

Tables of critical values, 1950

The Grubbs test.

Compute decision variables:

$$G_{1} = \frac{\langle r \rangle - r_{1}}{S}$$

$$G_{N} = \frac{r_{N} - \langle r \rangle}{S}$$

$$G_{N} = \frac{N - \langle r \rangle}{S}$$

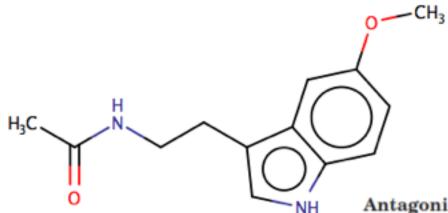
$$\int Compute critical value: t, \alpha/2t$$

$$G_{c} = \frac{N - 1}{N} \sqrt{\frac{t^{2}}{N - 2 + t^{2}}}$$

$$\int t^{2} \int $

t, α/2N fractile of student distribution with N-2 degrees of freedom

 $G_1 > G_c \Rightarrow r_1$, outlier $G_N > G_c \Rightarrow r_N$, outlier


✓ Take a decision:

Outlier identification

Outlier, compound 33

MelatoninPubID 12750432

0022.3040493/002.604.40425.00 Tra Jonaso. or Prostnessours and Economics Transporters Copyright 0.2005.04, 2003. PHY 10.0045.04, 2003.

Vol. 306, No. 1 81797/108084 Printed in U.S.A

The Novel Melatonin Agonist Agomelatine (S20098) Is an Antagonist at 5-Hydroxytryptamine_{2C} Receptors, Blockade of Which Enhances the Activity of Frontocortical Dopaminergic and Adrenergic Pathways

M. J. MILLAN, A. GOBERT, F. LEJEUNE, A. DEKEYNE, A. NEWMAN-TANCREDI, V. PASTEAU, J.-M. RIVET, and D. CUSSAC

Department of Psychopharmacology, Institut de Recherches Servier, Croissy/Seine, France Received March 18, 2003; accepted April 30, 2003

TABLE 1

Binding affinities of agomelatine compared to melatonin at 5-BIT₂ receptor subtypes

Louis are means 1 h.s. M.	a be' and a demonst more at a	ne mer marpenant anne	and the second se	server and an expectate.	
Drug	M-HT _{RC}	h5-HT ₂₀	hd-HT _{DA}	r5-HT ₁₀	p5-HT _{R1}
Agomelatine Melatonin	6.15 ± 0.04 <5.0	6.59 ± 0.07 5.24 ± 0.09	5.35 ± 0.08 <5.0	<5.0 <5.0	6.39 ± 0.02 <5.0

h, human; r, rai; p, porcine.

Antagonist Properties of Agomelatine and Melatonin at h5-HT_{2B} Receptors: [³H]PI Depletion (Fig. 4; Table 2). Agomelatine failed to elicit [³H]PI depletion alone and concentration dependently blocked the action of 5-HT with a pK_B value of 6.6 corresponding well to its pK_i value (6.6) at these sites. Melatonin likewise did not enhance [³H]PI depletion and partially attenuated the action of 5-HT, although only ~50% of inhibition was acquired even at a concentration of 100 μ M. It was not possible, for reasons of solubility, to evaluate higher concentrations of melatonin.

Goal:

Outlier identification

Software:

- ✓ Weka/Explorer
- ✓ xModelAnalyzerR
- InstantJChem

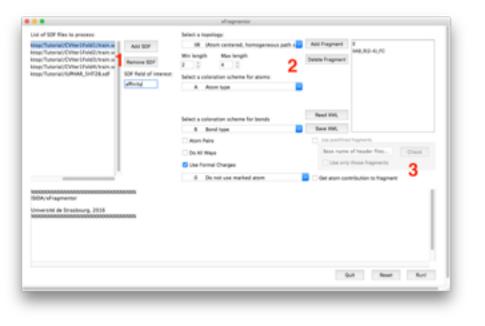
Files

✓ ARFF files

Output

- Log files of Weka/Explorer
- New SDF without an outlier.

Remove Melatonin from the training set


- In *InstantJChem* software, click the *Query* button.
- Set the query field Origninal CdId to « not in list 50 » the Original CdId of Melatonin.
- Click the Run Query button.

- Click the export button.
- Save the exported SDF file as IUPHAR_5HT2B-33.sdf.

Fragment the curated dataset

In the *xFragmentor* interface

- ✓ If needed, click the Read XML button and read the file train_E_IIAB_R(2-4)_FC.xml
- Remove all SDF files
- ✓ Add the file IUPHA_5-HT2B-33.sdf
- ✓ Click the button Run.

Load the curated dataset into the Weka/Explorer software

Load the file IUPHAR_5HT2B-33_E_IIAB_R(2-4)_FC.arff

Preprocess Classify Cluster Associate Select attributes V	isualize		
Open file Open URL Open DB Gene	rate Undo	Edit	Save
Filter			
Choose None			Apply
Current relation	Selected attribute		
Relation: /Users/marcou/Deskt Attributes: 1436 Instances: 88 Sum of weights: 88	Name: class Missing: 0 (0%) Disti	nct: 49	Type: Numeric Unique: 24 (27%)
Attributes	Statistic	Value	
	Minimum	5.2	
	Maximum	10.05	
All None Invert Pattern	Mean	7.339	
In I In I	StdDev	1.156	
No. Name			
1428 (0=C*N),(0=C*O),x0 1429 (0=C*N*N),(0=C*N-C),(0=C*O*C),x0			-
1430 (0°C).(0°C).x0	Class: class (Num)		 Visualize All
1431 (0°C°N),(0°C°N),(0°C-C),(0°C=0),x0			
1432 (0°C*N-C),(0°C-C*C),(0°C-C*C),x0			
1433 (C-C-C),(C-C-C),(C-N*C),(C-N*N),xC	23 21	ŕ	2
1434 (C-C-C-N&FC+1&),(C-C-C-N&FC+1&),(C	18		
1435 (C-C-C-C),(C-C-N&FC+1&-C),(C-C-N&FC+			
1436 class			
The second second second second second second second second second second second second second second second se			
Remove			3
	5.2	7.63	10.0
Status		1.44	
ок			Log 🛷 x 0

Re-fit the Gaussian Processes model

- Setup a Gaussian Processes model if needed
- Select the *Supplied test set* option and set the training file as test. This produces fitting results.
- Click the *More options...* button.

Choose GaussianProcesses -L 4.0 -N 2 -K "weka classifiers functions supportVector.PolyKernel -E 1.0 -C 250007" -S 1					
est options	Classifier output				
O Use training set	81,5.8,5.984,0.184				
Supplied test set Set	82,7.51,7.216,-0.294				
Supplied test set	83,6.2,6.221,0.021				
Cross-validation Folds 4	84,5.9,5.958,0.058				
O Percentage split % 66	85,7.48,7.569,0.089 86,8.7,8.274,-0.426				
Percentage spit 20 00	87,6.05,6.064,0.014				
More options	88,7.3,7.598,0.298				
· · · · · · · · · · · · · · · · · · ·	Fundamentary on Anatomic and and				
	=== Evaluation on test set ===				
Num) class	Time taken to test model on supp	lied test set: 0.02 seconds			
Start Stop	=== Summary ===				
esult list (right-click for options)	Correlation coefficient	0.979			
	Mean absolute error	0.2359			
16:19:15 - functions.GaussianPro	Root mean squared error	0.2917			
16:20:38 - functions.GaussianPro	Relative absolute error	23.9013 %			
16:21:44 - functions.GaussianPro	Root relative squared error Total Number of Instances	25.3818 % 88			
16:22:06 - functions.GaussianPro	Totat Number of Instances	00			
4 7.	4		7.		

UNIVERSITE OF STRAFFOURD

Re-evaluate the Gaussian Processes model

- Setup a Gaussian Processes model with an optimal noise value (for instance 4)
- Select the Cross-validation option and set the Folds value to 4.
- Click the Start button

lest options	lassifier output		
 Use training set Supplied test set Set Cross-validation Folds Percentage split More options 	Average Target Value : 7.339090909090909044 Inverted Covariance Matrix: Lowest Value = -0.01993988339279234 Highest Value = 0.04610399059836405 Inverted Covariance Matrix * Target-value Vector: Lowest Value = -0.06391563323426866 Highest Value = 0.04158533375446235		
(Num) class	Time taken to build model: 0 seconds === Cross-validation === === Summary ===		
16:19:15 - functions.GaussianPro 16:20:38 - functions.GaussianPro 16:21:44 - functions.GaussianPro 16:22:06 - functions.GaussianPro	Correlation coefficient0.5175Mean absolute error0.7924Root mean squared error0.9886Relative absolute error79.8931 %Root relative squared error85.4517 %Total Number of Instances88		

Gaussian Processes model on currated dataset

Fit

Cross-validation

=== Summary ===		=== Cross-validation === === Summary ===	
Correlation coefficient	0.9818	Correlation coefficient	0.5157
Mean absolute error	0.2299	Mean absolute error	0.7881
Root mean squared error	0.2705	Root mean squared error	0.9771
Relative absolute error	23.6221 %	Relative absolute error	78.6143 %
Root relative squared error	23.881 %	Root relative squared error	83.9261 %
Total Number of Instances	87	Total Number of Instances	87

Performances are (slightly) improved

Single step procedure

- ✓ Fast and simple
- ✓ False estimation of risk in outlier detection:
 - Distribution parameters are distorted by outliers
 - The risk estimation is valid for only one point.
- ✓ The bigger the dataset is, the greater the chances to interpret a standard instance as outlier (false positive)

$$P(X > a) = p$$

$$P(\{x_i \mid x_i > a\} \subset \text{Sample}) = \text{Binomial}(N, p)$$

. . 150

Sequential procedure

- ✓ Fastidious
 - the whole procedure repeats after each identified outlier.
- ✓ Distribution parameters are distorted by the outlier
 - Use robust statistics
 - resampling by the half-means method or by the smallest half-volume method

Egon WJ, Morgan SL, Anal. Chem., 1998, 70(11), pages 2372-2379

Identify multiple outliers

Rank instances by outlier likeliness

Higher rank to instances that are consistently not fitted in consensus modeling

- Outlier detection may depend on data modeling
 - Molecular Descriptors, Machine Learning method,...
 - Therefore, a consensus model-based approach may help (pick the outliers that are common to the several distinct models)
- Use internal and external cross-validation to avoid overfitting.
- Exploit the fitted values (rather than cross-validated predictions) for outlier detection
- An "outlier" not confirmed as anomalous cannot be discarded
 - ✓ but it may help understand the limitations of your model
 - ✓ It might be a "discovery"!

