[SC7] Why adaptively-built simple models using small datasets can be sufficient for chemical modeling

J.B. Brown¹

¹Kyoto University Graduate School of Medicine, Sakyo Yoshida Konoemachi, Graduate School of Medicine Building E, 606-8501, Kyoto, Japan.

In the modern era of combinatorial chemistry and high-throughput screening assays, it is relatively easy for an organization to generate matrices of ligand-target bioactivity that contain thousands, tens of thousands, or hundreds of thousands of entries. Alternatively, this data may be obtained from public resources such as PubChem BioAssay or ChEMBL. Chemogenomic models can make use of these matrices to build models that can infer bioactivity for new ligands on existing targets (drug discovery, hit-to-lead, lead optimization applications) or for new targets of existing ligands (drug repurposing).

A common perception about structure-activity modeling is that more data yields more predictive ability, and more complex model methodologies are certain to yield more predictive models than less complex model techniques. This is an invalid perception, however. As has been shown by Kangas et al[1], Rarey et al.[2], and our group[3–5], it is possible to build an adaptive model that uses only a fraction of a bioactivity collection and can still achieve high predictive accuracy over the entire set of available data. These methods, which employ some type of selection function to iteratively pick examples with accompanying model reconstruction, are referred to as active learning methods.

Our group has investigated the ability of active learning for family-wide chemogenomic bioactivity databases, finding that 5–20% of the total data available is sufficient to achieve high prediction performance (MCC, F1, PPV) over the entire set of available data. Active learning can also be applied in the special case of a single target or single bioactivity endpoint. In this talk, I will detail the method and recent results, explain retrospective and prospective applications, and discuss potential impact.

Bibliography: