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Presentation Goals 

• Present material informatics and compare “classic” with 
material-related statistical models  

• Provide a flavor of the diversity of material-related “activities”  

• Examples from solar cells (going beyond the models) 

Avi Yosipof Oren Nachum Funding Arie Zaban 

Experiments 

Omer Kaspi 



First Scientific Publication on Nanotechnology in Russian  



Material Informatics: Turning Data into Knowledge  

Materials informatics is a field of study that applies the principles 
of informatics to materials science and engineering to better understand 
the use, selection, development, and discovery of materials. This is an 
emerging field, with a goal to achieve high-speed and robust acquisition, 
management, analysis, and dissemination of diverse materials data. 

• Related to big data 

• Makes use of machine 
learning 



Areas of Applications of QSAR/QSPR in Material Sciences 

Katritzki et al., ChemPlusChem 2012, 77, 507 

• Medicinal chemistry, drug design, pharmaceuticals 

• Personal care products and cosmetics 

• Food industry 

• Catalysts design 

• Anticorrosive material design 

• Optical devices design 

• Nanotechnology 

• Explosives 

• Solar cells 



• Accurate experimental data 

 

 

 

• Descriptors 

 Structure-derived (measured; calculated) 

• A mathematical model 

 e.g., quantitative, qualitative, linear, non-linear 

• Model validation 

 Models developed on a training set and tested 
on an independent test set 

 Models should be simple and interpretable  
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Statistical Models (aka QSAR/QSPR) 



QSAR Engine 

Outlier Removal 

Consensus Prediction 
• Average  

• SD 

Multiple Divisions 

Model Selection 

Model Derivation 
• Linear (MLR) 

• Non-linear (kNN) 

Test Set 
Y-Scrambling 
• Avoid chance correlation 

Training Set 

Dataset Descriptors Calculation Descriptors Selection 

Internal Set External Set 

1. Descriptors selection 
2. Outliers removal 

5. Consensus model 
6. Validation 
7. Predictions  

3. Generation of multiple models 
4. Model(s) validation and selection 



The Compounds 

• Classical QSAR 

 Structures typically well-defined 

 Potential exception: Polymers and mixtures 
(but consisting elements are known) 

 True even for combinatorial chemistry 

• Material QSAR 

 Structures sometimes well-defined 

 Not true for combinatorial material 
synthesis 



The Data 

• Classical QSAR 

 Primarily concerned with pharmacokinetics / pharmacodynamic related 
activities 

 Diversity comes from the targets / ligands 

 Medium / large / very large data sets   

• Material QSAR 

 Diversity comes from activities and the nature of the materials 

 Solubility of materials 

 Biological activities 

 Young’s modulus 

 Thermal conductivity 

 Atomization energies 

 Glass transition temperatures 

 Half decomposition temperature 

 Melting point of ionic liquids 

 Viscosity 

 Photovoltaic properties 

 Tiny / small / medium / large / very large data sets 



The Descriptors 

• Classical QSAR 

 Typically nD (n = 1,5) “classical” descriptors 

 Limited usage of QM-derived descriptors   

• Material QSAR 

 Typically nD (n = 1,5) “classical” descriptors 

 Heavy reliance on QM descriptors 

 Usage of experimental conditions as descriptors 

 Heavy reliance on measured descriptors (for undefined structures) 



Raman Spectroscopy 

Raman spectroscopy is a spectroscopic technique used to observe 
vibrational, rotational, and other low-frequency modes in a 
system.  Raman spectroscopy is commonly used in chemistry to 
provide a fingerprint by which molecules can be identified. 



X-Ray Diffraction (XRD) 

X-ray diffraction has been in use in two main areas, for the fingerprint 
characterization of crystalline materials and the determination of their 
structure. Each crystalline solid has its unique characteristic X-ray powder 
pattern which may be used as a "fingerprint" for its identification.  

Leller et al., ACS Comb. Sci. 2015, 17, 209−216 



Using Spectra as Descriptors 



Methods 

• Classical and material QSAR 

 Data reduction techniques (e.g., PCA) 

 Clustering 

 Classification models (e.g., Random Forests) 

 Quantitative models (e.g., MLR, SVM, kNN)  

Validation 

• Classical QSAR 

 “OECD” principles available and frequently followed 

• Material QSAR 

 Insufficient external validation 

 Inappropriate control for chance correlation 



Data Curation 

Fourches et al., JCIM, just accepted 



Bitter Taste Predictions 

Kim et al., J. Agric. Food Chem., Vol. 54, No. 26, 2006 

• Prediction of peptide bitterness 

• Training set: 176 short peptides 

• Test set: 48 short peptides 

• Residue-based and global descriptors  

• PLS regression 

 

 

 

• Global descriptors are more important than 
residue-based descriptors 

Training Set 

Test Set 



Explosives Prediction I 

Fayet et al., Process Safety Progress (Vol.31, No.3) 

• Prediction of impact sensitivity of nitro compounds 

• 161 compounds, specific and global models MLR, “OECD” validation 

• Good models for nitramine and  
nitroaliphatic but not for nitroaromatic 
compounds 

Nitramines Nitroaliphatic Nitroaromatic 

Global 



Explosives Prediction II 

Mathieu, J. Phys. Chem. A 2013, 117, 2253−2259 

• Prediction of impact sensitivity of nitro compounds from “physical 
principles” 

• Sensitivity Index (SI) 

 Number of atoms 

 Dissociation energy of the weakest X-NO2 bond 

 Energy released upon the decomposition of 1 mole of compound 



Material Cartography 

Isayev et al., Chem. Mater. 2015, 27, 735−743 

• Purpose 

 Displaying material space (AFLOWLIB) 

 Similarity-based Identification of 
specific materials 

 QMSPR models 

• Descriptors 

 Band structure fingerprints 

 SiRMS (fragment-like) 

 QM  

• Methods 

 Clustering, RF, PLS 

 

Super-Conductivity Critical Temperature 

Network 

Model 



60 Seconds on Photovoltaic (PV) Cells 

1.  Generation of the charge carriers (electrons and holes) due to the 
absorption of photons 

2. Separation of the photo-generated charge carriers in the junction 
via n-type (high electron conductivity) and p-type (high hole 
conductivity) semi-conductors  

3. collection of the photo-generated charge carriers at the terminals 
of the junction  

• Key Parameters 

 Open circuit voltage (VOC) 

 Short circuit current (JSC) 

 Internal quantum efficiency (IQE) 

 Fill factor (FF) 

 Power Conversion Efficiency (PCE) 
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Efficiencies of Solar Cells 

Solar cell efficiency is the ratio of the electrical output of a 
solar cell to the incident energy in the form of sunlight 



Statistical Modeling for PV Cells 

• Goals 

 Identify factors responsible for PV properties 

 Build predictive model for PV properties 

 Experimental design 

• Assumptions 

 A correlation exists between PV properties and cells characteristics:  

PV = f(Material Descriptors) 
o Nature of correlation not necessarily known 



Organic Photovoltaics 

• Acceptor design 

• Training set: 50 compounds 

• ChemAxon descriptors  

• Linear regression 

Olivares-Amaya et al.,  Energy Environ. Sci., 2011, 4, 4849–4861 



Organic Photovoltaics 

Olivares-Amaya et al.,  Energy Environ. Sci., 2011, 4, 4849–4861 

Color coding refers top 10% molecules 
with highest predicted Voc (green), Jsc 
(blue), and Voc x Jsc (red). Best 
molecules located upper left  



Dye-Sensitized Solar Cells (DSSC) 

• Ruthenium sensitizers design 

• Training set: 73 compounds 

• No validation set 

• Volsurf+ (MIFs-based), QM 
and “classical” descriptors 

• PLS regression 

Tortorella et al., RSC Adv., 2015, 5, 23865–23873 

• Different dyes sensitized by incident radiation 

• Photo-excited electrons transferred to TiO2 

• Holes transferred to the electrolyte 



Dye-Sensitized Solar Cells (DSSC) 

Tortorella et al., RSC Adv., 2015, 5, 23865–23873 

• Inversely correlated: presence of NO2 and NH2,  PSA/HAS and PSA/SA ratios, H-bond  
• Correlated : P n-oct, P c-Hex, log D5/log D10, flexibility 

Red: Low PCE 
Blue: High PCE 



All Metal Oxide PV Cells 

• Material 

 Abundant 

 Environmentally safe 

 Optimizeable via mixture stoichiometry 

 Low cost 

• Fabrication 

 Cheap fabrication methods 

• Operation 

 Long term operation (stability) 

But Cell Not Efficient Enough 

New Metal Oxides (MO) Required 



Combinatorial Material Science 

• ~60 “useful” elements leading to 

 ~30K inorganic compounds 

 3600 binary compounds (ABOX); mostly known 

 216K ternary compounds (ABCOX) almost all unknown 

High Tc superconductors 



Synthesis of Libraries of All Oxide PV Cells via 
Combinatorial Material Synthesis 



Analysis of Libraries of PV Cells 

• Band gap: The energy difference (in electron volts) between the 
top of the valence band and the bottom of the conduction band 
 

• IQE reflects the charge separation and collection efficiencies of a 
device 
 

• Fill Factor is the ratio of the maximal theoretical power of the cell 
per unit volume divided by VOC x JSC 



Material Informatics Workflow 

Library Characterization  

Model Building 

Experimental 
Design 

Validated Model 

Data Visualization 

Experimental Data 

Yosipof et al., Molecular Informatics, 2015, 34, 367--79 



Principle Component Analysis (PCA) 

TiO2/Cu-O 



PCA of TiO2|Co3O4 and TiO2|Co3O4|MoO3 Libraries 

 

TiO2|Co3O4 TiO2|Co3O4|MoO3  

  

  

Activity Mean SD Mean SD t-test df p-value 

Voc (mV) 173 149 446 146 -14.79 258 <0.001 

Jsc (µA/cm2) 8.76 5.48 17.41 3.82 -14.97 258 <0.001 

IQE (%) 0.04 0.01 0.13 0.07 -12.39 258 <0.001 

FF (%) 25.76 4.21 29.8 3.6 -8.30 258 <0.001 

Pmax ( µW/cm2) 0.17 0.22 0.6 0.23 -14.84 258 <0.001 

 

• VOC 

• JSC 

• IQE 

• FF 

• Pmax 



PCA of TiO2|Co3O4 and TiO2|Co3O4|MoO3 Libraries 



PCA of TiO2|Co3O4 and TiO2|Co3O4|MoO3 Libraries 

 

TiO2|Co3O4 TiO2|Co3O4|MoO3      

Activity Mean SD Mean SD t-test df p-value 

Voc (mV) 431 18.9 484 36.8 -7.08 12 <0.001 

Jsc (µA/cm2) 17.4 0.7 15.3 1.8 6.26 12 <0.001 

IQE (%) 0.07 0.002 0.06 0.006 6.27 12 <0.001 

FF (%) 32.38 2.08 32.21 2.34 0.51 12 >0.05 

Pmax ( µW/cm2) 0.63 0.05 0.62 0.06 0.98 12 >0.05 

 



SOM of TiO2|Co3O4 and TiO2|Co3O4|MoO3 Libraries 



Approaches for Model Building 

k Nearest Neighbors (kNN) 
• The idea: Similar cells have similar photovoltaic 

properties  
• The method: kNN  predicts the property of a cell from 

the averaged properties of its k nearest neighbors 
• The challenge: Identify the relevant descriptors space 
• Advantages: Non-linear 

Desc 1 

variables Fitness 
function 

Genetic Function Approximation (GFA) 
• The idea: 

 Create a population of equation (chromosomes) 
 Rank equations according to performances (fitness 

function 
 Optimize fitness function using genetic operators 

• Advantages: Multiple models, variable importance 
D
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Descriptor 1 



Proof of Concept: TiO2/Cu-O Library 

Jsc Voc IQE 



Proof of Concept: TiO2/Cu2O Library 



The Effect of the Library’s Quality: kNN 

Less uniform library 

More uniform library 



The Effect of the Library’s Quality: GA 

Less uniform library 

More uniform library 



Experimental Design I: TiO2Cu2ONiO Library 

• Gradients of TiO2/Cu2O 
• NiO: 0, 5, 10 nm 
• Search for correlation between thickness 

of NiO layer and PV parameters 



PV Parameters for a TiO2|CuO-NiO-In2O3 Library 
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Experimental Design II 

Simultaneous improvement of both VOC and JSC is complicated by 
conflicting requirements in terms of cell compositions 



Conclusions 

• Statistical modeling is useful in material science 

 Insight 

 Experimental design 

• Challenges 

 Data curation 

 Problem specific descriptors 

 Model validation 

• The similar properties principle holds for PV cells 

• Both the strengths and the weaknesses of statistical modeling 
approaches lies in their “ignorance”  

 


