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Abstract: This tutorial is dedicated to prediction of pharmacological profiling of compounds. 
pharmacological profile of a given compound corresponds to ensemble of its biological activities 
(or any other properties). A “classical” strategy to build the compound’s profile implies obtaining 
individual QSAR models for each activity. There are two main drawbacks of this approach: for 
each individual model one should (i) tune the model’s parameters, and (ii) setup validation 
procedure. This problem could be efficiently resolved using multi-task learning algorithms. In this 
tutorial, several algorithms are considered. Their efficiency is compared to the corresponding 
single task (classical) approach. The tutorial describes different ways to assess the models’ 
performance, parameters selection for multi-tasks algorithms and interference of individual 
modeling tasks. 
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1. Introduction 
 
Available experimental information on compound profiling is growing up since a large amount of 

data reach public domain. Thus, PubChem (Bolton, Wang, Thiessen, & Bryant, 2008) and 
ChEMBL (Gaulton, et al., 2011) databases aggregate an enormous amount of data from screening 
campaigns. Therefore, a given compound can be associated to an array of biological activities 
issued from different screening experiments. This brings a new level of data complexity which 
represents a new challenge to QSAR modeling. 

In a classical, QSAR model (single task approach) one activity is related to chemical descriptors. 
This “single task” modeling process is rather well documented, see for instance (Tropsha, 2010). It 
generally includes the following steps: a choice of machine learning algorithm, processing of the 
dataset into a cross-validation loop, tuning the algorithms parameters on training set of each fold, 
model’s validation on external test set of a given fold, models application on new data controlled by 
some applicability domain.  

If several activities have to be modeled one same procedure is repeatedly applied to each of 
them. This process requires parameters optimization and a validation procedure for each task, 
which is computationally inefficient. 

Besides, since the pioneering work of Caruana in 1997 (Caruana, 1997), it is expected that 
building simultaneously several models could be beneficial. If the tasks are related, simultaneous 
learning of the data may lead to the models of better performances. A whole class of machine 
learning algorithms - multi-task learning (MTL) – has been developed and described in the data 
mining literature. 

Unlike single task learning (STL) algorithms, MTL have two particular features: (i) models for all 
tasks are built simultaneously and (ii) each task interferes with other tasks. For instance, it is 
straightforward to generalize the equations of multi-linear regression, using a Frobenius norm, so 
that instead of a vector of weights, the final model represents a matrix of weights. However, this 
would be equivalent to a learning the same number of independent single task multi-linear models. 
To avoid that, a MTL algorithm includes a communication between the individual learning tasks. 

There exist different ways to implement MTL. The most popular one is algorithm of neural 
networks with multiple neurons in the output layer, see for instance (Varnek, Gaudin, Marcou, 
Baskin, Panday, & Tetko, 2009). However, it seems that a MTL version exists for many other 
machine-learning methods. Here, we focus on linear models obtained using the Lasso algorithm 
which provides with different options to perform MTL. 

The MTL paradigm introduces the problem of measuring predictive performance the models and 
its comparison with the STL algorithm? These questions are intimately linked to the parameters 
optimization.  

Finally, the MTL paradigm introduces a new degree of freedom into the modeling process. It is 
expected that MTL should be beneficial to related tasks. In practice which tasks could be 
considered as being related? How one can decide which tasks should be modeled together or 
considered separately? 

Although, this tutorial won’t bring a definite answer to these questions, it will illustrate them and, 
in some cases, will propose some simple solutions. 

 
2. Starting with MATLAB and MALSAR 

 
In this tutorial we use the MATLAB environment (MATLAB and Statistics Toolbox Release 

2014a, 2014) containing MALSAR (Muti-tAsk Learning via StructurAl Regularization) package . 
(Zhou, Chen, & Ye, 2012) implementing 25 original implementations of MTL. 
Install MATLAB 

The editor of MATLAB, “Mathworks” provides us with demo licenses. Only the basic MATLAB 
system is needed; no additional toolboxes are required. 

In order to download the software for your platform you have to follow instructions below: 
1. Create an account on Mathworks website: http://www.mathworks.fr 
2. Use this account: 
login g.marcou@unistra.fr / password gil$500 
3. In the section Support/Download products, chose the version R2014A of Matlab for your 
platform and download it. 
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4. Download the file licence.dat. 
5. Follow the instructions to install MATLAB on your platform. During the installation 
procedure you can give the location of the file license.dat. Alternatively, you can copy this file in the 
installation directory of MATLAB.  
Important note for Mac and Linux users: MATLAB can sometime crash with the following error: 
Error using (…) loading error: dlopen: cannot load any more object with static TLS 
This error is due to a particular initialization of some shared libraries loaded by MATLAB. In some 
systems only small number of libraries can be simultaneously loaded. Unfortunately the built-in doc 
system uses a lot of libraries, therefore the use og WEB documentation instead built-in 
documentation is strongly recommended. Otherwise MATLAB proposes a patch: 
http://www.mathworks.de/support/bugreports/961964. 
MALSAR 

MALSAR is a set of tools within MATLAB which provides with MTL algorithm for regression, 
classification and clustering. It is shipped with pre-compiled libraries for Windows 32 / 64 bits and 
for Mac Intel 64 bits. For other system a compilation procedure is needed that will require 
development tools. 

To install MALSAR, proceed as follows: 
1. Load MALSAR: 
 http://www.public.asu.edu/~jye02/Software/MALSAR/downloads/MALSAR1.1.zip 
2. Create a directory called MALSAR and unzip the downloaded archive into this directory. If 
you have a Windows 32/64 bit system or a Mac Intel 64 bit system, installation is finished. 
3. For others, launch MATLAB, add the MALSAR directory you created, and all subdirectories 
to the MATLAB search path (see below Exercise 0: Introduction to the MATLAB system) and run 
the command INSTALL.M into the Command Window. If there are no error messages, the 
installation is complete. 
Additional functions are provided on the USB key of the workshop in the directory CS3-
2014/Tutorials/QSAR_Profiling/Scripts/. They are also available for download on the web site of 
the conference: http://tiny.url/CS3-2014-Tuto3. 
 
3. Dataset 

 
The dataset studied in this tutorial is composed of 2965 affinity data (pKi) for 1597 compounds for 
the dopamine receptor family of GPCRs (Brown, Okuno, Marcou, Varnek, & Horvath, 2014). 
Affinity measures are provided for D1, D2, D3, D4 and D5 subfamilies. For each compound affinity 
data are available for one or several subfamilies in the following proportion: 
• One dopamine subfamily: 41% 
• Two subfamilies: 38% 
• Three subfamilies: 17% 
• Four subfamilies: 3% 
• Five subfamilies: 1% 

With respect to subfamilies, the affinity measures are distributed as follows:  
 

Dopamine 
subfamily 

D1 D2 D3 D4 D5 

Number of 
compounds 

272 1325 846 424 98 

 
Table 1. Repartition of compounds across all 5 dopamine subfamilies for this dataset. 
 

Beside, these five subfamilies are clustered into two groups, D1 and D5, on the one hand, and 
D2, D3 and D4, on the other hand. 
4. Exercise 0: Introduction to the MATLAB system 
 
The Matlab main window is divided into 7 areas (Figure 1):  
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The main menu banner, area 1. This menu give access to a number of common actions like 
creating a new script, managing variables into the memory, access to plotting tools, interface 
with MATLAB toolboxes, edit/run/debug scripts and functions. 
 

• The file and folder management, area 2,3 and 4. For MATLAB, any script and function must be 
stored into a file using the .m termination. They can be used into the interface only if MATLAB 
knows where to find them. Therefore, managing files and folder is critical in order to tell 
MATLAB which scripts and functions are available. The area 2 is a breadcrumb used to 
navigate the user’s directory tree. The area 3 displays the content of the current folder. By right 
clicking on a folder, it is possible to add it to the search path of MATLAB. By clicking on a file, in 
this area, if it is recognized as a MATLAB script or function, additional information are displayed 
into the area 4. 

• The Command Window, area 5. Most commands will be entered into this area. If a command 
produces printing of results, they will be displayed also into this area. All commands can be re-
called using the up arrow of the keyboard. Note that keyboard shortcuts are system dependent 
in MATLAB; for instance copy is Ctrl-W, cut is Alt-W and paste is Ctrl-Y on Linux and it is the 
usual Ctrl-X and Ctrl-V respectively, on Windows. 

• The Workspace, area 6. This area registers all variables that are currently in memory. The type 
of the variable and some indications about its content are displayed. By clicking on a variable, it 
opens the area 7. 

• The Variables editor, area 7. Any variable of the workspace can be visualized and its content 
can be edited using this tool. 

 
 

 

 

 

 

 

 

 

Figure 1. View of the main interface of MATLAB. It is divided typically into a main menu banner (1), a folder 
and file management tool (2,3,4), a command frame (5), a workspace frame (6) and a variable frame(7). 

MATLAB uses 9 major types of data: Numeric, Characters and Strings, Categorical Arrays, 
Tables, Structures, Cell Arrays, Function Handles, Map Containers and Times Series. Only those 
underlined will be intensively used. 

All manipulations consist in a set of commands aimed to reach a particular goal. We believe that 
it is not reasonable to type commands during the tutorial. Instead, each command of the exercises 
will be explained and the expected result will be described. The user is expected to copy the 
commands and to paste them into the Command Window. All commands are present into the 
folder Exercises into files named Exo*.m. For instance commands for exercise 1 are into the file 
Exo1.m. For this reason it is recommended to start MATLAB from this folder or to locate this folder 
immediately. In each file, a line containing only the % character separates commands that should 
be copy-pasted. Some commands that are too long to be executed during the tutorial are 
commented out. Instead, the output variables of the commands are loaded into memory. All files 
containing some of variables are located into the folder Precomputed. 
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Note that command auto-completion is proposed by pressing the tab key.  
 
Goal of the exercise: Read the SVM files of each dopamine subtypes and store the 

corresponding tasks. 
 
Algorithm: The SVM file format is a sparse encoding used to store molecular descriptors values 

associated with a scalar property. Each line of the file corresponds to a molecule. A sample line is 
given below: 
7.89 1:600 3:104 4:168 5:96 16:4 20:4 
The first column is the value of the property, here 7.89. The following columns have all the same 

structure, an integer being the ID of the molecular descriptor, a column character and the value of 
this descriptor for this molecule. Usually, a companion file gives the link between the ID of the 
descriptor and its description. 

The function reads an SVM file, line by line, fills a matrix of descriptors such that each line 
correspond to a molecule and each column to a descriptor and fills a column vector which 
elements are the property values for each molecule. The property vector and the molecular matrix 
define a task. A data structure shall contain all tasks. 

 
Step-by-step instructions: 
 

addpath(genpath(‘<YourPath>/CS3_201
4/Tutorials/QSPR_Profiling’)); 
addpath(genpath(‘<YourPath>/MALSAR’
)); 

The command genpath returns a path string 
to all folders and subfolders below its 
argument. Then addpath uses it to add 
them to the search path of MATLAB. Now, all 
the scripts and functions needed in the 
following exercises are available, including 
MALSAR. In the Scripts folder, you should 
edit the function initpath to use it for 
reinitializing your search path if it is lost by 
accident during the exercises. 
Note that if you mistype your path here, 
matlab will not complain but the exercises will 
not work. 

edit(‘svmlread’); The editor window opens showing the source 
code of the function svmlread. This function 
read a file in SVM format and returns Y, a 
vector of property values and the matrix X 
which rows are molecules and columns are 
descriptors. 

The file svmlread.m is open into the editor window. A MATLAB script file is executed by typing 
the name of the file (without .m). A file containing a MATLAB function must be have the same name 
as the function and the first line must contains the function directive. The comment lines (starting 
with a %) at the beginning of the function are interpreted and are displayed to the user as help 
message. Note the use of squared braces [] to initialize tables/matrices, the use of round braces 
() to access given elements of tables and matrices and the use of the column character : to select 
sub-matrices. 

 
[Y,X]=svmlread(‘Dopamine-D1.svm’); Read the file Dopamine-D1.svm and 

returns the corresponding matrices X 
and Y. 

X=full(X); The previous function returns a sparse 
matrix for X, but MALSAR methods 
need a full matrix representation. 
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X=zscore(X); The molecular descriptors are 
normalized. 

X = [X,ones(size(X, 1), 1)]; A column vector of 1 (ones( ,1)) with 
the same number of rows as X 
(size(X,1)) is added to the right of 
the matrix X. This adds a constant to the 
models. 

In fact, we need to store property vectors and molecular descriptors for a defined list of 
Dopamine families. For the following it is needed to get vectors of tasks as cell arrays: each 
element of the vector shall contain the property vector or the corresponding molecular descriptors 
matrix. Each cell of a cell array can accommodate any kind of MATLAB data type: in particular it 
can contains vectors or matrices. 

 
aDopa=[1,2,3,4,5]; A table containing the list of Dopamine files 

that must be read. 
nDopa=length(aDopa); The number of Dopamine files to read. 
X=cell(1,nDopa); Y=cell(1,nDopa); X and Y are now one-line cell arrays with 

nDopa columns. 
for t=1:nDopa Loop to parse the aDopa table. 

i=aDopa(t); 
[Yl,Xl]=svmlread(strcat(‘Dopamine-
D‘,int2str(i),’.svm’)); 

The variable i is the ID of the dopamine to 
process. The file name is computed by 
concatenating strings using scat. Then the 
file is read and molecular descriptors are 
returned with the corresponding property 
values. 

Xl=full(Xl); 
Xl=zscore(Xl); 
Xl = [Xl ones(size(Xl, 1), 1)]; 

The descriptor matrix is normalized and a 
constant is added. 

X{t}=Xl; Y{t}=Yl; The current task is added to the X and Y 
cell arrays. 

end End of the task loop. 
 
5. Exercise 1: Single task learning 
 
Goals of the exercise:  
 
• Build a sparse multi-linear model on a training set 
• Apply the model on a test set and measure predictive performances 
• Automatize the process for all 5 dopamine targets. 

 
Algorithm: 

The main algorithm illustrated here is the LASSO (Least Absolute Selection and Shrinkage 
Operator) (Tibshirani, 1996) algorithm. It consists in searching a column vector of weight 𝑊 
minimizing the objective function 𝑓{!,!} based on the a vector 𝑌 containing the target property 
values and the matrix 𝑋, of which each line corresponds to a compound and each column to 
molecular descriptor : 

 
 𝑓 !,! (𝑊) = 𝑌 − 𝑋𝑊 !

! +   𝜌! 𝑊 ! (1)   
 
The Frobenius norm is noted ∙ ! and the symbol ∙ ! indicates the 𝑙!–norm. The parameter 𝜌! 

controls the regularization term of the objective function and is called either a regularization 
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parameter or a sparsity parameter. In the MATLAB code, the regularization parameter will be 
systematically noted p1. 

The l1-norm makes the problem non-differentiable and it is not possible to find a linear algebra 
expression that solves it. The main interest of the method is that it imposes parsimony to the 
solution: it acts like an integrated variable selection procedure and limit the number of non-zero 
parameter weight. 

 
Step-by-step instructions: 
 
If needed run the script Exo0.m in order to have the cell arrays X and Y correctly set with the 

dopamine activity learning tasks. 
edit(‘default_opts.m’); Opens the file default_opts.m into the editor window. 

 
The MALSAR (J. Zhou, 2014) methods uses a structured variable called opts that control several 

aspects of the algorithms. This variable is composed of the following fields: 
 

opts.max_iter Maximum iteration step number of the optimization procedure (default 1000) 
opts.tol Tolerance on the optimized value (default 10-3) 
opts.tFlag Termination condition of the optimization procedure (default 1): 

0. Absolute value difference of the optimized value is inferior to the 
tolerance. 

1. Relative absolute value difference of the optimized value is inferior to 
the tolerance. 

2. Absolute value of the optimized value is inferior to the tolerance 
3. Run maxIter optimization procedure iterations. 

opts.W0 Starting point of the optimization of the vector of weight W (see opts.init) 
opts.C0 Starting point of the optimization of the intercept C for Logistic Loss (see 

opts.init) 
opts.init Specifies how to initialize W or C before the optimization procedure starts 

(default 2): 
0. Uses guess values inferred from the data. 
1. Uses the user defined values opts.W0 or opts.C0. This is useful to 

restart a run. 
2. Set the W0 to a 0 vector and C0 to 0. 

opts.pFlag Need the MATLAB parallel Toolbox. Enable Map-Reduce (default False) 
opts.pSeg_num Need the MATLAB parallel Toolbox and not yet available. Set the number of 

total parallel segmentations. 
In this tutorial, the optimizations are performed until the objective function value changes less 

than 0.0001. This setting will produce relatively fast computations, but the convergence might be a 
bit weak. However, all results can be reproduced with much more stringent and computationally 
demanding optimization parameters.  

 
opts=default_opts; Optimization settings for MALSAR. 
prc=0.3; 
[Xtr, Ytr, Xte, Yte]=mtlSplit(X, Y, 
prc); 

Divide the whole dataset into a training 
set (2/3 of the dataset) and a test set (1/3 
of the dataset. The proportion of 
instances into the test set is controlled by 
the variable prc. 

p1=5; 
[W,funcval]=Least_Lasso(Xtr(1,1), 
Ytr(1,1),p1,opts); 

Build a LASSO model for dopamine D1 
on training set data using a parameter 
value p1=5. Models’ weights are into the 
vector W. The vector funcval contains 
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the values of the optimization function. 
Yp=Xte{1,1}*W; Apply the model on the external test set. 
SSE=sum((Yp-Yte{1,1}).^2); 
SST=sum((Yte{1,1}-mean(Yte{1,1})).^2); 
R2=1-SSE/SST; 
RMSE=sqrt(SSE/size(Yte{1,1},1)); 
fprintf(‘RMSE=%g R2=%g\n’,RMSE,R2); 

Compute the sum of squared errors 
(SSE), the sum of square distances to the 
mean (SST), the determination coefficient 
(R2) and the Root Mean Squared Error 
(RMSE) 

 
The observed performances at this stage should be the following: 

RMSE=0.66; R2=0.43 
 

plot(Yp,Yte{1,1},’o’,Yte{1,1}, 
Yte{1,1},’-’); 
xlabel(‘Estimates’); 
ylabel(‘Experiment’); 
xlim([7,10]); 
ylim([7,10]); 
 

Plot predicted values as a function of 
experimental values. 

This first plot is shown in Figure 2. 

 

Figure 2. Experimental vs estimated values. The LASSO algorithm for Dopamine D1 and a 
parameter value of 5 have been used. 

 

STL=cell(3,nDopa); 
STL_W=cell(1,nDopa); 

Automation of the above steps for all 
dopamine receptors requires storing per 
task statistics (STL) and models (STL_W) 
in cell arrays. 

for t=1:nDopa 
  i=aDopa(t); 
  fprintf(‘*** Dopamine D%i\n’,i); 
  [STL_W{1,t},funcval]= 
Least_Lasso(Xtr(1,t),Ytr(1,t),p1,opts)
; 
  [STL{1,t},STL{2,t},STL{3,t}]= 
stlRMSE(Xte{1,t},Yte{1,t},SLT_W{1,t}); 
  fprintf(‘RMSE=%g 
R2=%g\n’,STL{1,t},STL{2,t}); 

For each task, compute a LASSO model, 
using always the same parameter value 
(p1=0.01), store the model into the 
corresponding cell array (STL_W), use it 
and the corresponding test set to 
compute performances measures and 
store them into another cell array (STL 
stores in this order RMSE, R2 and 
estimates). Finally, plot the estimates 
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  figure; 
  plotExpPred(Yte{1,t},STL{3,t}, 
strcat(‘Dopamine D’,int2str(i))); 
end 

against the experimental values. The 
command figure makes the plot 
permanent. 

 
Five new plots should appear and the corresponding performances should be displayed: 

Dopamine RMSE R2 
D1 0.66 0.43 
D2 0.76 0.55 
D3 0.82 0.59 
D4 0.70 0.60 
D5 1.08 0.23 
Table 2. Typical performances of STL LASSO models on Dopamine D1 to D5 using a parameter value p=5. 

 
Figure 3. Typical experimental versus predicted plots for Dopamine D1 to D5 of STL LASSO 
models on a test set. The parameter p=5 is used. 

6. Exercise 2: Multi-task learning introducing sparcity 
 
Goal of the exercise:  
 

• Build simultaneously all sparse multi-linear model for all dopamine regression tasks 
• Apply the models on a test set and measure predictive performances 
• Introduce performances measures that are relevant in the multi-task learning context 

Learn all dopamine regression tasks simultaneously and present performances statistics that are 
relevant in the context of multi-task learning. 

 
Algorithm: 
 
In this exercise the same LASSO algorithm will be used. The objective function 𝑓{!,!} based on 

the a vector 𝑌 containing the target property values and the matrix 𝑋 is given by equation (1). 
However, this time 𝑊 is a matrix: each column refers to a task and each line to the molecular 
descriptors’ coefficients. The 𝑙!-norm is a function of the matrix elements 𝑊!!, where i is row index 
and j is a column index. It is computed as follows: 
 𝑊 ! = |𝑊!!|

!,!

 (2)   

In this formulation, the coupling between tasks is weak because the only assumption is that all 
tasks share the same parsimony parameter. 
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Set by step instructions: 
 
It is assumed that the previous exercises were done. If it is not the case, run the scripts Exo0.m 
and Exo1.m. Then, the regression tasks will be stored into the cell arrays X and Y and STL 
statistics will be computed for all tasks. Also, the method parameter p1 and optimization 
parameters will be set. 
 
[W,funcval]=Least_Lasso(Xtr,Ytr,p1
,opts); 

Compute all models on the training set. 

MTL_Lasso=cell(3,nDopa); Create a cell array to perform an STL-like 
analysis of the models 

for t=1:nDopa 
  i=aDopa(t); 
  fprintf(‘**** Dopamine 
d%g\n’,i); 
  [RMSE,R2,Yp]= 
stlRMSE(Xte{1,t},Yte{1,t},W(:,t)); 
  MTL_Lasso{1,t}=RMSE; 
  MTL_Lasso{2,t}=R2; 
  MTL_Lasso{3,t}=Yp; 
  fprintf(‘RMSE=%g 
R2=%g\n’,RMSE,R2); 
  figure; 
  plotExpPred(Yte{1,t},Yp, 
strcat(‘MTL Lasso Dopamine 
D’,int2str(i))); 
end 

For each task, compute the performances, 
store them and plot the experimental values as 
a function of the estimates. 

 
The performances of the STL and MTL models are virtually identical (see Table 2 and Table 3). 
Dopamine RMSE R2 
D1 0.66 0.43 
D2 0.76 0.55 
D3 0.82 0.59 
D4 0.69 0.60 
D5 1.03 0.29 
Table 3. Typical performances of MTL LASSO models on Dopamine D1 to D5 using a parameter value p=5 
on a test set. 
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Figure 4. Typical experimental versus predicted plots for Dopamine D1 to D5  MTL LASSO 
models on a test set. The parameter value used is p=5. 
 
v1=transpose(cell2mat(STL(2,:))); 
v2=transpose(cell2mat(MTL_Lasso(2,
:))); 
lDopa=transpose(arrayfun(@(x) 
strcat(‘D’, int2str(x)), aDopa, 
’UniformOutput’, false)); 

Transform the models’ performances into a 
column vector for STL models (v1), for the 
MTL models (v2) and compute a vector of 
labels each element referring to a dopamine 
subfamily.  

bar([v1,v2]); 
set(gca,’xTickLabel’,lDopa); 
title(‘STL compared to LASSO MTL 
based on R2’); 
legend(‘STL’,’MTL’); 

Display a barplot comparing the STL and the 
MTL method with appropriate labels. 

 

 
Figure 5. Comparison of R2 values for each dopamine D1 to D5 between STL models (blue) and MTL 
models (red). 
 

However, the MTL procedure or the sequential building of STL models generates an array 
of results that are difficult to manage: there are as many plots, RMSE, R2 values, etc. as the 
number of tasks (for instance Figure 3 and Figure 4). A common attempt to sum up the results is 
to use bar plots as in this example (Figure 5). This is adequate to manage up to about 10 tasks, 
but it is rapidly impossible to analyze when there are more of them. 
Therefore, there it is common to find two common average performance indicators. The first one is 
the mean root mean squared error, 𝑅𝑀𝑆𝐸 !: 
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𝑅𝑀𝑆𝐸 ! =

1
𝑇

𝑅𝑀𝑆𝐸!

!

!!!

 
(3)   

It is an average over the number of tasks 𝑇 of the per task root mean squared error 𝑅𝑀𝑆𝐸!. 
The second one is a weighted average of the root of mean squared residual per task, according to 
the number of instances per tasks and the total number of instances. This indicator, 𝑅𝑀𝑆𝐸 !!, is 
defined as follow: 
 

𝑅𝑀𝑆𝐸 !! =
𝑁! .𝑅𝑀𝑆𝐸!!

!!!

𝑁!!
!!!

 
(4)   

It is worth to remark that the 𝑅𝑀𝑆𝐸 ! is giving an equal weight to all tasks while the 𝑅𝑀𝑆𝐸 !! is 
giving more importance to the most populated task. 
 
mRMSE=mean(cell2mat(MTL_Lasso(1,:)
)); 

Compute the 𝑅𝑀𝑆𝐸 ! for the MTL algorithm. 

wRMSE=0; Nall=0; 
for t=1:nDopa 
  Nt=size(Yte{1,t},1); 
  wRMSE=wRMSE+MTL_Lasso{1,t}*Nt; 
  Nall=Nall+Nt; 
End 
wRMSE=wRMSE/Nall; 
fprintf(‘MTL: mean RMSE=%g; Wght. 
Mean RMSE=%g\n’,mRMSE,wRMSE); 

Compute the 𝑅𝑀𝑆𝐸 !! and display the line of 
report for the MTL algorithm. 

 
The averaged performances shall look as: 

MTL Lasso. Mean RMSE=0.79; Wght. Mean RMSE=0.77 
Of course, given the same number of STL models on the same targets, it is straightforward to 

compute a mean RMSE ( 𝑅𝑀𝑆𝐸 !) and a weighted mean RMSE ( 𝑅𝑀𝑆𝐸 !!). 
 

mRMSE=mean(cell2mat(STL(1,:))); Compute the 𝑅𝑀𝑆𝐸 ! for the STL algorithm. 
wRMSE=0; Nall=0; 
for t=1:nDopa 
  Nt=size(Yte{1,t},1); 
  wRMSE=wRMSE+STL{1,t}*Nt; 
  Nall=Nall+Nt; 
End 
wRMSE=wRMSE/Nall; 
fprintf(‘STL: mean RMSE=%g; Wght. 
Mean RMSE=%g\n’, mRMSE, wRMSE); 

Compute the 𝑅𝑀𝑆𝐸 !! and display the line of 
report for the STL algorithm. 

 
The averaged performances of the STL models shall look as: 

STL Lasso. Mean RMSE=0.80; Wght. Mean RMSE=0.77 
The two measures of averaged root mean squared error are close. Naturally they confirm the 

empirical observations that the MTL algorithm is equivalent to the sequential use of STL algorithm. 
 
7. Exercise 3: Optimizing one parameter 
 
Goal of the Exercise: 
 
• Set up a cross validation procedure 
• Study the influence of the parameter of the algorithm on the generalization of the model 
• Identify over-fitting and under-fitting 
• Increase the coupling between the learning tasks into the MTL algorithm 
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Algorithm: 
 
The cross-validation procedure presented here consists in (i) shuffling the dataset, (ii) dividing it 

into 𝑁! subsets and (iii) in turn using one of them as test set and the others as training set. The 
whole procedure is repeated 𝑁! times. The performances statistics are computed on each fold and 
the averaged values on all folds are finally considered. 

The LASSO algorithm uses a regularization parameter 𝜌! controlling the balance between the 
reduction of the fitting error and the parsimony of the solution. Several values of the parameter are 
investigated and for each one, the cross-validation performances are measured (as described 
above). These performances are plotted as a function of the parameter 𝜌!. For each value of the 
parameter the number of zeros into the vector 𝑊 solution is plotted. Since the LASSO algorithm 
generates sparse solutions, the number of zero is a good indicator of the parsimony of the model. 
In this context a non-parsimonious model is over-fitted while a too parsimonious one is clearly 
under-fitted. 

 
Step by step instructions: 
 
It is assumed that the previous exercises were done. If it is not the case, run the scripts Exo0.m 

and Exo1.m. Then, the regression tasks will be stored into the cell arrays X and Y and STL 
statistics will be computed for all tasks. Also, the method parameter p1 and optimization 
parameters will be set. 

 
edit(‘MTL_CV1P.m’); 
Nk=3; Nf=3; 
t=cputime; 
[rslt,mrslt]=MTL_CV1P(X,Y, 
'Least_Lasso',p1,opts,Nf,Nk); 
e=cputime-t; 
fprintf('MTL elapsed time 
%g\n',e); 

Set up a 3-fold cross-validation procedure 
repeated 3 times. The detailed per fold 
statistics are store into the variable rslt 
( 𝑅𝑀𝑆𝐸 !, 𝑅𝑀𝑆𝐸 !!, per task RMSE, per task 
R2 and per task estimates), and averaged 
results are located into the variable mrslt 
( 𝑅𝑀𝑆𝐸 !, 𝑅𝑀𝑆𝐸 !!, per task RMSE). The 
command cputime return the time in seconds 
since MATLAB was started. It is used to 
estimate the elapsed CPU time used by the 
MTL algorithm.  

STL=cell(1,nDopa); 
t=cputime; 
for t=1:nDopa 
  [rslt,STL{1,t}]= 
MTL_CV1P(X(1,t),Y(1,t), 
'Least_Lasso',p1,opts,Nf,Nk); 
end 
e=cputime-t; 
fprintf('Serial STL elapsed time 
%g\n',e); 

The same cross-validation procedure is 
applied on STL models. Performances for 
each task are stored in a separate cell of the 
STL cell array. The elapsed CPU time is 
computed for comparison with MTL 

 
Typically, the CPU times for generating the LASSO MTL model are much smaller than those for 

the same number of STL models. 
 

v1=transpose(mrslt{3}); 
v2=[]; 
for t=1:nDopa 
  v2=[v2; cell2mat(STL{t}(3))]; 
end 

Per task RMSE is transferred to two vectors: 
v1 for MTL and v2 for STL. They are used 
with the label vector lDopa to generate a bar 
plot in order to compare the performances of 
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figure; 
bar([v1,v2]); 
set(gca,'XTickLabel',lDopa); 
legend(‘MTL’,’STL’,2); 
title(‘Cross-validated RMSE of MTL 
and STL Lasso models with p1=5’); 

both algorithm. 

 

 

Figure 6. Comparison of 3 times 3-fold cross-validated RMSE of MTL models and the corresponding STL 
models on all five Dopamine subfamilies. 

The cross validation confirms that the equivalence of the MTL and STL algorithm performances 
is a robust observation ( 

Figure 6). The cross-validation procedure is certainly more demanding computationally but the 
equivalence between the STL and the MTL models is better established. 

Once a benchmarking procedure is setup, it is time to estimate the influence of the algorithm’s 
parameter 𝜌! on the performances of the models. The main performance criteria that will be 
followed it the cross-validated RMSE averaged per fold ( 𝑅𝑀𝑆𝐸 !") and the tasks averaged 
RMSE, the 𝑅𝑀𝑆𝐸 !. 

 
ap1=linspace(1,100,25); 
MTL_Lasso=cell(1,length(ap1)); 
for i=1:length(ap1) 
  p1=ap1(i); 
  [rslt,mrslt]=MTL_CV1P(X,Y, 
'Least_Lasso',p1,opts,Nk,Nf); 
  MTL_Lasso{i}=mrslt; 
  fprintf('p1=%g; mean RMSE=%g; Wght. 
mean RMSE=%g \n', p1, mrslt{1}, 
mrslt{2}); 
end 

A linear sampling, ap1, of the interval 
[1:100] is used a values for the parameter 
p1 of the algorithm. For each value, the 3 
times 3 fold cross validation procedure is 
applied and the results are recorded into 
the cell array MTL_Lasso, each cell 
corresponding to on value of p1. 
This step is lengthy. Instead of running 
these lines, please load the pre-computed 
results: Exo3_MTL_Lasso.mat. 

v3=[]; 
for t=1:length(ap1) 
  v3= [v3,cell2mat(MTL_Lasso{t}(1))]; 
end 
plot(ap1,v3); 
title('Mean RMSE as a function of 
regularization parameter value'); 
xlabel('Parameter'); 
ylabel('Mean RMSE'); 

Extract into a vector v3, the RMSE ! for 
each value of the parameter p1. Each 
component of v3 corresponds to a sampled 
value of the parameter. 
Use the vector ap1 and the vector v3 to 
plot the dependence of the overall models 
performances as a function of the 
parameter. 
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The plot of the performances of the MTL models as a function of the parameter shall look as on 
Figure 7. 

 
Figure 7. Cross-validated (3 times 3-fold) performances ( 𝑅𝑀𝑆𝐸 !) of the dopamine MTL models, as a 
function of the parameter 𝜌! of the algorithm. 

v4=[]; 
for t=1:50 
  v4=[v4; cell2mat(MTL_Lasso{t}(3))]; 
end 
plot(ap1,v4) 
title('Per dopamine RMSE as a 
function of regularization parameter 
value'); 
xlabel('Parameter'); 
ylabel('RMSE'); 
legend(lDopa); 

Extract into a matrix v4, the fold averaged 
RMSE !" values for each value of the 

parameter p1. Use the vector ap1 and the 
matrix v4 to plot the dependence of the 
each model’s performances as a function 
of the parameter. 

 
The plots (Figure 8) shall evidence that the optimal value for the parameter 𝜌! for each 

dopamine subfamily model, are localized grossly in the same range. 

 
Figure 8. Cross-validated (3 times 3-fold) performances (RMSE) of the individual dopamine MTL models, as 
a function of the parameter 𝜌! of the algorithm. 

 

sparsity=zeros(length(ap1)); 
for i=1:length(ap1) 

For each value of the parameter p1, build a 
model using the whole dataset, compute 
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  p1=ap1(i); 
  [W,funval]=Least_Lasso(X,Y, 
p1,opts); 
  sparsity(i)=nnz(W); 
  fprintf('p1=%g sparsity=%g 
\n',p1,sparsity(i)); 
end; 

the number of non-zero element (using the 
function nnz) in the weight matrix W and 
store it into the vector sparsity.  

plot(ap1,sparsity) 
title('Models sparsity as a function 
of regularization parameter value'); 
xlabel('Parameter'); 
ylabel('Number of non-zero weights'); 

Plot the vector sparsity as a function of 
the vector of parameter value ap1. 

 
The parsimony graph (Figure 9) illustrate how qualitatively evolve the solution with the values of 

the parameter p1 of the method. 

 
Figure 9. Number of non-zero elements in the solution matrix W as a function of the parameter 𝜌! value of 
the algorithm. 

All RMSE curves have a familiar aspect: at one end of the parameter range, models are over-
fitted and at the other, models are under-fitted. For these values, they generalize poorly. In 
between, the cross-validation RMSEs are minimal locating the optimal model considering the 
current dataset and algorithm. 

A minimum of the mean RMSE is observed about 𝜌!=5 and the optimal parameter value is about 
the same order across all dopamine tasks (Figure 7, Figure 8). However, a closer look shows that 
each task has its own optimum and therefore using one value for the parameter can be beneficial 
to some task and detrimental to the others. Therefore, the MTL algorithm is necessarily a 
compromise between all tasks. The performance measures of MTL models are somehow defining 
this compromise. 

Finally, the sparsity analysis as a function of the parameter value (Figure 9) clearly rationalizes 
the interpretation of the RMSE curves. For small values of the parameter the weight matrix is non-
sparse indicating over-fitted models. For large values of the parameter, the weight matrix is almost 
zero, thus indicating under-fitted models. 

Finally, the regular shape of the RMSE curve with one shallow minimum means that a simple 
dichotomy algorithm is sufficient to optimize the algorithm’s parameter. 

Note: The different steps of this exercise can be repeated in the context of STL models for the 
sake of comparison. This is the object of the file Exo3b.m. This leads to very similar dependences 
of the models’ performances with the parameter value (Figure 10). The corresponding pre-
computed variable can be loaded using the file Exo3b_sSTL.mat into the folder Precomputed. 
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Figure 10. Cross-validated (3 times 3-fold) RMSE of the STL models for each dopamine subfamily, as a 
function of the parameter 𝝆𝟏. 

8. Exercise 4: The L21 algorithm 
 
Goal of the exercise: 
 
• Introduce another modification of the LASSO algorithm with strong coupling between tasks, the 

MTL L21 algorithm (Argyriou, Evgeniou, & Pontil, 2007) 
• Illustrate a typical solution 
• Compare this MTL algorithm to the MTL LASSO algorithm. 
 

Algorithm: 
 
Another objective function is introduced in order to improve the coupling between the tasks being 

learned. This function is a modification of the LASSO equation (1), based on the 𝑙!"-norm: 
 𝑔 !,! (𝑊) = 𝑌 − 𝑋𝑊 !

! +   𝜌!" 𝑊 !" (5)   
 
The 𝑙!"-norm is computed as follows: 

 
𝑊 !" = 𝑊!!

!!

!!!

!!

!!!

 
(6)   

In the equation (6): rows are indexed by the letter 𝑖 and refer to the 𝑁! molecular descriptors; 
columns are indexed by the letter 𝑗 and refer to the 𝑇 tasks. The main characteristic of this 
objective function is that it leads to models using a joint set of variables across tasks. In other 
words, all tasks in this MTL formulation use a common subset of molecular descriptors. 

 
Step by step instructions: 

MTL_L21=cell(1,length(ap1)); 
for i=1:length(ap1) 
  p1=ap1(i); 
  [rslt,mrslt]=MTL_CV1P(X,Y, 
'Least_L21',p1,opts,Nk,Nf); 
  MTL_L21{i}=mrslt; 
  fprintf('p1=%g; mean RMSE=%g; 
Wght. mean RMSE=%g\n', p1, 
mrslt{1}, mrslt{2}); 
end 

For each sampled value of the parameter p1, 
measure the cross-validated performances of 
the Least_L21 algorithm and store them into 
the cell array MTL_L12. 
This step is lengthy. Instead of running these 
lines, please load the pre-computed results: 
Exo4_MTL_L21.mat. 

v5=[]; 
for t=1:length(ap1) 

Store into the vector v5 the task averaged 
𝑅𝑀𝑆𝐸 ! values for each parameter value. 
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  v5=[v5, 
cell2mat(MTL_L21{t}(1))]; 
end 
v6=[]; 
for t=1:length(ap1) 
  v6=[v6; 
cell2mat(MTL_L21{t}(3))]; 
end 

Store on each row of the matrix v6, the RMSE 
for each task corresponding to the same 
parameter value. Each column corresponds to 
the RMSE of a particular task. 

plot(ap1,v5); 
title('Mean RMSE as a function of 
regularization parameter value'); 
xlabel('Parameter'); 
ylabel('Mean RMSE'); 

Plot the dependence of the mean RMSE to 
the parameter value. 

plot(ap1,v6) 
title('Per dopamine RMSE as a 
function of regularization 
parameter value'); 
xlabel('Parameter'); 
ylabel('RMSE'); 
legend(lDopa); 

Plot for each task, the RMSE as a function of 
the parameter value. 

 
These commands shall lead to the following plots (Figure 11 and Figure 12). 

  
Figure 11. Cross-validated (3 times 3-fold) task 
averaged RMSE ( 𝑹𝑴𝑺𝑬 𝑻) as a function of the 
parameter 𝝆𝟐𝟏 of the MTL 𝒍𝟐𝟏-norm algorithm. 

 

Figure 12. Cross-validated (3 times 3-fold) 
RMSE for individual dopamine subfamily task 
as a function of the parameter 𝝆𝟐𝟏 of the MTL 
𝒍𝟐𝟏-norm algorithm. 

 
sparsity_L21=zeros(length(ap1)); 
for i=1:lenth(ap1) 
  p1=ap1(i); 
  [W,funcval]=Least_L21(X,Y 
,p1,opts); 
  sparsity_L21(i)=nnz(sum(W,2)); 
end 
figure; 
plot(ap1,sparsity_L21); 
title(‘Sparcity of L21 MTL 
models’); 

For each parameter value p1, compute a L21 
MTL model and count the number of non-zero 
rows into the weight matrix W.  
Store the value into the vector 
sparsity_L21.  
Then plot the sparsity as a function of the 
parameter of the algorithm. 
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xlabel(‘Parameter’); 
ylabel(‘Number of non-zero rows’); 

 
This creates the following plot (Figure 13). 

 
Figure 13. Number of non-zero rows into the vector 𝑾 solution of the MTL 𝒍𝟐𝟏-norm algorithm for different 
values of the parameter 𝝆𝟐𝟏 of the algorithm. 

The main characteristic of the matrix 𝑊 solution of the 𝑙!"-norm problems is that entire rows are 
null. As demonstrated by the sparsity analysis, the larger value is the parameter, the more rows 
are zeros, and the model tends to be under-fitted (Figure 13). Reversely, if the parameter value is 
small, almost no row of the matrix W is zero, and the model is over-fitted. 

 Another observation: comparing to the STL LASSO models, the MTL LASSO formulation, lead 
to weak improvement in the models performances. The MTL 𝑙!"-norm formulation provides a more 
contrasted picture: more interesting improvement are possible (see for instance D5 or D3 in Figure 
10, Figure 8 and Figure 12). Some tasks tend to benefit more than the others of the MTL 
algorithm. Finally, the optimum value of the 𝜌!" parameter seems less dependent of the particular 
dopamine subfamily than the parameter 𝜌! of the MTL LASSO algorithm. 

 
9. Exercise 5: Interactions between tasks 
 
Goal of the exericise: 
 
• Optimize a parameter using a dichotomy algorithm 
• Measure optimal performances of L21 MTL algorithm while learning all dopamine tasks 

simultaneously 
• Measure optimal performances of L21 MTL algorithm while learning D1, D5 tasks 

simultaneously 
• Measure optimal performances of L21 MTL algorithm while learning D2, D3 and D4 tasks 

simultaneously 
 

Algorithm: 
 
Optimizing the algorithm parameter is necessary in order to compare the performances of 

different MTL (or STL) algorithm. A dichotomy procedure is proposed: it consists in searching a 
minimum of a function into a range, by recursively dividing the range search by two. In the current 
exercises, a range containing the optimal value for the parameter of an algorithm (leading to the 
lowest RMSE) is grossly known. The cross-validated RMSE is valued at the minim, 1/4th, half, 3/4th 
and maximum of the range. A new range is defined using the division immediately before and 
immediately after the one that has the lowest RMSE value. Thus, 5 evaluations are needed to 
initialize the algorithm and then 2 more evaluations at each step are added. 
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The dichotomy algorithm is very well suited in this case because the parameter to optimize has a 
unique shallow minimum yet the first derivative is too noisy to be estimated. Considering that the 
curves of RMSE as a function of the parameter are shallow, if the optimal value is known at about 
two orders of magnitude, only 5 iterations will be sufficient to get a sufficient estimation of the 
optimal parameter, thus requiring at maximum 10 evaluation of the RMSE. 

In the current exercise, the mean RMSE will be optimized except for STL algorithm where the 
RMSE of each task will be optimized individually. 

 
Step by step instructions: 
 

pmin=1; 
pmax=50; 
Nf=3; 
Nk=3; 
maxiter=3; 

Initialization of the optimization procedure, 
setting the minimal and maximal value for the 
parameter, the number of fold and the number 
of iterations 

[p_Lasso,val_Lasso]=DichotomyOptim
ize( X, Y, 'Least_Lasso', opts, 
pmin, pmax, Nf ,Nk, maxiter); 
[p_L21,val_L21]=DichotomyOptimize( 
X, Y, 'Least_L21', opts, pmin, 
pmax, Nf, Nk, maxiter); 

Search an optimal value for the MTL LASSO 
and MTL L21 algorithm on all tasks 
simultaneously. 

p_STL=cell(2,nDopa); 
for t=1:nDopa 
  
[p_STL{1,t},p_STL{2,t}]=DichotomyO
ptimize( X(1,t), Y(1,t), 
'Least_Lasso', opts, pmin, pmax, 
Nf, Nk, maxiter); 
end; 

Sequential optimization of the parameter of the 
STL LASSO algorithm for each task. 

X15=cell(1,2); 
X15(1,1)=X(1,1); X15(1,2)=X(1,5); 
X234=cell(1,3); 
X234(1,1)=X(1,2); 
X234(1,2)=X(1,3); 
X234(1,3)=X(1,4); 
% 
Y15=cell(1,2); 
Y15(1,1)=Y(1,1); Y15(1,2)=Y(1,5); 
Y234=cell(1,3); 
Y234(1,1)=Y(1,2); 
Y234(1,2)=Y(1,3); 
Y234(1,3)=Y(1,4); 

Prepare new datasets restricted to dopamine 
D1 and D5 on the one hand, and to Dopamine 
D2, D3 and D4 on the other hand. 

[p_Lasso_15,val_Lasso_15]=Dichotom
yOptimize( X15, Y15, 
'Least_Lasso', opts, pmin, pmax, 
Nf, Nk, maxiter); 
[p_L21_15,val_L21_15]=DichotomyOpt
imize( X15, Y15, 'Least_L21', 
opts, pmin, pmax, Nf, Nk, 
maxiter); 
% 
[p_Lasso_234,val_Lasso_234]=Dichot

Optimize the parameter for MTL LASSO and 
MTL L21 algorithms on MTL datasets 
restricted to dopamine D1 and D5, then 
restricted to dopamine D2, D3 and D4 
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omyOptimize( X234, Y234, 
'Least_Lasso', opts, pmin, pmax, 
Nf, Nk, maxiter); 
[p_L21_234,val_Lasso_234]=Dichotom
yOptimize( X234, Y234, 
'Least_L21', opts, pmin, pmax, Nf, 
Nk, maxiter); 
[rslt,m_Lasso]=MTL_CV1P( X, Y, 
'Least_Lasso', p_Lasso, opts, Nf, 
Nk); 
[rslt,m_L21]=MTL_CV1P( X, Y, 
'Least_L21', p_L21, opts, Nf, Nk); 
[rslt,m_Lasso_15]=MTL_CV1P( X15, 
Y15, 'Least_Lasso', p_Lasso_15, 
opts, Nf, Nk); 
[rslt,m_L21_15]=MTL_CV1P( X15, 
Y15, 'Least_L21', p_L21_15, opts, 
Nf, Nk); 
[rslt,m_Lasso_234]=MTL_CV1P( X234, 
Y234, 'Least_Lasso', p_Lasso_234, 
opts, Nf, Nk); 
[rslt,m_L21_234]=MTL_CV1P( X234, 
Y234, 'Least_L21', p_L21_234, 
opts, Nf, Nk); 

Compute cross-validated performances using 
the optimal parameter value previously found 
on each MTL case. 

m_STL=cell(1,nDopa); 
for t=1:nDopa 
  [rslt,m_STL{1,t}]=MTL_CV1P( 
X(1,t), Y(1,t), 'Least_Lasso', 
p_STL{1,t}, opts, Nf, Nk); 
end; 

Compute averaged RMSE for the STL models 

aa=[]; 
for t=1:T 
  aa=[aa, 
cell2mat(m_STL{1,t}(1))]; 
end; 
mRMSE=mean(aa); 
wRMSE=0; 
Nall=0; 
for t=1:nDopa 
  Nt=size(Yte{1,t},1); 
  wRMSE=wRMSE+aa(t)*Nt; 
  Nall=Nall+Nt; 
end 
wRMSE=wRMSE/Nall; 
aa=[aa,mRMSE,wRMSE]; 
% 
aa_Lasso=[m_Lasso{1,3}, 
m_Lasso{1,1}, m_Lasso{1,2}]; 
aa_L21=[m_L21{1,3}, m_L21{1,1}, 
m_L21{1,2}]; 
% 
bb15=m_Lasso_15{1,3}; 

Reshape all statistical results into vectors that 
can be ploted. 
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bb234=m_Lasso_234{1,3}; 
aa_Lasso_15_234=[bb15(1), 
bb234(1), bb234(2), bb234(3), 
bb15(2)]; 
mRMSE=mean(aa_Lasso_15_234); 
wRMSE=0; 
Nall=0; 
for t=1:nDopa 
  Nt=size(Yte{1,t},1); 
  wRMSE=wRMSE+ 
aa_Lasso_15_234(t)*Nt; 
  Nall=Nall+Nt; 
end 
wRMSE=wRMSE/Nall; 
aa_Lasso_15_234=[aa_Lasso_15_234, 
mRMSE,wRMSE]; 
 
bb15=m_L21_15{1,3}; 
bb234=m_L21_234{1,3}; 
aa_L21_15_234=[bb15(1), bb234(1), 
bb234(2), bb234(3), bb15(2)]; 
mRMSE=mean(aa_L21_15_234); 
wRMSE=0; 
Nall=0; 
for t=1:nDopa 
  Nt=size(Yte{1,t},1); 
  wRMSE=wRMSE+ 
aa_L21_15_234(t)*Nt; 
  Nall=Nall+Nt; 
end 
wRMSE=wRMSE/Nall; 
aa_L21_15_234=[aa_L21_15_234, 
mRMSE, wRMSE]; 
bar(transpose([ aa; aa_Lasso; 
aa_L21; aa_Lasso_15_234; 
aa_L21_15_234])); 
lBars=[lDopa; 'mRMSE'; 'wRMSE']; 
set(gca,'XTickLabel',lBars); 
title('Models RMSE as a function 
of the algorithm'); 
xlabel('Dopamine and global RMSE 
measure'); 
ylabel('RMSE'); 
legend('STL', 'MTL Lasso', 'MTL 
L21', 'MTL Lasso D1-D5/D2-D3-D4', 
'MTL L21 D1-D5/D2-D3-D4'); 
ylim([0.6,1]); 

Plot RMSE of models using different algorithm 
and MTL subsets and the corresponding 
averaged RMSE. 

 
The statistics are summarized into the plot (Figure 14) generated by this exercise. 
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Figure 14. Summary of the benchmark of different MTL and STL setup. For each dopamine task, the RMSE 
is given. The mRMSE stands for the 𝑹𝑴𝑺𝑬 𝑻 and the wRMSE stands for 𝑹𝑴𝑺𝑬 𝑵𝑻. The orange and red 
bar are aggregating results for MTL restricted to D1, D5 on the one hand and to D2, D3 and D4 on the other 
hand. The aggregated results are used to compute the corresponding 𝑹𝑴𝑺𝑬 𝑻 and .   𝑹𝑴𝑺𝑬 𝑵𝑻 

 

 Parameter D1 D2 D3 D4 D5 𝑅𝑀𝑆𝐸 ! 𝑅𝑀𝑆𝐸 !! 

STL 

D1: 5.6 

0.64 0.71 0.81 0.74 0.93 0.76 0.75 
D2: 10.2 
D3: 11.7 
D4: 10.2 
D5: 4.1 

MTL LASSO 5.6 0.65 0.73 0.81 0.72 0.91 0.77 0.75 
MTL L21 19.4 0.63 0.71 0.79 0.73 0.91 0.76 0.73 
MTL LASSO D1, D5 4.1 0.64    0.91 

0.76 0.76 
MTL LASSO D2, D3, D4 11.7  0.73 0.81 0.75  
MTL L21 D1, D5 7.1 0.62    0.87 

0.75 0.74 
MTL L21 D2, D3, D4 11.7  0.71 0.78 0.73  
 
Table 4. Summary of the performances of STL and MTL methods through RMSE per dopamine 
task, 𝑹𝑴𝑺𝑬 𝑻  and 𝑹𝑴𝑺𝑬 𝑵𝑻. The optimal value of the parameter of each method is also given. 
 

There are three observations to do on the results reported (Figure 14 and  
Table 4). First, the Lasso MTL and STL are equivalent while the 𝑙!"-norm MTL is in general 

slightly advantageous. Second, for dopamine D5 the MTL algorithms are beneficial. Third, all 
things being equal, the pool of tasks being learned simultaneously have an impact on the final 
performances of the models. For instance, the L21 MTL model solely trained on the D1 and D5 
receptor, is better for D5 than the corresponding single task model. Note that D5 is the most 
difficult task because the D5 dataset contains only 98 instances. 

In this case MTL was reframed according to a biological concept: D1 and D5 on one side and 
D2, D3 and D4 on the other side. It is possible to try alternative grouping, but this one seems the 
best. In practice, why and how tasks shall be related remains subject to debate. It can be assumed 
that it is algorithm dependent and task dependent. For instance, in the case of those variants of the 
LASSO algorithm used in this tutorial, related task find solutions more efficiently, by favoring a 
common pool of molecular descriptors. In the case of neural networks, related tasks shall share a 
common state of the hidden layers. The advantage of relating tasks according to external 
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assumptions is that it should enable model building even when the datasets are too small to allow 
STL methods to succeed. 

 
10. Conclusions 

 
This tutorial has presented a typical situation for profiling modeling: for a compound an array of 

properties has to be learned. However for each instance, only some properties are measured, the 
others are unknown. The Multi-Task Learning framework is perfectly suited for this situation. 

The tutorial has focused on the LASSO algorithm as a Single Task Learning method and 
compared it to two MTL versions of the algorithm: the MTL LASSO and the MTL L21 algorithms. It 
introduced also some performance measures that are commonly used to globally assess the 
performances of an MTL model. 

The observations are that in general, the MTL algorithm is faster than the equivalent sequence of 
STL. Beside, if the coupling between tasks is strong the MTL models can significantly differ from 
the sequential approach. If the tasks are related then the MTL method can help finding better 
models than an STL approach. But when the tasks are not related, the MTL approach can be 
detrimental. In the context of the LASSO algorithm, related tasks are, in fact, modeling tasks that 
can be based on a common subset of variables. 
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