Chemical Reaction Databases Computer-Aided Synthesis Design Reaction Prediction Synthetic Feasibility

> Dr. Wendy A. Warr http://www.warr.com

Warr, W. A. A Short Review of **Chemical Reaction Database** Systems, Computer-aided Synthesis Design, Reaction **Prediction and Synthetic** Feasibility. Mol. Inf. 2014, 33, 469-476

Representation

- rxnfile
- RDfile
- SMILES/SMARTS/SMIRKS
- RInChl

Warr, W. A. Representation of chemical structures. *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* **2011**, *1*(4), 557-579.

Reaction Queries

 $A \rightarrow C$

$A + B \rightarrow ?$

 $? \rightarrow C$

Reaction Queries

Reaction Queries

- "Name" reaction (e.g., Diels Alder)
- Reduction of functional group A in presence of group B
- Stereoselectivity
- etc.

Atom-to-atom Mapping

Atom-to-atom Mapping

Atom-to-atom mapping

- Automatic mapping is not perfect
- Authors publish incomplete equations
- Takes no account of reaction mechanism

Approaches to Mapping

- Maximum common substructure (MCS)
- Optimization approach
 - Fujita's imaginary transition state (ITS)
 - Gasteiger ITS
 - Varnek condensed graph of reaction (CGR). Pseudomolecules
 - ISIDA descriptors calculated based on graph
 - similarity search
- Baldi MCS and optimization

MCS Approach

- M. F. Lynch, P. Willett, *J. Chem. Inf. Comput. Sci.* **1978**, *18*, 154-159.
- P. Willett, J. Chem. Inf. Comput. Sci. 1980, 20, 93-96.
- J. J. McGregor, P. Willett, J. Chem. Inf. Comput. Sci. 1981, 21, 137-140.
- J. W. Raymond, P. Willett, J. Comput.-Aided Mol. Des. 2002, 16, 521-533.

Reaction Database Systems

- MDL's REACCS

 later ISIS, Isentris

 CASREACT

 now in SciFinder

 Beilstein CrossFire
 - superseded by Elsevier's Reaxys

Reaction Databases

- SPRESI and ChemReact
- Theilheimer
- ChemInform
- Science of Synthesis
- Current Chemical Reactions
- Methods in Organic Synthesis
- Catalysts and Catalysed Reactions
- Organic Syntheses
- Selected Organic Reactions Database
- In-house ELNs

Reaction Classification: Uses (1)

- Teaching similarity of reactions
- Indexing reactions
- Browsing in databases
- Management of large hit lists
- Simplification of query generation
- Linking reactions from different sources

Reaction Classification: Uses (2)

- Access to generic type of information
- Deriving knowledge bases
 - for synthesis design
 - for reaction prediction
- Prediction of new reactions
- Automatic procedures for analysis
- Quality control of databases
- Overlap studies of databases

Reaction Classification Methods

- Model-driven
 - manual
 - computerized
 - Balaban, Hendrickson, Arens, Zefirov, Fujita
 - Dugundji-Ugi
- Data-driven

Dugundji-Ugi Model

Dugundji-Ugi Model

- WODCA
- EROS
- IGOR
- RAIN

Data-driven Classification

- Goes beyond the reaction center
- Allows sub-classes
- Wilcox and Levinson, Blurock, Gelernter, Sello
- InfoChem CLASSIFY

CLASSIFY

- Based on IC_{MAP}
 - extension of Willett and Funatsu's work
 - maximum common substructure
 - minimum chemical distance
- Atom hash codes calculated for reaction center
 - uses modified Morgan algorithm
- Sum all hash codes of all reactants and one product → unique Reaction Classification Code (15 digit number)

CLASSIFY

0-Sphere (BROAD)

Reaction centers only

1-Sphere (MEDIUM)

Reaction centers plus alpha atoms, excluding hydrogens

2-Sphere (NARROW)

Reaction centers plus beta atoms, excluding hydrogens and consecutive sp³-atoms

Synthetic Analysis Programs

- Synthesis design (planning)
- Reaction prediction
- Mechanism elucidation
- Synthetic feasibility

Synthesis Planning

Query	Results	Synthesis Plan	ns History F	Report My A	lerts My Set	tings He	lp			
Synthesis	1 🛛 Synth	esis 2 🙁 Synthesis			Synthesis 6			s 8 🛇 Synthesis 9 🛇	Synthesis 10 🛇	
New	Undo O	pen Save Rer	Dame Duplicate Ou	utput Print	Left Right	Top Resi	ize Thumbnail	E. Report) Show
R 30 N 8 3 N 8 3 N	1									
¢		ŵ _	7							
-		Synthesize (226)	20 0	etails						
-				.00 %						
-		<u> </u>								
0		Synthesize (1)		Add Remove		1 Details				
R A FIT E N						94.00 %				
одо Хон		Û			H, C =211= CH,	Remove				
_Е Х _Е ОН 		Synthesize (226)	20		Synthesize (24)					
				etails 						
*	ails		Re	move						
		• ******* -								

Synthesis Planning

- Reaxys Synthesis Planner
- SciFinder SciPlanner
- Chematica
 - Network of 7 million chemicals/reactions

Computer-aided Synthesis Design

- LHASA
 - expert system
 - knowledge base
 - reaction transforms (manual)
 - combinatorial explosion
 - so prune trees using heuristics
 - or user interaction

Computer-aided Synthesis Design

- SECS
- ARChem
- IC_{SYNTH}

ARChem

- Rules automatically generated
- Uses large database to verify rules
- Core (reaction center) extended to relevant functionality
- Tries to use reaction mechanism

Computer-aided Synthesis Design

- HORACE
 - mechanistic descriptors
 - inductive effect
 - resonance effect
 - charge distribution etc.
 - topology based on Gelernter classification
 - produces reaction hierarchy
 - extended with Kohonen neural networks
 - Gasteiger and Chen, Funatsu

WODCA and EROS

- WODCA
 - retrosynthesis
 - similarity search in catalogs
 - break strategic bonds
 - charge distribution, and inductive, resonance, and polarizability effects
- EROS knowledge-based system
 - metabolic reactions
 - mass spectrometer reactions
 - with IR, in identification of degradation products

Reaction Prediction

- The reverse of retrosynthesis
- Approaches:
 - simulation of transition states
 - rule-based, expert systems
 - inductive learning methods

IGOR

- Generality of formal techniques
 - can generate new reaction mechanisms
- Dugundji-Ugi model
- Herges predicted and verified new reactions with IGOR
 - and did further work…

Reaction Prediction: More

- Gasteiger (compare WODCA)
- Gasteiger and Chen Kohonen neural networks
- Zefirov's Symbolic Equations (SYMBEQ)
 another formal-logical approach
 - can also be used to generate Dugundji-Ugi matrices

ReactionPredictor

- Baldi, Chen *et al.* use multiple approaches:
 - descriptors are MOs and topological and physical attributes (not graph rearrangements)
 - rule-based system Reaction Explorer
 - inductive machine learning

Varnek and Co-workers

- For atom mapping:
 CGR (pseudomolecules)
 calculate ISIDA descriptors
 similarity search
- To model chemical reactivity maybe use ISIDA property-labeled fragment descriptors (IPLF)

Synthetic Feasibility

- Large number of compounds generated by:
 - combinatorial library design
 - de novo design
- Some of them will be hard to make
- CAESA
- SYLVIA

CAESA

- Rule-based system too slow for intermediate structures in *de novo* design
- Complexity analysis is more practical
- Matches structural motifs in designed structures with those in drugs and starting materials

SYLVIA

- Synthetic complexity score 1-10
- Adds scores from components
 - molecular graph, ring and stereochemistry
 - similarity to starting materials
 - frequency analysis of strategic bonds from reaction databases

Conclusions (1)

- Much research "complete" before 1990

 but papers on atom-to-atom mapping are still appearing
- Computer-aided synthesis design programs preceded reaction retrieval systems
 - but have never achieved same levels of usage

Conclusions (2)

- Emphasis on "aided"
 chemist plus machine
- Regio- and stereo-selectivity, interfering functional groups are active fields of research
- Synthetic chemists not interested in reaction prediction?
- In-house systems are using synthetic feasibility