

On the use of biological descriptors of chemical compounds to enrich traditional cheminformatics applications

Alexander Tropsha

Laboratory for Molecular Modeling and Carolina Center for Computational Toxicology UNC Eshelman School of Pharmacy UNC-Chapel Hill

QSAR and Chemical Toxicity Testing in the 21 Century

July 2007

Toxicity Testing in the 21st Century: A Vision and a Strategy

Advances in molecular biology, biotechnology, and other fields are paving the way for major improvements in how scientists evaluate the health risks posed by potentially toxic chemicals found at low levels in the environment. These advances would make toxicity testing quicker, less expensive, and more directly relevant to human exposures. They could also reduce the need for animal testing by substituting more laboratory tests based on human cells. This National Research Council report creates a far-reaching vision for the future of toxicity testing.

oxicity tests on laboratory animals are conducted to evaluate chemicals-including medicines, food additives, and industrial, consumer, and agricultural chemicals-for their potential to cause cancer, birth defects, and other adverse health effects. Information from toxicity testing serves as an important part of the basis for public health and regulatory decisions concerning toxic chemicals. Current test

methods were developed incrementally over the past 50 to 60 years and are conducted using laboratory animals, such as rats and mice. Using the results of animal tests to predict human health effects involves a number of assumptions and extrapolations that remain controversial. Test animals are often exposed to higher doses than would be expected for typical human exposures, requiring assumptions about

effects at lower doses or exposures. Test animals are typically observed for overt signs of adverse health effects, which provide little information about biological changes leading to such health effects. Often controversial uncertainty factors must be applied to account for differences between test animals and humans. Finally, use of animals in testing is expensive and time consuming, and it sometimes raises ethical issues.

Today, toxicological evaluation of chemicals is poised to take advantage of the on-going revolution in biology and biotechnology. This revolution is making it increasingly possible to study the effects of chemicals using cells, cellular components, and tissues-preferably of human origin—rather than whole animals. These powerful new approaches should help to address a number of challenges facing the

REPORT

Z

BRIE

POLICYFORUM

TOXICOLOGY

Transforming Environmental **Health Protection**

Francis S. Collins,1*† George M. Gray,2* John R. Bucher3*

n 2005, the U.S. Environmental Protection Agency (EPA), with support from the U.S. National Toxicology Program (NTP), funded a project at the National Research Council (NRC) to develop a long-range vision for toxicity testing and a strategic plan for implementing that vision. Both agencies wanted future toxicity testing and assessment paradigms to meet evolving regulatory needs. Challenges include the large numbers of substances that need to be tested and how to incorporate recent advances in molecular toxicology, computational sciences, and information technology; to rely increasingly on human as opposed to animal data: and to offer increased

nd costs (1-5). In mittee on Toxicity of Environmental ports that reviewed entified key issues. and implementation shift in the assessrd and risk (6, 7). have laid out a solid prehensive and rigd comparisons with determine whether ements will be realpurpose, NTP, EPA. of Health Chemical GC) (organizations

with expertise in experimental toxicology, computational toxicology, and high-throughput technologies, respectively) have established a collaborative research program.

EPA, NCGC, and NTP Joint Activities

EPAs Contribution: The ToxCast Research Program

906

In 2004, the NTP released its vision and roadmap for the 21st century (1), which established initiatives to integrate high-

¹Director, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD 20892; ²Assistant Administrator for the Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460; ³Associate Director, U.S. National Toxicology Program, National Institute of Environmental

throughput screening (HTS) and other automated screening assays into its testing program. In 2005, the EPA established the National Center for Computational Toxicology (NCCT). Through these initiatives, NTP and EPA, with the NCGC, are promoting the evolution of toxicology from a predominantly observational science at the level of disease-specific models in vivo to a predominantly predictive science focused on broad inclusion of target-specific, mechanism-based, biological observations in vitro (1, 4) (see figure, below).

Toxicity pathways. In vitro and in vivo tools are being used to identify cellular responses after chemical exposure expected to result in adverse health effects (7). HTS methods are a primary means of discovery for drug development, and screening of >100,000 compounds per day is routine (8). However, drug-discovery HTS methods traditionally test compounds at one concentra-

luman experience

We propose a shift from primarily in vivo animal studies to in vitro assays, in vivo assays with lower organisms, and computational modeling for toxicity assessments.

tion, usually between 2 and 10 µM, and tolerate high false-negative rates. In contrast, in the EPA, NCGC, and NTP combined effort, all compounds are tested at as many as 15 concentrations, generally ranging from ~5 nM to ~100 µM, to generate a concentrationresponse curve (9). This approach is highly reproducible, produces significantly lower false-positive and false-negative rates than the traditional HTS methods (9), and facilitates multiassay comparisons. Finally, an informatics platform has been built to compare results among HTS screens; this is being expanded to allow comparisons with historical toxicologic NTP and EPA data (http://ncgc.nih.gov/pub/openhts). HTS data collected by EPA and NTP, as well as by the NCGC and other Molecular Libraries Initiative centers (http://mli.nih.gov/), are being made publicly available through Webbased databases [e.g., PubChem (http:// pubchem.ncbi.nlm.nih.gov)]. In addition,

nal tox

tization

2008

5

February

cemag.org on

Downloaded from

National Academy of Scie

Slide courtesy of Dr. Ann Richard, EPA (modified)

15 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org

QSAR and Chemical Toxicity Testing in the 21 Century

Slide courtesy of Dr. Ann Richard, EPA (modified)

*Thomas et al., Toxicol Sci. 2012 Aug;128(2):398-417.

THE

Chemoinformatics Manifesto

INTERNATIONAL

PUBLISHERS

THE

Chemoinformatics Manifesto

A spectre is haunting Europe -- the spectre of [chemoinformatics]. [Chemoinformatics] is already acknowledged by all European powers to be itself a power. It is high time that [Chemoinformaticians] should openly, in the face of the whole world, publish their views, their aims, their tendencies, and meet this nursery tale of the spectre of [chemoinformatics] with a manifesto of the party itself.

The importance of modeling is acknowledged and appreciated

Next RSC president predicts that in 15 years no chemist will do bench experiments without computer-modelling them first

The newly-appointed President-Elect of the Royal Society of Chemistry today forecast the impact of advances in <u>modelling and</u> <u>computational informatics</u> on chemistry

Christian counselors are needed to guide people through the toughest times of their lives.

Will you answer the call?

Professor Dominic Tildesley, who will become president in 2014, said: "The speed and development of computers is now so rapid, and the advances in modelling and informatics are so dramatic that in 15 years' time, no chemist will be doing any experiments at the bench without trying to model them first."

Professor Tildesley is a world-leading expert in large-scale computational modelling and

Full <u>Product Information</u> including Boxed Warning and <u>Medication Guide</u>

Download a Chronic Migra discussion guide and talk your doctor about BOTOX

Please scroll for Indication, Important Limitatio Important Safety Information including Boxed V

drooping eyelids, hoarseness or change loss of voice (dysphonia), trouble sayin clearly (dysarthria), loss of bladder cont trouble breathing, trouble swallowing. If happens, do not drive a car, operate

- . .

D

In the Pipeline http://pipeline.corante.com/archives/2014/04/11/ *Encoded Libraries Versus a Protein-Protein Interaction | Main biology_maybe_right_chemistry_ridiculously_wrong. April 11, 2014 php Biology Maybe Right, Chemistry Ridiculously Wrong

As my correspondent (a chemist himself) mentions, a close look at Figure 2 of the paper raises some real questions. Take a look at that cyclohexadiene enamine - can that really be drawn correctly, or isn't it just N-phenylbenzylamine? The problem is, that compound (drawn correctly) shows up elsewhere in Figure 2, *hitting a completely*

C

Full

Ar

correctly) shows up elsewhere in Figure 2, *hitting a completely different pathway*. These two tautomers are not going to have different biological effects, partly because the first one would exist for about two molecular vibrations before it converted to the second. But how could both of them appear on the same figure?

Doug
* US
* US
PeqAnd look at what they're calling "cyclohexa-2,4-dien-1-one". No such compound exists as
such in the real world - we call it phenol, and we draw it as an aromatic ring with an OH
coming from it. Thiazolidinedione is listed as "thiazolidine-2,4-quinone". Both of these would
lead to red "X" marks on an undergraduate exam paper. It is clear that no chemist, not
even someone who's been through second-year organic class, was involved in this work
(or at the very least, involved in the preparation of Figure 2). Why not? Who reviewed this,
anyway?

ed of ted

re is

se

of

66

NS

as

am ;0

all

lark

tes

zen's

to

olumbia.

ilabeled

ound in

d in full

numerous attempts have been made to

Cheminformatics Analysis of (inaccuracy of) qHTS Data

over 17,000 compounds screened against five major CYP isozymes using In Vitro bioluminescent qHTS assay

	#	SID	CID	CID (TXT FILE)	lition Obse	2c19_LogAC50	2d6_LogAC50	3a4_LogAC50	1a2_LogAC50	2c9_LogAC50	Compound QC
51	7955	11113498	1348	1348	[TRUE	-6.1	-5.7	-5.1	-5.9	-5.4	QC'd by Tocris
60	7577	11113881	1370	1370	[TRUE	-4.9	-5	-4.8	-5.6	-5.1	QC'd by Tocris
69	7888	11113566	1574	1574	[TRUE	-5.1	-4.7	-4.8	-4.7	-4.4	QC'd by Tocris
97	7686	11113772	1797	1797	[TRUE	-5	-4.6	-4.4	-7.4	-4.6	QC'd by Tocris
117	7987	11113466	1960	1960	[TRUE	-5.2	-4.6	-4.8	-4.8	-4.6	QC'd by Tocris
130	7925	11113529	2052	2052	[TRUE	-4.8	-4.7	-4.5	-5.3	-5.1	QC'd by SigmaAldrich
136	7531	11113928	2125	2125	[TRUE	-5.1	-5.4	-5	-4.8	-5.7	QC'd by Tocris
210	9989	11110929	2703	2703	[TRUE	-5	-4.6	-4.5	-5	-4.4	QC'd by SigmaAldrich
227	9973	11110952	2782		1 TRUE	-6.7	-5.9	-5.2	-5	-4.6	QC'd by SigmaAldrich
229	7772	11113684	2790	2790	[TRUE	-4.8	-4.9	-5.8	-4.8	-4.9	QC'd by Tocris
240	9964	11110963	2812	2812	[TRUE	-5.1	-5	-7.3	-5.4	-6.5	QC'd by Prestwick
241	9965	11110962	2812		1 TRUE	-5	-4.4	-6.9	-4.8	-6	QC'd by SigmaAldrich
242	8112	11113341	2818	2818	[TRUE	-4.6	-4.8	-4.5	-4.8	-4.4	QC'd by Tocris
264	9208	11111961	2998	2998	TRUE	-5.1	-4.6	-5.4	-4.9	-5.5	QC'd by SigmaAldrich
282	7920	11113534	3101	3101	[TRUE	-7.2	-6.1	-5.5	-7.7	-7	QC'd by Tocris
283	9889	11111058	3101		1 TRUE	-6.3	-5.4	-5.5	-6.9	-6	QC'd by SigmaAldrich
290	9873	11111076	3136	3136	[TRUE	-4.5	-4.4	-4.7	-5.4	-4.4	QC'd by SigmaAldrich
309	8948	11112239	3293	3293	[TRUE	-7.3	-5.6	-4.9	-5.3	-5.7	QC'd by Prestwick
326	9809	11111163	3396		1 TRUE	-4.8	-5	-5.2	-4.9	-4.4	QC'd by SigmaAldrich
345	7961	11113492	3455	3455	TRUE	-4.6	-6.2	-4.9	-4.5	-4.7	QC'd by Tocris
353	8100	11113353	3488	3488	TRUE	-5	-5	-5	-4.4	-5.1	QC'd by Tocris
364	7374	11114090	3538	3538	[TRUE	-5.1	-4.6	-5.3	-4.5	-5.9	QC'd by Tocris
383	7284	11114182	3671	3671	[TRUE	-5.5	-7.4	-5.1	-6.2	-6.2	QC'd by SigmaAldrich
384	9442	11111654	3675	3675	TRUE	-6.5	-5.6	-5.1	-6	-6.8	QC'd by Prestwick
385	9443	11111653	3675		1 TRUE	-6.1	-5.2	-5.5	-5.5	-5	QC'd by SigmaAldrich
394	8391	11112811	3698	3698	[TRUE	-5.3	-4.9	-5.5	-4.8	-4.9	QC'd by Prestwick
410	9189	11111983	3797		1 TRUE	-4.5	-5.7	-5.7	-5.4	-4.9	QC'd by SigmaAldrich
422	9652	11111370	3885	3885	[TRUE	-5.4	-4.8	-4.8	-5.4	-4.5	QC'd by SigmaAldrich
428	7207	11114259	3932	3932	[TRUE	-6.7	-5.1	-6.3	-4.5	-5.1	QC'd by SigmaAldrich
485	7988	11113465	4299	4299	[TRUE	-8.6	-4.5	-4.6	-4.4	-5.7	QC'd by Tocris
486	7984	11113469	4306	4306	TRUE	-7.4	-5.1	-4.9	-5.6	-4.9	QC'd by Tocris

Veith et al., Nature Biotechnology, 2009, 27:1050-5 Sun et al., J. Chem. Inf. Model., 2011, 51:2474-81

Dataset Curation summary

Fourches D, et al. J Chem Inf Model. 2010 50(7):1189-204.

Chemical Duplicate Analysis

- Carried out by ISIDA/Duplicates program
- 1,280 duplicate couples were found
 - 406 had a complete matching profile
 - 874 had profile differences
 - A total of 1,535 discrepancies were found in the 874 duplicates couples CYP annotation:

	CYP2C9	CYP1A2	CYP3A4	CYP2D6	CYP2C19
# of discrepancies	154	363	426	422	170

PROBLEM: CYP bioprofiles for some duplicates are dramatically different Need biological curation!

Neighborhood analysis helps to choose correct value

Case Study: structural duplicates found in NCGC CYP450 qHTS data

Tocris-0740		SI)	Su	pplier	2C	9 Cy	tochi 1A2	ome 3A4	P450 2D6	2C19	HO NO
CID_6603937		11113	673	Т	ocris	-4.	6	-4.4	-4.6	-6.2	-4.5	HO
CID_6603937		11111	504	Sigm	a Aldrich	-4.4	4	INA	-8	-5.6	-5	Likely incorrect!
5 Nearest neighbors	Tai Sin	nimoto nilarity	S	ID	Suppli	er	Cy 2C9	tochi 1A2	rome 3A4	P450 2D6	2C19	HO HO H
6604862		0.98	1111	4071	Tocris	5	INA	INA	4.5-	INA	5.5-	6604862 CH ₂ CH ₃
6604106		0.98	1111	2029	Sigma Alo	drich	INA	INA	5.1-	INA	INA	6604106
6604846		0.98	1111	4012	Tocris	5	INA	INA	INA	INA	INA	
6604136		0.95	1111	2054	Sigma Alo	drich	INA	INA	4.8-	5.9-	INA	
6604137		0.95	1111	3764	Tocris	5	INA	4.4-	4.7-	4.5-	INA	6604137

Notes on the importance of data curation

- The curation of chemical data is critical prior to any cheminformatics analysis and modeling. Difficult cases require human interventions and cannot be fully automated.
- Prediction outliers may be due to structural outliers, real activity cliffs or mislabeled compounds. Many of them can still be detected and removed prior to modeling studies boosting the reliability of QSAR model.
- Rigorously developed QSAR models can be even used to correct erroneous biological data associated with certain compounds.

Integration of Diverse Data Streams into QSAR Modeling to Improve Toxicity Prediction

Cheminformatics

Chemical descriptors (in silico):

Molecular weight, Connectivity indices Presence/absence of fragment, Hydrophobicity, etc.

Bioinformatics Over many biological assays

Short-term biological assays

Transcriptomics, Metabolomics, Cytotoxicity, Genotype, etc The Use of Biological Screening Data as Additional Biological Descriptors Improves the Prediction Accuracy of Conventional QSAR Models of Chemical Toxicity

- Zhu, H., *et al.* Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. *EHP*, **2008**, (116): 506-513
- Sedykh A, *et al.* Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. *EHP*, **2011**, 119(3): 364-70.
- Low *et al.*, Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. *Chem Res Toxicol*. **2011** Aug 15;24(8):1251-62
- Rusyn *et al*, Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data. *Tox. Sci.*, **2012**, 127(1):1-9
- Low Y, *et al.* Integrative chemical-biological read-across approach for chemical hazard classification. *Chem Res Toxicol.* **2013**, 26(8):1199-208
- Low, Y, *et al.* Integrative Approaches for Predicting In Vivo Effects of Chemicals from their Structural Descriptors and the Results of Short-Term Biological Assays. *Curr. Top. Med. Chem.*, **2014**, 14(11):1356-64

Approaches to Integrative QSAR Modeling

<u>Hierarchical QSAR</u>: Using *in vitro* IC50 data to develop improved QSAR models for *in vivo* Rat Oral LD50. ZEBET Database* and Data Preparation

Relatively poor correlation between *in* vitro IC50 data and *in vivo* Rat Oral LD50

Different regions of *in vitro* IC50 - *in vivo* Rat Oral LD50 relationships

Zhu H, Ye L, Richard A, Golbraikh A, Rusyn I, Tropsha A. (2009) EHP 117:1257-1264.

Hierarchical QSAR modeling

Zhu H, Ye L, Richard A, Golbraikh A, Rusyn I, Tropsha A. (2009) EHP 117:1257-1264.

Prediction of the Rat LD50 Values for the External set of 23 Compounds

• R²=0.79, MAE=0.37, Coverage=74% (17 out of 23)

<u>Hybrid QSAR: In vitro dose-response data</u> improve the predictive power of QSAR models of in vivo toxicity (rat LD₅₀)

- 1408 substances
- •382 chemical structure descriptors (Dragon v5.5)
- 13 in vitro NCGC cell viability assays * :
 - o qHTS (quantitative HTS) data
 - 92.2μm

May yield up to 13x14 = 182 *in vitro* qHTS descriptors, but the issue of data noise becomes important.

*Inglese J., Douglas S. A. et al. PNAS, 2006, v103(31), p11473

QSAR-like Table – qHTS descriptors

Descriptor #: 1 2 ...

182

ID	Name	Structure	3T3 9.2mkM	3T3 21mkM	 SHSY 92mkM
1	Acrolein	0	0	0	 -92
2	2-Amino-4- nitrophenol		0	-22	 0
369	Tebuco- nazole		-21	-24	 -18

SMOOTHING CONCENTRATION-RESPONSE CURVES (NOISE SUPPRESSION).

Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, Tropsha A. EHP, 2011, 119(3):364-70

B 5-fold cross-validation routine (*j*=1..5)

Smoothing the concentrationresponse data improves the prediction accuracy of hybrid models.

kNN

models

%	Chemical descriptors only	Hybrid descriptors (Original)	Hybrid descriptors (THR=15%)		
Sensitivity	68±8	63±9	76±5		
Specificity	85±4	86±4	87±2		
CCR	76 ±5 *	74 ±5	82 ±3		

Random	Sensitivity	74±9	66±8	77±10
Forest (RF) models	Specificity	82±7	87±4	86±3
	CCR	78 ±4 *	77 ±5	82 ±5

Shown are averaged results of five-fold external validation. *Chemical descriptors only models were significantly different (p < 0.05) from all other models of the corresponding group by the permutation test (10,000 times).

Hybrid QSAR models have higher predictive power than commercial software TOPKAT

%	ТОРКАТ	Chen descript	nical ors only	Hyb descrij (Origi	rid ptors inal)	Hybrid descriptors (THR=15%)		
		kNN	RF	kNN	RF	kNN	RF	
Sensitivity	0.45	0.73	0.73	0.55	0.82	0.91	0.91	
Specificity	0.93	0.78	0.80	0.85	0.78	0.85	0.83	
CCR	0.69 *	0.75	0.77	0.70	0.80	0.88	0.87	

Results are shown for 52 compounds in our external validation sets, which were also absent in the TOPKAT training set.

*TOPKAT model was significantly different (p < 0.05) from all other models by the permutation test (10,000 times).

Data source: Japanese toxicogenomics project; Open TG-GATEs <u>http://toxico.nibio.go.jp/</u>

Selection of chemical descriptors and transcripts for model building

Removal of low-variance and highly correlated descriptors

Low et al. Chem. Res. Toxicol. 24,1251-1262 (2011)

Comparison of models

Model interpretation (biology): Pathway analysis shows that selected genes are mechanistically

relevant

Hnf4a is assoc. with

 Morphological and functional differentiation of hepatocytes

Myc is assoc. with

- Cell proliferation
- Cell differentiation
- Apoptosis (Lin 2009)

Cellular function- and maintenance-related interactomes

- Liver architecture
- ER stress (Parviz 2003, Watt 2003, Luebke-Wheeler 2008)

Why is gene expression more predictive than chemical descriptors?

- Small and chemically diverse data set
 - Too few congeneric compounds is a challenge for QSAR
- Effect of activity cliffs
 - 50% of top 40 nearest neighbor pairs in chemistry space are activity cliffs
 - 33% of top 40 nearest neighbor pairs in biology space are activity cliffs

Dataset Modelability: does it make sense to model any SAR data?

Example: Poor <u>structure – in vivo</u> or <u>in vitro-in vivo</u> correlations for Toxcast data*

Toxicol Sci. 2012 Aug;128(2):398-417.

The Concept of Modelability

- We often fail to build a predictive QSAR model. However, it may be possible to evaluate *modelability* of the dataset prior to QSAR study.
- <u>MODI-index</u>: Balanced accuracy (BA) of a kNN model with K=1 (the activity class of each compound is predicted to be the same as that of its nearest chemical neighbor)

CONFUSION MATRIX

$$SE = N_{00}/N_0$$
$$SP = N_{11}/N_1$$

 $BA = \frac{1}{2} (SE + SP)$

PREDICTED	OBSERVED CLASS 0	OBSERVED CLASS 1	TOTAL
CLASS 0	N ₀₀	N ₁₀	N _{.0}
CLASS 1	N ₀₁	N ₁₁	N _{.1}
TOTAL	N _{0.} =N ₀	N _{1.} =N ₁	N=N

Prediction of Dataset Modelability

Golbraikh A, et al. Data Set Modelability by QSAR. J Chem Inf Model. 2014, 54(1):1-4

Low et al. (2011) Chem. Res. Toxicol. 24,1251-1262

Conflicting Predictions by QSAR and Toxicogenomics Models

Carbamazepine

Distant biological neighbors
 Close chemical neighbors
 Chemical similarity works
 better

<u>Caffeine</u>

Close biological neighbors
 Distant chemical neighbors
 TGx similarity works
 better

-4

 0
 2
 4

 PC1(70%)
 Improved

 predicion:
 Learn from both

 sets of neighbors

Chemical space

Toxic drug

caffeine

•Non-toxic drug

carbamazepine

-2

Chemical Read-Across: Learning from Similar Compounds

Low et al, Chem Res Toxicol. 2013, 26(8):1199-208

CBRA outperforms other models

Model	Specificity	Sensitivity	Balanced accuracy (CCR)
Chemical read-across	0.73 ± 0.07	0.34 ± 0.05	0.53 ± 0.04

Results of 5-fold external cross-validation

- Single space approaches replicated previous results: TGx > hybrid > QSAR
- Multi-space kNN read-across, using both chemical and toxicogenomic neighbors, had the highest predictive power

Low et al, Chem Res Toxicol. 2013, 26(8):1199-208

CBRA Shows Consistently Top Performance for Four Benchmark Data Sets

Radial Plots Visualize both Chemical and Biological Similarity to Help Forming the Read-across Argument

Conclusions and Outlook

- Rapid accumulation of large biomolecular datasets (especially, in public domain):
 - Strong need for both chemical and biological data curation
 - Cheminformatics approaches support <u>biological</u> data curation
- Novel approaches towards Integration of inherent chemical properties with <u>short term</u> biological profiles (biological descriptors)
 - improve the outcome of structure in vitro in vivo extrapolation
- Interpretation of significant chemical and biological descriptors emerging from externally validated models
 - inform the selection or <u>design</u> of effective and safe chemicals and focus the selection of assays
- Tool and data sharing
 - Pubic web portals (e.g., Chembench, OCHEM)

BENCH http://chembench.mml.unc.edu

HOM	IE MY BENCH		DATASET	MOE	DELING	PREDICTION	CECCR BASE				
	These are public predictors useful for toxicity prediction.										
	Select	<u>Name</u>	Date Created	<u>Modeling</u> <u>Method</u>	<u>Descriptor</u> <u>Type</u>	Description					
		5HT2B_Binder_DragonkNN	2010-09-16 03:57	KNN	DRAGONH	This predictor contains using Dragon and kNN http://dx.doi.org/10. These models built ar 304 compounds with classification defined b assay	models generated by R Hajjo; etal in 1021/jm100600y. d validated using binder/non-binder vased on functional s.				
		Ames_Genotoxicity_kNN	2011-06-14 15:28	KNN	DRAGONH						
		Ames_Genotoxicity_SVM	2011-06-14 15:28	SVM	DRAGONH						
		cb101ld50_369_cdk_RF	2011-08-28 20:46	RANDOMFOREST	UPLOADED CDK						
		cb101ld50_369_hts_RF	2011-09-09 23:03	RANDOMFOREST	UPLOADED HTS						
		cb101ld50_369_hybrid_RF	2011-08-28 20:46	RANDOMFOREST	UPLOADED HYBRID						
		cb101ld50_369_sdf_RF	2011-08-30 11:22	RANDOMFOREST	CDK						
		ER_binding_affinity	2011-09-12 14:07	SVM	UPLOADED						
		RAT-ACUTE- LD50_DragonkNN	2010-09-23 03:57	KNN	DRAGONH	This predictor contains using Dragon and kNN http://dx.doi.org/10. These models built ar 3472 compounds pred (pLD50(mol/kg	models generated I by H Zhu; etal in 1021/tx900189p. Ind validated using dict Acute Toxicity g)) in Rats.				
		T.Pyriformis	2009-10-09 16:46	KNN	MOLCONNZ	This predictor com MolconnZ models gene al in http://dx.doi.org/10. These models built usi (644 training/339 ext aquatic toxicity (p) Tetrahymena	tains the kNN- prated by H Zhu; et 1021/ci700443v. ng 983 compounds ernal test) predict IGC50) against Pvriformis.				

Acknowledgements

<u>Research Professors</u> Alexander Golbraikh, Denis Fourches, Eugene Muratov Postdoctoral Fellows Olexander Isayev, Regina Politi

Collaborators Ivan Rusyn Diane Pozefsky

Adjunct Members

Weifan Zheng, Shubin Liu

<u>Graduate students</u> Andrew Fant, Yen Low Mary La

MAJOR FUNDING

NIH

- R01-GM66940

- R01-GM068665

NSF

- ABI 9179-1165

EPA (STAR awards)

- RD832720
- RD833825
- RD834999

ONR