

Random Forest for scoring functions						
Addressing these limitations						
Training sets:						
growth of PDBbind \rightarrow 1005 complexes with K _i data (not overlapping with Cheng & CSAR test set						
Regression methods:						
Non-parametric machine-learning methods:						
(not imposing any particular functional form)						
in particular : Random Forest						

Random Forest for scoring functions						
First scoring function trained with Random Forest:						
RF-Score (Ballester & Mitchell, <i>Bioinformatics</i> 2010)						
Training set: 1105 PDBbind complexes						
Descriptors: count of protein-ligand atom type pair contacts withing 12 Å						
9 atom types (C, N, O, S, P, F, Cl, Br, I) \rightarrow 36 pairs						
\rightarrow each complex characterised by vector of 36 contact counts						
RF-Score yields much higher R _p for Cheng test set!						
BUT: Do the pure contact counts sufficiently well capture						
the physicochemical interaction features?						

SFCcsore for docking pose	prediction								
Learning from decoy poses									
Data sets:		Trai	ning	Test					
		Cheng	Huang	Cheng	Huang	CSAR-2012	_		
	С	120	-	56	318	58			
	н	-	120	176	198	58			
	C&H	60	60	3'	74	58			
	C&H2	117 212		10	65	58			
Huang: based on C 318 complexes (no o 500 poses/complex f 0-18 Å RMSD (incl. r CSAR 2012: 58 complexes of 5 ta	б - N -	Ex	rposed/bui	ried ligand surfa					
(2-22 Å rmsd) + 1 ne	ar-native p	ose (<1 /	Å) <u> </u>						
Cheng Huang							·, ~ (n)		

