## Boosting Virtual Screening Enrichments Using Data Fusion

Coalescing 2D fingerprints, shape, and docking Sastry, G. M., Inakollu, V. S. S., Sherman, W.

SCHRÖDINGER.

Strasbourg Summer School in Chemoinformatics 2014

## **The Big Picture**

- Ideally, we would run QM/MD/FEP for all binding energy calculations
  - Way too expensive
- Even docking with protein flexibility can be too expensive for large datasets using typical hardware
  - And virtual screening results have not been validated
- Can we devise strategies within the current virtual screening paradigm to improve enrichment results?



#### **Presentation Outline**

- Datasets & Metrics
- Fingerprints
- Shape
- Docking
- Data fusion



## **Virtual Screening Datasets**

- Set 1: Glide validation set
  - 65 targets
  - ~20 actives/target
  - 1000 decoys
- Set 2: MDDR from McGaughey et al.
  - 11 targets
  - 8-257 actives/target
  - ~25K decoys
- Set 3: DUD
  - 40 targets
  - ~20 actives/target
  - -~2000 decoys

Mostly MDDR results are presented here, but all results are in: Sastry M et al. Journal of Chemical Information and Modeling **53**, 1531–1542 (2013)



## **Enrichment Metrics**

#### • BEDROC\*

- Boltzmann-enhanced discrimination of receiver-operating characteristic
- Weights the early part of the ROC curve but accounts for the full curve
- $-\alpha$  allows tuning for how heavy to weight early enrichment
- α=160.9 corresponds to 80% of the BEDROC score being accounted for in the top 1% of the database screen
- α=20 corresponds to 80% of the BEDROC score being accounted for in the top 8% of the database screen
- Maximum value=1.0
- EF(1%)
  - Enrichment of actives in top 1% of DB
  - Maximum value=100
- EF(10%)
  - Enrichment of actives in top 10% of DB
  - Maximum value=10

SCHRÖDINGER.

\* Truchon and Bayly, JCIM 2007 47 (2) 488–508

# Fingerprints

- Up to 64-bit hashed fingerprints (default 32-bit = 2<sup>32</sup>)
- Details in 2 publications:
  - Sastry et al., J Chem Inf Model, 2010, 50(5)
    - Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments
  - Duan et al., J Mol Graph Model, 2010, 29
    - Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods





### **Effect of Address Space Size**

| Target        |              | #On Bits               |                 |                 | EF(1%)                 |                 |
|---------------|--------------|------------------------|-----------------|-----------------|------------------------|-----------------|
|               | #Heavy Atoms | <b>2</b> <sup>10</sup> | 2 <sup>32</sup> | 2 <sup>64</sup> | <b>2</b> <sup>10</sup> | 2 <sup>32</sup> |
| CA            | 13           | 116                    | 120             | 120             | 47.5                   | 52.5            |
| CDK2          | 35           | 953                    | 2665            | 2665            | 7.8                    | 11.7            |
| COX2          | 26           | 264                    | 303             | 303             | 10.1                   | 18.7            |
| DHFR          | 33           | 371                    | 483             | 483             | 15.4                   | 38.4            |
| ERα           | 29           | 178                    | 193             | 193             | 10.8                   | 10.8            |
| HIV Protease  | 45           | 504                    | 694             | 694             | 5.9                    | 28.7            |
| HIV-RT        | 29           | 337                    | 408             | 408             | 2.0                    | 3.4             |
| Neuraminidase | 28           | 322                    | 371             | 371             | 25.0                   | 41.6            |
| PTP1B         | 18           | 279                    | 332             | 332             | 50.0                   | 50.0            |
| Thrombin      | 35           | 462                    | 607             | 607             | 4.5                    | 30.5            |
| TS            | 53           | 439                    | 569             | 569             | 48.4                   | 70.9            |
| Average       | 31.3         | 384                    | 613             | 613             | 20.7                   | 32.5            |

Linear fingerprints, Daylight atom types, no bit scaling, Tanimoto similarities



# **Fingerprint Methods**

#### Multiple methods and options implemented in Canvas

- 13 atom types
   Plus custom
  types
- 13 bit scaling rules
- 20+ metrics

| FP Type    | Description                                                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear     | Linear fragments + ring closures                                                                                                                                         |
| Dendritic  | Linear and branched fragments                                                                                                                                            |
| Radial     | Fragments that grow radially from each atom. Also known as extended connectivity fingerprints (ECFPs) <sup>42</sup>                                                      |
| Pairwise   | Pairs of atoms, <sup>44</sup> differentiated by type and the distance separating them: Type <sub>i</sub> - Type <sub>j</sub> - $d_{ij}$                                  |
| Triplet    | Triplets of atoms, differentiated by type and the three distances separating them: Type <sub>i</sub> $-d_{ij}$ -Type <sub>j</sub> $-d_{jk}$ -Type <sub>k</sub> $-d_{ki}$ |
| Torsion    | Four consecutively bonded atoms, <sup>45</sup> differentiated by type: Type <sub>i</sub><br>- Type <sub>j</sub> - Type <sub>k</sub> -Type <sub>l</sub>                   |
| MOLPRINT2D | A radial-like fingerprint that encodes atom environments using lists of atom types located at different topological distances 46,47                                      |
| MACCS      | SMARTS-based implementation of the MACCS structural keys <sup>36</sup>                                                                                                   |

SCH

# **Summary of Fingerprint Screening Results**

- Sastry et al., J Chem Inf Model 2010 50: 771
  - "Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments"
- Best EF(1%)=35.1 Molprint2D and element + ring/cyclic atom types
  - 33.6 with default Molprint2D settings



### **Phase Shape Overview**

- Based on the principle of rapid initial alignments using atom triplets followed by refinement and volume overlap scoring
- Atom triplets derived from local atom environments
- Fast superposition using 2D least squares
- Hard sphere atom volume overlaps for similarity assessment
- Sastry at al., J Chem Inf Model 2011, 51 (10), pp 2455–246



## **Virtual Screening: Effect of Atom Types**

- Consistent improvement with more specific atom types
- Pharmacophore treatment outperforms all atom-based schemes

| Target              | Shape Only | QSAR | Element | MMod | Pharm |  |  |
|---------------------|------------|------|---------|------|-------|--|--|
| СА                  | 10.0       | 25.0 | 27.5    | 32.5 | 32.5  |  |  |
| CDK2                | 16.9       | 20.8 | 20.8    | 23.4 | 19.5  |  |  |
| COX2                | 21.4       | 19.1 | 16.7    | 19.5 | 21.0  |  |  |
| DHFR                | 7.7        | 3.9  | 11.5    | 23.1 | 80.8  |  |  |
| ER                  | 9.5        | 17.6 | 17.6    | 13.5 | 28.4  |  |  |
| HIVpr               | 13.2       | 17.7 | 19.1    | 14.0 | 16.9  |  |  |
| HIVrt               | 2.7        | 2.0  | 4.7     | 4.7  | 2.0   |  |  |
| NA                  | 16.7       | 16.7 | 16.7    | 16.7 | 25.0  |  |  |
| PTP1B               | 12.5       | 12.5 | 12.5    | 12.5 | 50.0  |  |  |
| Throm               | 1.5        | 4.0  | 4.5     | 8.5  | 28.0  |  |  |
| TS                  | 19.4       | 32.3 | 35.5    | 51.7 | 61.3  |  |  |
| Average             | 11.9       | 15.6 | 17.0    | 20.0 | 33.2  |  |  |
| Median              | 12.5       | 17.6 | 16.7    | 16.7 | 28.0  |  |  |
| Improved Enrichment |            |      |         |      |       |  |  |

SCHRÖDINGER.

# Docking

- Glide HTVS
  - -~1-2 s/cmpd
  - SP produces ~10% better enrichments at 10x computational cost
- Default Protein Preparation Wizard
  - Protein preparation paper published in JCAMD:

"Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments"

Sastry et al., *J Comp-Aided Mol Des*, **2013**, *27(3)*, pp 221-234

• Database ligands prepared with LigPrep and Epik



# **Combining Multiple Scores**

- Scores from fingerprints, shape, and docking cannot be directly combined
- Various options exist for combining:
  - Consensus ranking
  - Parallel selection
  - Average of normalized scores
- We like normalized scores for various reasons
  - Emphasizes underlying score, not just rank
  - Easier to gain confidence intervals
- Standard Score (aka Z-score)
  - Normalize each distribution to mean=0 and stddev=1
  - Invert sign of GlideScore so bigger is better (like FP and shape)
- Question: Combine all scores or a subset?



## **Comparison with Different Screening Protocols**



SCHRÖDINGER.

## **Comparison to Different Data Fusion Algorithms**



SCHRÖDINGER.

#### **HIV Protease Example**

- We want a narrow peak with a fat positive tail
- Top compounds are significantly above mean
- Top compounds are active





## **Combining More Scoring Methods**

- Combined all 3 FPs, 2 shape screenings, and HTVS docking
- With more scoring methods, more Z-scores should be used



### **New Results on DUD**

- 40 targets
- Well-selected actives and decoys EF(1%) RXG





### Conclusions

- Data fusion can improve virtual screening enrichments
- Z-score generally performs better than other fusion approaches
- Including more scoring methods appears to be better
  Depends on them being "good enough"
- Results are consistent for Glide, MDDR, and DUD sets
- Fully automated workflow is available



## Acknowledgements

- Data Fusion
  - Madhavi Sastry
  - V.S. Sandeep Inakollu
- Canvas Fingerprints
  - Madhavi Sastry
  - Steve Dixon
  - Jeff Lowrie
- Shape Screening
  - Madhavi Sastry
  - Steve Dixon

