Machine-Learning Methods in Property Predictions: *Quo Vadis*?

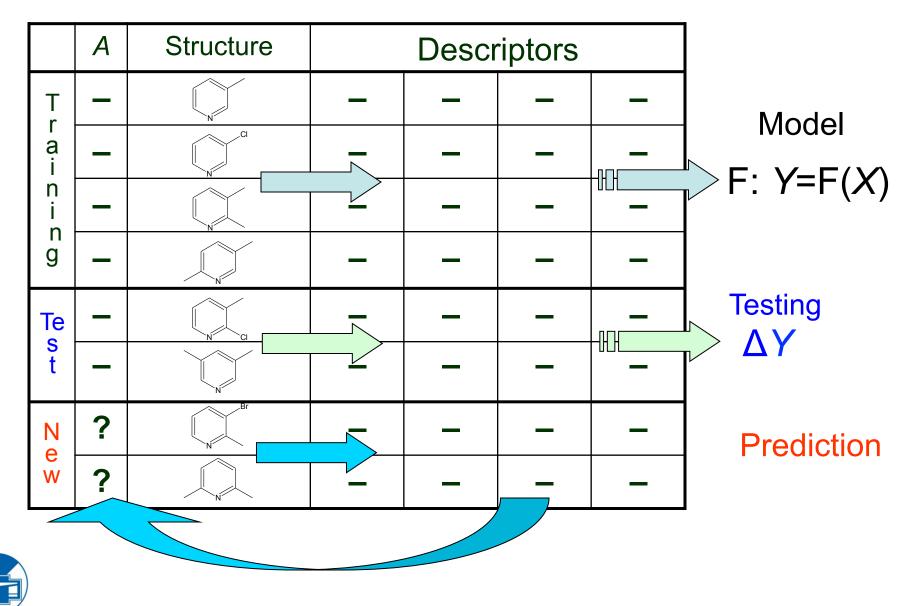
Igor I. Baskin

Lomonosov Moscow State University RUSSIA

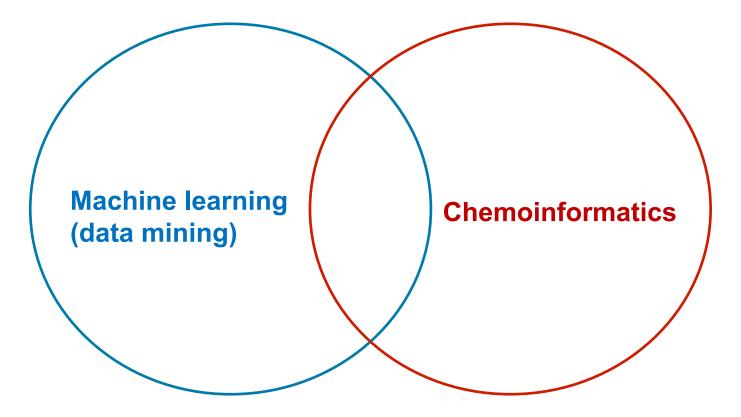
Физический факультет

Московский государственный университет имени М.В. Ломоносова

General Workflow for QSAR Modiling in Chemoinformatics



Machine Learning and Chemoinformatics: different but overlapping fields



Chemometrics

- Chemometrics is what chemometricians do.
- Chemometricians are people who drink beer and steal ideas from statisticians

Svante Wold

Chemoinformatics Chemometrics

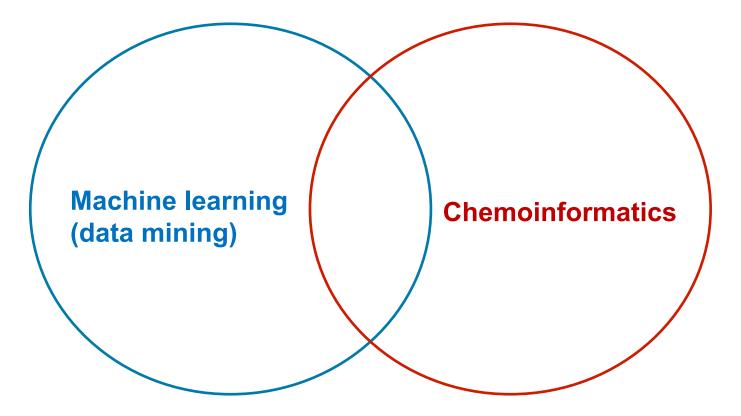
Chemoinformatics chemoinformaticians

Chemometrics is what chemometricians do

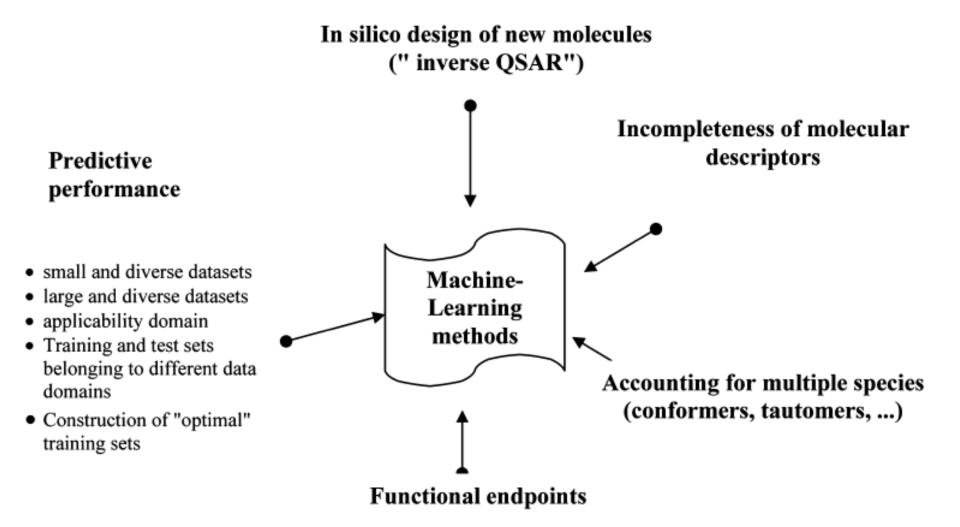
Chemoinformaticians

 Chemometricians-are people who drink beer (??) borrrow and steal ideas from statisticians-

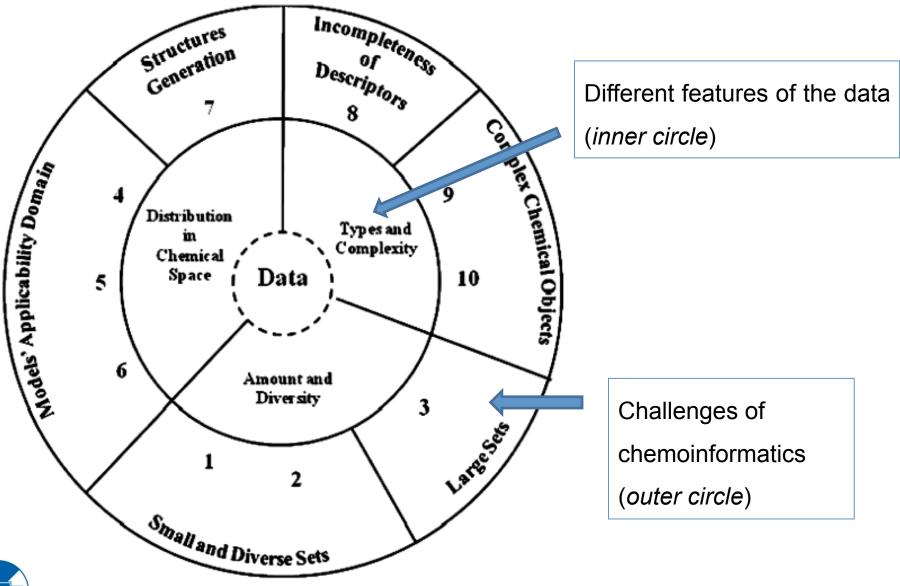
Machine Learning and Chemoinformatics: different but overlapping fields



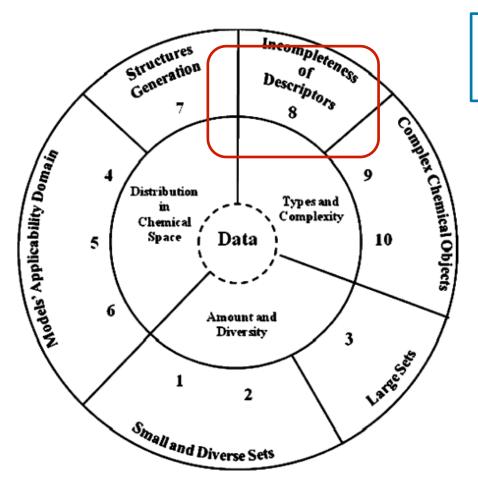
Main Challenges of Machine-Learning Methods in Chemoinformatics



Guide to Choose Machine Learning Method to solve Chemical Problems



Machine Learning on Molecular Graphs



Is it possible to build a model directly on molecular graphs instead of using fixed-sized vectors of descriptors?

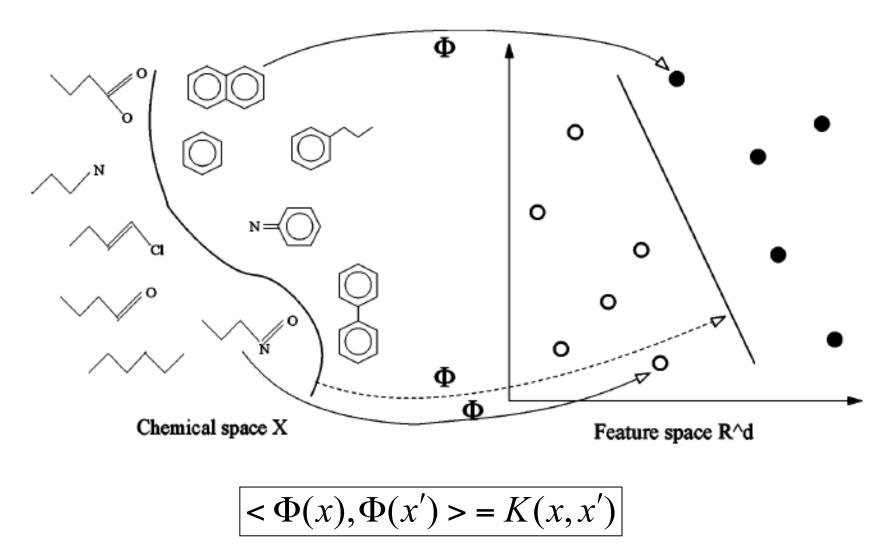
Graph Model Property

- Graph mining with special architectures of neural networks
- (Sub)Graph mining
- Graph kernels •
- Inductive learning programming
- Symmetry-invariant machine learning with local features
- **Energy-based learning**

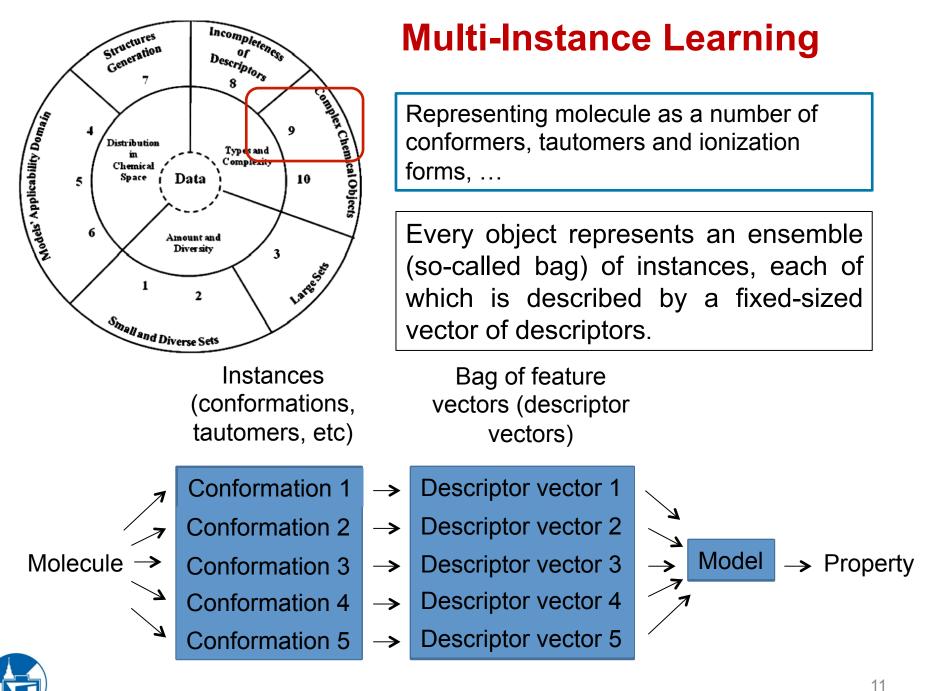
etc

- G.Bakir, T.Hofmann, B.Schoelkopf, A.J.Smola, B.Taskar, S.V.N.Vishwanathan. Predicting Structured Data; The MIT Press:Cambridge, MA, 2007. 9
- D.J.Cook, L.B.Holder. Mining Graph Data; Wiley-Interscience: Hoboken, NJ, 2007.

Machine Learning on Graph Kernels

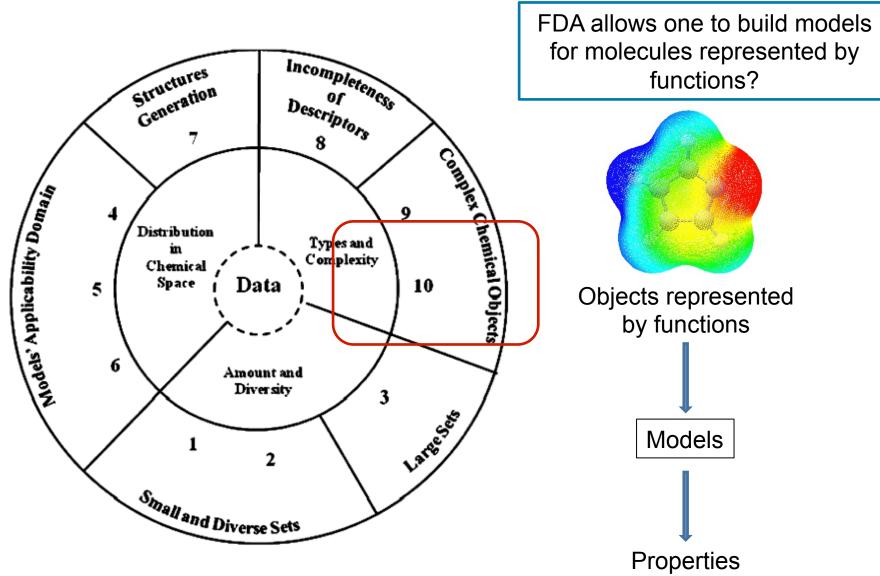


• M.Rupp, G.Schneider. *Mol. Inf.* **2010**, *29* (*4*), 266–273



T.G.Dietterich, R.H.Lathrop, T. Lozano-Pérez. Artif. Intell. 1997, 89 (1-2), 31-71

Functional Data Analysis



Ramsay, J. O.; Silverman, B. W. Functional Data Analysis. 2nd ed.; Springer: NY, USA, 2005

Continuous Molecular Fields (CMF)

Continuous Molecular Fields approach describes molecules by ensemble of continuous functions (*molecular fields*), instead of finite sets of molecular descriptors. CMF is kernel-based method.

traditional QSAR Activity =
$$F(X) = \sum c_i x_i$$

CMF Activity = $F[X(\mathbf{r})] = \int C(\mathbf{r})X(\mathbf{r})d\mathbf{r}$
Activity = $\int \int \int d\mathbf{r} d\mathbf{r}$

C(r)

X(r)

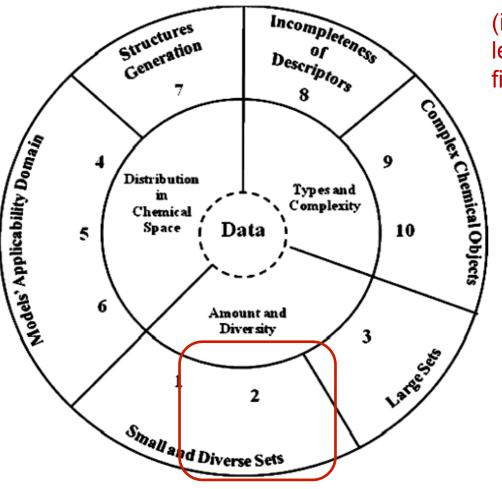
Calculated using special kernels for molecular fields

Gaussian functions approximation of molecular fields

http://sites.google.com/site/conmolfields/

I.I.Baskin, N.I. Zhokhova. J. Comput.-Aided Mol. Des. 2013, 27 (5), 427-442

Inductive Knowledge Transfer

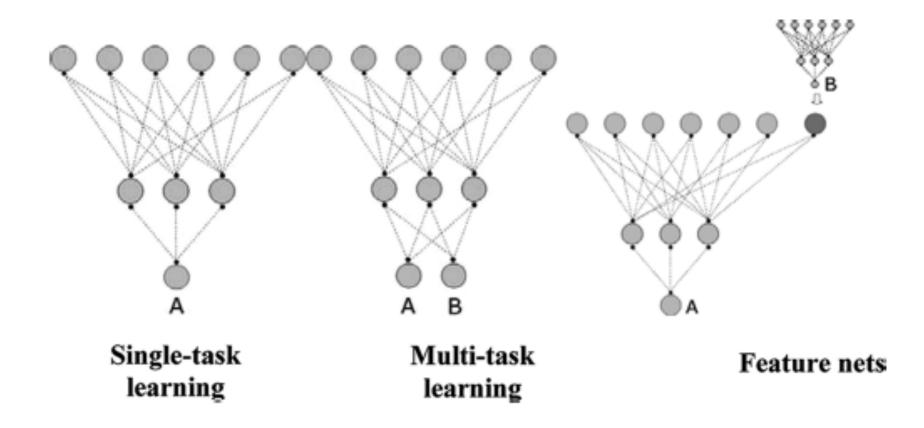


(inductive bias, lifelong learning, learning to learn, collaborative filtering, multi-task learning etc)

> Transfer of information from one model, usually trained on sufficiently large dataset, to another model trained on small dataset

•Learning to Learn; S.Thrun, L.Y.Pratt, Eds.; Kluwer Academic Publishers: Boston, MA, 1998

Interference of Models (Inductive Knowledge Transfer)



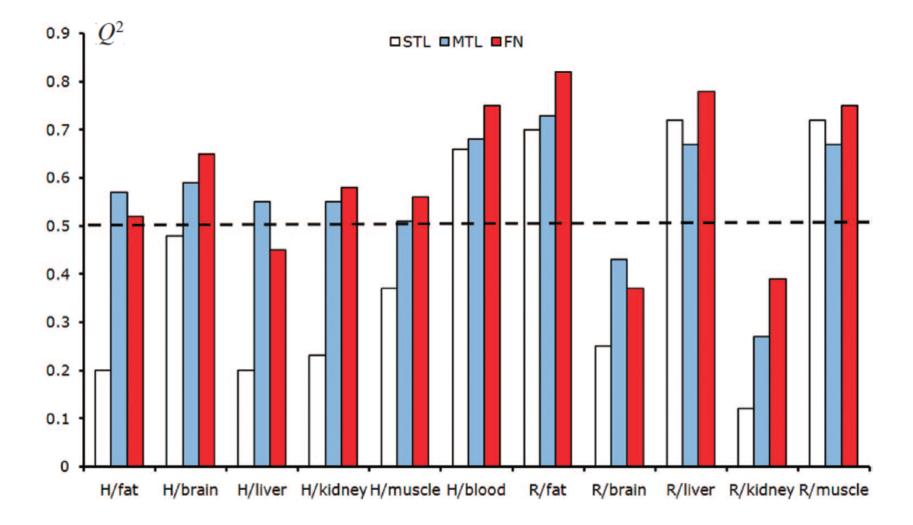
A.Varnek, C.Gaudin, G.Marcou, I.Baskin, A.K.Pandey, I.V.Tetko. J. Chem. Inf. Mod. 2009, 49 (1), 133-144.

Partition coefficients air-tissue

The blood:air partition coefficient (PC) is an important determinant of the distribution of volatile organic chemicals (VOCs).

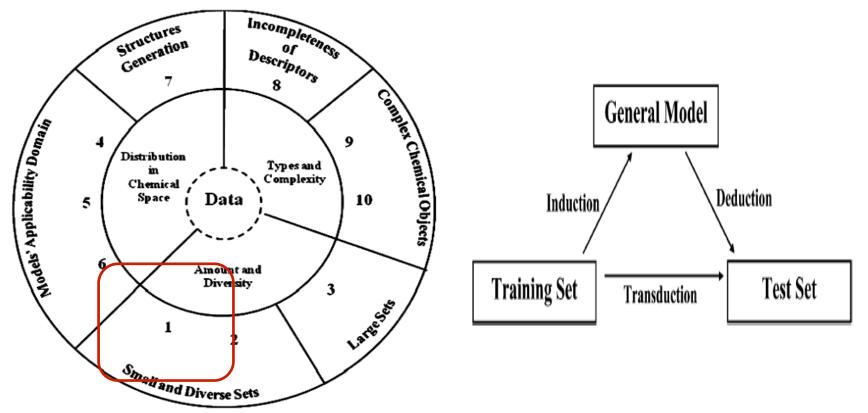
Human	Tissue blood fat brain liver muscle kidney	N 139 42 36 34 39 34	$ \begin{array}{ c c c c c c c } \hline R_1 & R_1 = Me, Et, Pr, iPr, \\ CH_2 = CH_2CH_3, CH_2 = CH_2, F, CI, Br \\ R_2, R_3 = H, Me, F \\ R_4 = H, Me, CH_2 = CH_2, F, CF_3 \\ R_5 = H, CH_2 = CH_2, CH_3, F \\ R_6 = H, CH_3, F, CI \end{array} $
Rat	fat brain liver muscle kidney	99 59 100 97 27	$\mathbf{R}_{1}^{\text{R1}} = \text{H,CN,CH} = \text{CH}_{2}$ $\mathbf{R}_{1}^{\text{R1}} = \text{H,CN,CH} = \text{CH}_{2}$ $\mathbf{R}_{1}^{\text{R1}} = \text{H,Me,OH}_{\text{R2}} = \text{Me,Pr,Bu,OH,SH}$

Inductive Knowledge Transfer (Modeling Tissue-Air Partition Coefficients)



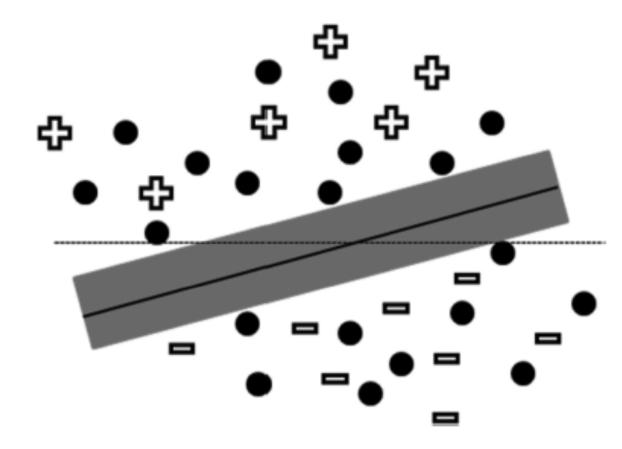
A.Varnek, C.Gaudin, G.Marcou, I.Baskin, A.K.Pandey, I.V.Tetko. *J. Chem. Inf. Mod.* **2009**, *49* (*1*), 133-144.

Transductive (Semi-Supervised) Machine Learning



Transductive modeling is used to build the models specifically oriented toward the best prediction performance on a particular test set instead of developing general models to be applied to any test set

Object Separation in SVM and TSVM

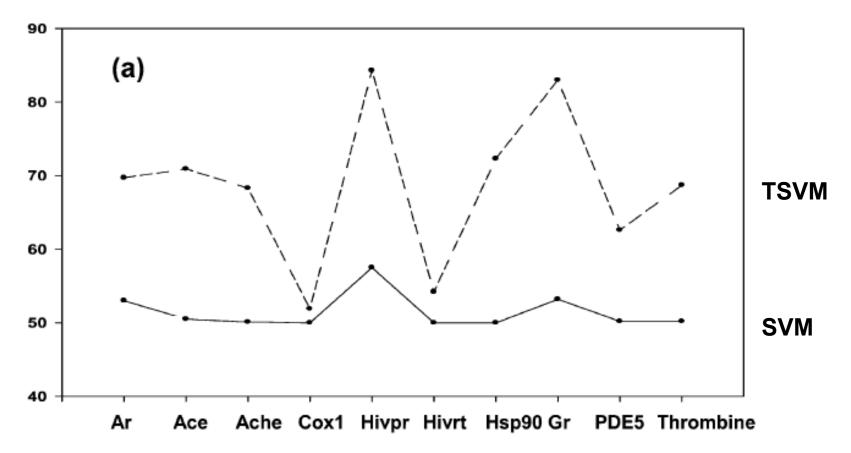


Labeled training set examples are depicted as signs and +,. Unlabeled test set examples are shown as bold dots.

T. Joachims, in International Conference on Machine Learning (ICML) (Ed: M. Kaufmann), 19 Bled, Slovenia, 1999, pp. 200–209.

Prediction Performance (Balanced Accuracy) of SVM vs TSVM Models

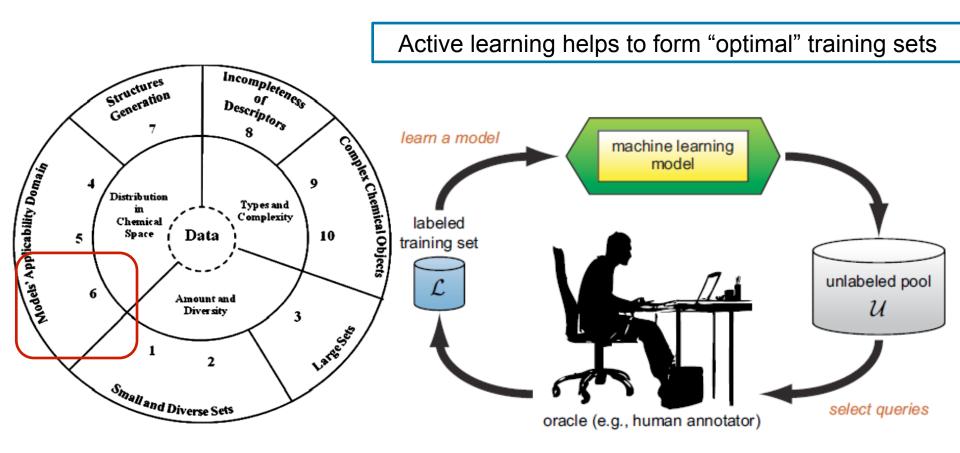
(Training sets consist of 5 active and 50 inactive compounds)



Transductive effect is the difference in prediction performance between transductive and inductive models

E.Kondratovich, I.I.Baskin, A.Varnek. Mol. Inf. 2013, 32 (3), 261-266

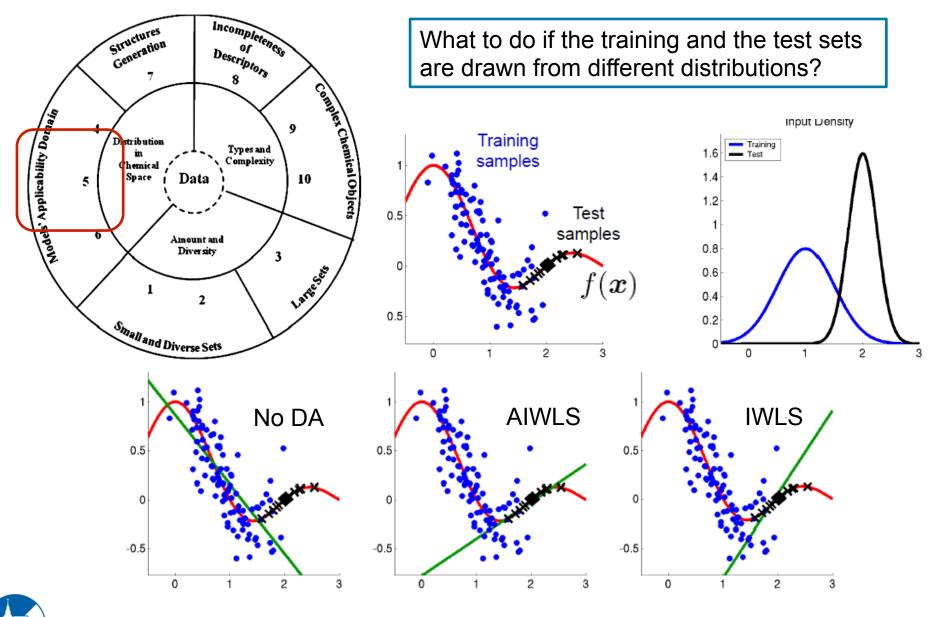
Active Learning



In each learning iteration, the most "useful" compound is selected from a pool, studied in experiment and added to the training set followed by model rebuilding

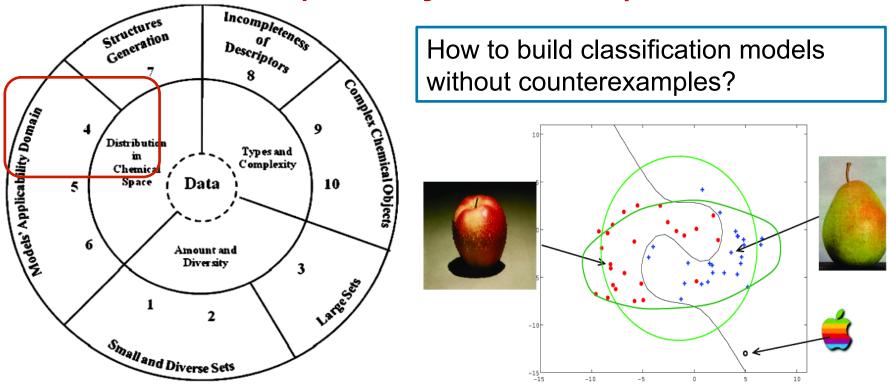
Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, University of Wisconsin– Madison. 2009 (<u>http://active-learning.net</u>) Y.Fujiwara, Y.Yamashita, T.Osada et al. *J. Chem. Inf. Model.* **2008**, *48* (*4*), 930–940

Domain Adaptation



M.Sugiyama, M.Krauledat, K.-R.Mueller. J. Mach. Learn. Res. 2007, 8, 985-1005.

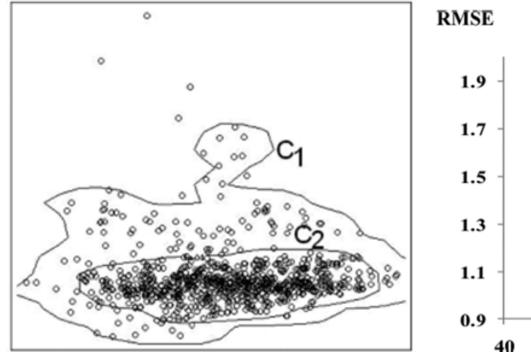
One-Class Classification (Novelty Detection)

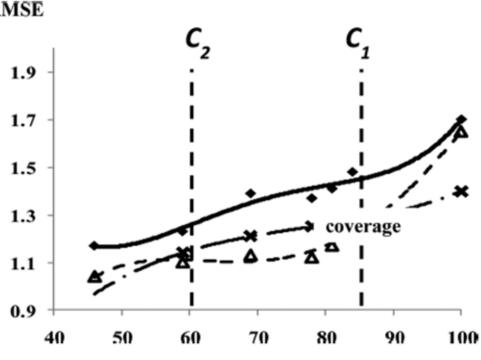


One-class classification (or novelty detection) methods allows one to build classification models without counterexamples. In contrast to conventional (two-class) classification, one-class classification tends to describe one single class of objects (*target class objects*), and distinguish it from all other objects (*outliers*).

D.M.J. Tax, Doctor Thesis, Technische Universiteit Delft, The Netherlands, **2001**

One-Class Classification (OCC) Approach to Defining Model Applicability Domain (AD)

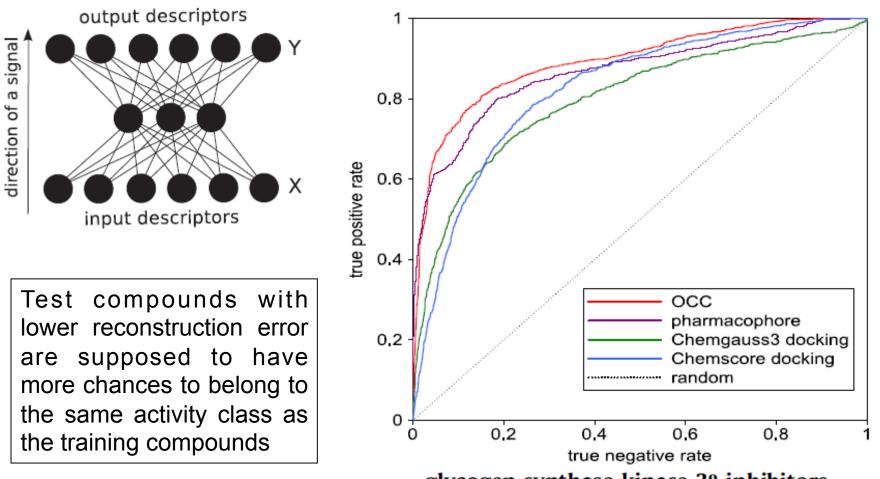




QSPR modeling of stability constants for of Ca²⁺, Sr²⁺ and Ba²⁺ with organic ligands

I.I.Baskin, N.Kireeva, A.Varnek. Mol. Inf. 2010, 29 (8-9), 581-587.

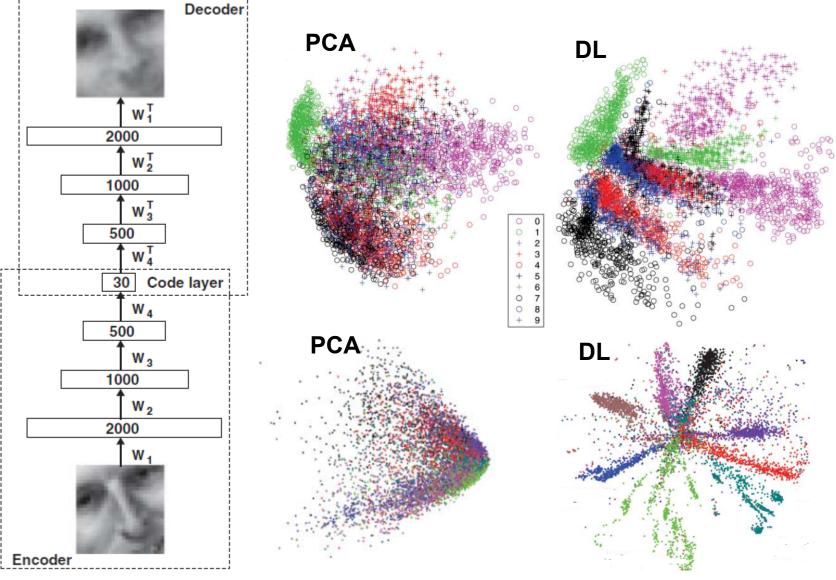
Virtual Screening Based on One-Class Classification Using Auto-Encoder Neural Network



glycogen synthase kinase 3β inhibitors

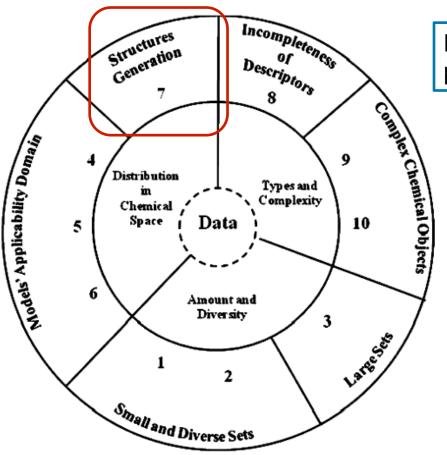
25

Deep Learning



- G.E.Hinton, R.R.Salakhutdinov, R. R. Science **2006**, *313* (5786), 504-507
- Y.Bengio. Foundations and Trends in Machine Learning 2009, 2 (1), 1-127

Inverse QSAR



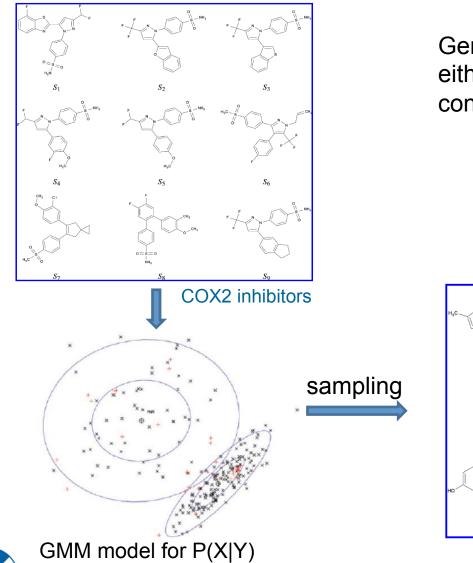
How to generate new chemical structures possessing desired properties?

- Structure generation with filtering through QSAR models
- Combinatorial stochastic optimization utilizing QSAR models
- Solving pre-image problem for kernel-based QSAR models
- Building generative models for graphs

- I.I.Baskin et al. Dokl. Akad. Nauk SSSR **1989**, 307 (3), 613–617
 - Churchwell et al. J. Mol. Graphics Modell. 2004, 22 (4), 263-273
 - W.Wong, F.A.Burkowski. J. Cheminf. 2009, 1 (1), 4.
 - D.White, R.C.Wilson. J. Chem. Inf. Model. 2010, 50 (7), 1257-1274

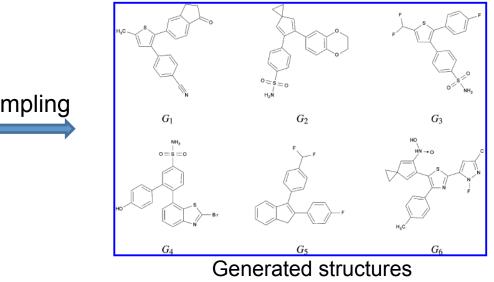
Generative Models for Chemical Graphs

Structures for training



Generative models are specified by either joint distribution P(X,Y) or conditional distribution P(X|Y)

 $\mathsf{P}(\mathsf{X}|\mathsf{Y}) = \mathsf{P}(\mathsf{X},\mathsf{Y}) / \mathsf{P}(\mathsf{Y})$



D.White, R.C.Wilson. J. Chem. Inf. Model. 2010, 50 (7), 1257-1274

CHEMICAL INFORMATION

Machine Learning Methods for Property Prediction in Chemoinformatics: *Quo Vadis*?

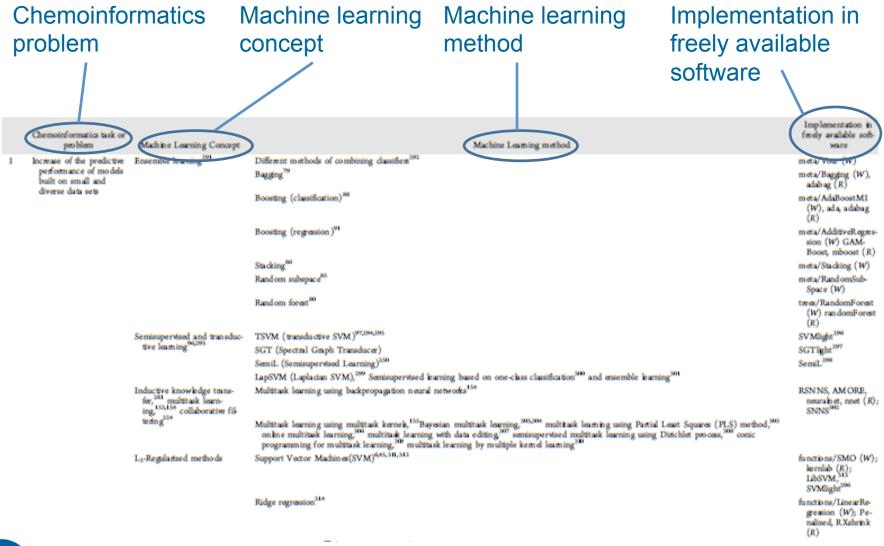
Alexandre Varnek*,† and Igor Baskin^{†,‡}

[†]Laboratoire d'Infochimie, UMR 7177 CNRS, Université de Strasbourg, 4, rue B. Pascal, Strasbourg 67000, France [‡]Department of Chemistry, Moscow State University, Moscow 119991, Russia

Review of existing mathematical approaches potentially useful but rarely or never used in chemoinformatics

A.Varnek, I. Baskin. J. Chem. Inf. Mod. 2012, 52 (6), 1413-1437

Chemoinformatics Tools and the Appropriate Machine Learning Concepts and Methods



A.Varnek, I. Baskin. J. Chem. Inf. Mod. 2012, 52 (6), 1413-1437

Acknowledgements

- Alexandre Varnek
- Gilles Marcou
- Dragos Horvath
- Nathalie Kireeva
- Nelly Zhokhova
- Pavel Karpov
- Dmitry Osolodkin

Strasbourg University

Lomonosov Moscow State University

Helmholtz Zentrum München

