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In order to identify the structural reaction patterns describing different sub-types of reactions, 
partial derivative QSPR technology 3 and Condensed Graph of Reaction approach have been 
applied. 
 
One can distinguish different types of Michael β-addition reactions, which proceed under different 
combinations of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brønsted acid, 
Lewis acid, Lewis base, “no catalyst”). The question arises: which reaction conditions – particular 
solvent and catalyst – are the most favorable to carry out a given reaction? To answer this 
question, a number of 2-classes classification models have been built on a set of 198 Michael 
reactions retrieved from literature. Different machine-learning methods (SVM, Naïve Bayes and 
Random Forest) in combination with different types of descriptors (ISIDA fragments1 issued from 
Condensed Graphs of Reactions2, MOLMAP3, EED, CDK4) have been used. Obtained models 
have a reasonable predictive performance in 3 times 3-fold cross-validation: Balance Accuracy 
varies from 0.7 to 1. 
 
In order to identify the structural reaction patterns describing different sub-types of reactions, 
partial derivative QSPR technology 3 and Condensed Graph of Reaction approach have been 
applied.  

 
Figure 1. Michael β-addition reaction: optimal reaction conditions (solvent, catalyst) depend on nucleophile type (N or S) and the 
substituents R1, R2, R3 and R4.  
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