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In order to identify the structural reaction patterns describing different sub-types of reactions,
partial derivative QSPR technology 3 and Condensed Graph of Reaction approach have been
applied.

One can distinguish different types of Michael B-addition reactions, which proceed under different
combinations of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brgnsted acid,
Lewis acid, Lewis base, “no catalyst”). The question arises: which reaction conditions — particular
solvent and catalyst — are the most favorable to carry out a given reaction? To answer this
guestion, a number of 2-classes classification models have been built on a set of 198 Michael
reactions retrieved from literature. Different machine-learning methods (SVM, Naive Bayes and
Random Forest) in combination with different types of descriptors (ISIDA fragments® issued from
Condensed Graphs of Reactions?, MOLMAP®, EED, CDK") have been used. Obtained models
have a reasonable predictive performance in 3 times 3-fold cross-validation: Balance Accuracy
varies from 0.7 to 1.

In order to identify the structural reaction patterns describing different sub-types of reactions,
partial derivative QSPR technology * and Condensed Graph of Reaction approach have been
applied.
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Figure 1. Michael B-addition reaction: optimal reaction conditions (solvent, catalyst) depend on nucleophile type (N or S) and the
substituents R1, R2, R3 and R4.

[1] A. Varnek, D. Fourches, D. Horvath, O. Klimchuk, C. Gaudin, P. Vayer, V. Solov'ev, F. Hoonakker, 1. V.
Tetko, G. Marcou Current Computer-Aided Drug Design, 2008, 4 (3), 191-198.

[2] A. Varnek In: "Chemoinformatics and Computational Chemical Biology", J. Bajorath, Ed., Springer, 2010
[3] Q.-Y. Zhang, J. Aires-de-Sousa, J. Chem. Inf. Model., 2005, 45(6), 1775-1783.

[4] CDK Descriptor Calculator, version 1.1.1. http://cdk.sourceforge.net/ . Steinbeck, C.; Hoppe, C.; Kuhn, S.;
Floris, M.; Guha, R.; Willighagen, E. L., Curr. Pharm. Des., 2006, 12, 2111.

[5] G. Marcou, D. Horvath, V. Solov'ev, A. Arrault, P. Vayer, A. Varnek, Mol. Informatics, 2012, 31(9), 639—
642


http://www.dq.fct.unl.pt/
http://www.fct.unl.pt/
http://www.unl.pt/

	Program
	Monday 23 June
	Tuesday 24 June
	Wednesday 25 June
	Thursday 26 June
	Friday 27 June
	[L7] The use of biological descriptors of chemical compounds to enrich traditional cheminformatics applications
	Alexander Tropsha
	University of North Carolina, Chapel-Hill, USA
	Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, D - 97074 Würzburg
	[P50] Development of an universal workflow for the preparation of molecular databases for Virtual Screening
	KNIME
	Introduction
	Starting with MATLAB and MALSAR
	Install MATLAB
	MALSAR

	Dataset
	Exercise 0: Introduction to the MATLAB system
	Exercise 1: Single task learning
	Exercise 2: Multi-task learning introducing sparcity
	Exercise 3: Optimizing one parameter
	Exercise 4: The L21 algorithm
	Exercise 5: Interactions between tasks
	Conclusions

	Bibliography
	1. Introduction: aim and context
	2. Material: query and searched database
	3. Methods
	VolSite and Shaper
	ROCS

	4. Programs and input data
	5. Exercise 1: Binding site comparison
	6. Exercise 2: Ligand shape analysis
	7. Conclusions
	Bibliography




