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       Generative Topographic Mapping (GTM) is a dimensionality reduction method, and the 
probabilistic counterpart of Kohonen maps. Each i-th molecule in N-dimensional initial space is 
projected into the k-th node of 2D latent space with a probability Rik. so that each compound is 
represented both by a mean position (a point) on a 2D map, and a probability distribution Ri, which 
may be used for predictions of activity (property) of new compounds.  
Here, we suggest several different GTM-based definitions of applicability domain (AD) of both 
regression and classification models. This concerns the approaches involving: (i) a likelihood 
threshold, (ii) relative population of nodes, (iii) class entropy, and, (iv) ratio of classes’ probabilities. 
These approaches are demonstrated for regression models for stability constants of ligand-metal 
complexes, and GTM-based classification models [1] for Biopharmaceutics Drug Disposition 
Classification System (BDDCS) [2] and inhibitors of P-glycoprotein 1 (Pgp), an ATP-dependent 
efflux pump. 

 

  

             CPF = 1, BA=  0.84 , coverage = 100 % 
 

          CPF = 4, BA= 0.90, coverage = 78 % 

Figure 1. Graphical interpretation of the applicability domain for GTM classification models. On the map 
prepared for the entire set of 1568 molecules of inhibitors (dark grey) and non inhibitors (light grey) of P-
glycoprotein 1, the color stands for the class having the highest probability compared to the other in a given 
node. Black points correspond to incorrectly classified molecules. The increase the class prevalence factor 
(CPF = Probability of major class / Probability of another class) from CPF=1 (left) to 4 (right) results in 
shrinking the AD area. This leads to the decrease of the number of molecules inside AD (coverage), on one 
hand, and to the increase of the model’s performance (Balance Accuracy, BA), on the other hand. 
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