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High-throughput assays challenge us to extract knowledge from multi- ligand, multi-target 
activity data. In QSAR, weights are statically fitted to each ligand descriptor with respect to a 
single endpoint or target. However, computational chemogenomics (CG) has demonstrated 
benefits of learning from entire grids of data at once, rather than building target-specific QSARs. A 
possible reason for this is the emergence of inductive knowledge transfer (IT) between targets, 
pro- viding statistical robustness to the model, with no assumption about the structure of the 
targets. Relevant protein descriptors in CG might allow to learn how to dynamically adjust ligand 
attribute weights with respect to protein structure. Hence, models built through explicit learning by 
including protein information (EL), while benefitting from IT enhancement, should provide 
additional predictive capability, notably for protein deorphanization.  

This interplay between IT and EL in CG modeling is not sufficiently studied. While IT is likely 
to occur irrespective of the injected target information, it is not clear whether and when boosting 
due to EL may occur. EL is only possible if protein description is appropriate to the target set 
under investigation. The key issue here is the search for evidence of genuine EL exceeding 
expectations based on pure IT.  

We explore the problem in the context of Support Vector Regression, using >9400 pKi values 
of 31 GPCRs, where compound-protein interactions are represented by the concatenation of 
vectorial descriptions of compounds and proteins. This provides a unified framework to generate 
both IT-enhanced and potentially EL-enabled models, where the difference is toggled by supplied 
protein information. For EL-enabled models, protein information includes genuine protein 
descriptors such as sequence counts. EL- and IT-based methods were benchmarked alongside 
classical QSAR, with respect to cross-validation and deorphanization challenges.  

While EL-enabled strategies outperform classical QSARs and favorably compare to similar 
published results, they are, in all respects evaluated, not strongly distinguished from IT-enhanced 
models. Moreover, EL-enabled strategies failed to prove superior in deorphanization challenges.  

Therefore, this paper argues that, contrarily to common belief and intuitive expectation, the 
benefits of chemogenomics models over classical QSAR are actually less due to the injection of 
protein-related information, but rather the effect of inductive transfer, due to simultaneous 
learning from all the modeled endpoints. These results show that the field of protein descriptor 
research needs further improvements to realize the expected benefit of EL.  
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