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'The problems of how enzymes are induced, 

or how proteins are synthesized, or how 

antibodies are formed, are closer to solution 

than is generally believed... If you stop doing 

experiments for a little while and think how 

  

  

proteins can possibly be synthesized, there 

are only 5 different ways, not 50!  And it will 

take only a few experiments to distinguish 

these' 

L. Szilard 

Experiment-Assisted Computational 

Drug Discovery? Shouldn’t it be the 

other way around? 



OUTLINE 

• Methodology 

– Predictive QSAR Modeling Workflow 

– Examples of the Workflow applications : virtual 

screening and hit/lead identification 

• Emerging Areas 
– Integration of QSAR modeling with other knowledge mining 

approaches 

– QSAR modeling using hybrid chemical/biological descriptors 

• Conclusions  

– models are tools for testable hypothesis generation  

focus on accurate, experimentally confirmed predictions 



~106 – 109 

molecules 

VIRTUAL  

SCREENING 

CHEMICAL 

STRUCTURES 

 CHEMICAL 
 DESCRIPTORS 

 PROPERTY/ 

 ACTIVITY 

PREDICTIVE 

QSAR MODELS 

INACTIVES 

(inactives) 

QSAR 

MAGIC 

 HITS 

(confirmed 

actives) 

CHEMICAL 

DATABASE 

The chief utility of QSAR models: identification  

of novel hits in external libraries 



 

Original  

Dataset 

 Multiple 

Training 

Sets 

Multiple 

Test 

Sets 

Y-randomization 

Combi-QSAR 

Modeling 

Activity 

Prediction 

 

Only accept 

models that 

passed both 

internal and 

external 

accuracy 

filters 

External validation 

Using Applicability 

Domain 

 

Split into 

Training, Test 

and External 

Validation 

sets 

 

Experimental 

Validation 

Database 

Screening Using 

Applicability 

Domain 

Validated Predictive 

Models with High 

Internal & External 

Accuracy 

Tropsha, A. Best Practices for QSAR Model Development…Mol. Inf., 2010, 29, 

476 – 488 

*Fully implemented on CHEMBENCH.MML.UNC.EDU 

Predictive QSAR Modeling 

Workflow* 

Structure 

Curation/ 

Harmonization 



How not to develop QSAR* 

(examples of errors) 
1. Failure to take account of data 

heterogeneity  

2. Use of inappropriate endpoint data  

3. Use of collinear descriptors  

4. Use of incomprehensible descriptors 

5. Error in descriptor values  

6. Poor transferability of QSAR/QSPR  

7. Inadequate/undefined applicability 

domain  

8. Unacknowledged omission of data 

points  

9. Use of inadequate data  

10. Replication of compounds in dataset  

11. Too narrow a range of endpoint values  

12. Over-fitting of data  

13. Use of excessive numbers of 

descriptors in a QSAR/QSPR  

14. Lack of/inadequate statistics  

15. Incorrect calculation  

16. Lack of descriptor auto-scaling  

17. Misuse/misinterpretation of statistics  

18. No consideration of distribution of 

residuals  

19. Inadequate training/test set selection  

20. Failure to validate a QSAR/QSPR 

correctly  

21. Lack of mechanistic interpretation  

 

*Dearden et al., SAR QSAR Environ Res. 2009;20(3-4):241-66 



Cheminformaticians are at the mercy of data providers;  

Both chemical and biological data in databases are often 

inaccurately reported  

 

Prediction performance of (Q)SAR models depends strongly 

on the quality of input data (both structures and activities). 

 

 

Both chemical and biologicaal data must be curated  to 

enable their effective use. 

 

 

Data dependency and data quality 

are critical issues in QSAR modeling 

Florian Prinz, Thomas Schlange and Khusru Asadullah. Nature Rev. Drug 

Disc. Sep 2011  



Data dependency and data quality 

are critical issues in QSAR modeling 

Cheminformaticians are at the mercy of data providers with 

respect to data quality. 

 

Both chemical and biological data in a dataset may be inaccurate 

and in need of thorough curation 

 

The number of published QSAR models that were  poor or not too 

successful due to data quality issue is unknown but possibly large 

 - error rates range from 0.1 to 10 % 

 - small structural errors could lead to significant loss of 

 predictive power 

 

Often considered trivial, the basic steps to curate a dataset of 

compounds are not so obvious especially for beginners.  



242 chemical records / one binary activity 

Looks clean … 



Looks clean … but … 
Calculation of Dragon molecular descriptors 

All compounds are in fact incorrect 

(presence of inorganics, salts, 

organometallics, duplicates; certain 

hydrogens are lacking; wrong 

standardization; etc.) http://chembench.mml.unc.edu 
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QSAR modeling with non-curated datasets 
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Etc. 

ERRORS in the calculation 

of DESCRIPTORS 



INITIAL LIST OF SMILES/STRUCTURES 

(2D representation) 

difficult cases 

Fourches, 

Muratov, 

Tropsha. Trust 

but verify. 

JCIM, 2010, 

50:1189-204. 



QSAR modeling of nitro-aromatic 

toxicants  

-Case Study 1: 28 compounds tested in rats, 

log(LD50), mmol/kg. 

-Case Study 2: 95 compounds tested against 

Tetrahymena pyriformis, log(IGC50), mmol/ml. 

-Case Study 2: after the normalization of nitro groups R2
ext~0 increased to R2

ext~0.5 

Artemenko, Muratov et al. J. SAR QSAR 2011, 22 (5-6), 1-27. 

- Five different representations of nitro groups.  
-Case Study 1:  after the normalization of nitro groups 

R2
ext~0.45 increased to R2

ext~0.9. 

Even small differences in structure representation can 

lead to significant errors in prediction accuracy of 

models 

Data curation affects the accuracy  

(up or down!) of QSAR models 



Was wrong In ChEMBL, 

now corrected 

Correct 

J. Med. Chem. 2006, 49: 2758-2771. 

Possible Source of Errors:  

inaccurate extraction from literature 



           

Case study 1: 5-HT7 Receptor 

binders 

 A member of the GPCR 

superfamily of cell surface 

receptors. 
 

 Involved in various 

cognitive and behavioral 

functions. 
 

 A potential drug target for 

psychotic disorders such as 

schizophrenia and major 

depression. 

15 

* Basic and clinical pharmacology, 8th edition.2001:265–291 



           

Study Design 

16 

Curated  

5-HT7 Data* 

Continuous kNN 

Model (62 cpds) 

DWD Classification 

Model (100 cpds) 

* Data were collected from PDSP database provided by Prof. Roth’s lab. 
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Binding Affinity (pKi) 

Binding Affinity distribution 

World Drug Index 

(~52,000 cpds) 

VS Hits 
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Virtual Screening Workflow to  

identify and confirm 5HT7 binders 

• ~52000 Database: World Drug 
Index (WDI). 

• Classification filter DWD Classification 

Continuous kNN 
Models 

Experimental 
Validation 

5 

• Predicted pKi - 7.98~8.52 

• 7 consensus hits tested 

• 5 consensus hits confirmed 
experimentally . 

• Predicted pKi≥7.8 

• 43 hits prioritized 

17 



           

Experimental Validation*: 5 out of 7 Tested 

Hits Are confirmed 5-HT7 Binders 

Name 
Predict 

Ki(nM) 
Ki 

(nM)   
Function Therapeutic Category Mechanism of action 

Droperidol 3.24 3.5 Antagonist 
Butyrophenone antiemetic 

and antipsychotic agent 

Ligand of postsynaptic GABA and 

dopaminergic receptors; selectively 

blocks α-adrenergic receptors. 

Perospirone 7.08 8.6 Antagonist 
Atypical  

antipsychotic agent 

Antagonist of 5-HT2A and dopamine 

D2 receptors 

Altanserin 3.39 143.0 N/A 
Used in Human 

neuroimaging study 
Strong 5-HT2A ligand 

Pravadoline 9.55 3184.0 N/A 
Cannabinoid  

analgesic agent 
Inhibit cyclooxygenase (COX) 

Clomipramine 13.80 46.0 N/A 
Tricyclic antidepressant; 
antiobsessional agent 

Presynaptic receptors are affected: 

α1 and β1 are sensitized, α2 are 
desensitized 

Clazolam 6.46 >10000 N/A N/A N/A 

Sulazepam 14.13 >10000 N/A 
Sedative and anxiolytic 

agent 
N/A 

18 

*data from B. Roth’s lab. 



Fenfluramine 

Norfenfluramine 

Carbergoline 
Pergolide 

Lisuride 

5-HT2B 

Src-P 
PKC ERK1/2 

RB-P 

Proliferation 

PLC-β 
DAG 

TGF-β 

βArr 

EC space 

IC space 
GTP 

Gβy 

Gαq 

Left atrium Left atrium 

Left ventricle Left ventricle 

Mitral valve Mitral valve 

Cordae 
tendineae 

Cordae 
tendineae 

Case study 2: 5-HT2B-
receptor binders  

Roth, B.L. N ENGL J MED, 356;1 (2007)  

? 

 
Possible Explanation of cardiotoxicity: 
 
 Activation of 5-HT2B receptors leads to  
   the dissociation of the G protein 

 
 Activation of phospho lipase C-β (PLC-β) 

 
 Activation of Src 

 
 Activation of ERK1/ERK2 

 
 Phosphorylation of retinoblastoma protein  
 
 
  
 
 
 
 
 
 

mitogenesis 

Overgrowth valvulopathy and 
subsequent valvular dysfunction. 

19 



5-HT2B 

predictor 

 Experimental Testing 

122 
VS Hits 

Select for Testing 

59 K  
cps. 

5-HT2B models and VS results 

10 VS 
Hits 

 
9 Validated 

Actives 
 

Model statistics 

608 Inactives (0) 

800 cps. 

146 Actives (1) 

Dataset Virtual screening 

Source: Roth lab, UNC 

Dataset curation 

Huang, X., et al. Molecular Pharmacology (2009) 

Hajjo R. et al, J Med Chem. 2010 11;53(21):7573-86 



Compound 
Experimental 

Ki (nM) 

Methylergometrine 0.8 

6-Fluoromelatonin 2495 

Adrenoglumerulotropin 491 

CGP-13698 >10000 

PIM-35 1617 

Fendiline 3217 

Fluspirilene 151.4 

PNU-96415E 69.6 

Prestwick-559 33.1 

Raloxifene 69 

Success rate for active vs. inactive  
models = 90 % 

Results of VS and radioligand  
binding assays 

Tc 
WDI 

Compounds 
122 VS 

Hits 
10 Tested 

Hits 
≥ 0.9 286 2 2 
≥ 0.8 1341 4 3 
≥ 0.7 7048 13 8 
≥ 0.6 21431 38 9 
≥ 0.5 36719 81 9 
≥ 0.4 44208 115 10 
≥ 0.3 45860 122 10 
≥ 0.2 46220 122 10 
≥ 0.1 46301 122 10 
≥ 0.0 46406 122 10 

Can we identify these same hits 
 with simple similarity searches?? 

Tanimoto coefficients (Tc) & 166 MACCS 
structural keys were used for similarity 
calculations Tested by collaborators at PDSP. 



 

QSAR 

Models 

Receptor 2 

 

Case study 3: QSAR-based virtual receptoromics 

(QSAR-omics) 

Virtual Receptorome  

(of receptor subtypes or families) 

Predicting Pharmacological Profiles  

ca. 106 – 109 

molecules 

 

QSAR 

Models 

Receptor 1 

 

 

QSAR 

Models 

Receptor 3 

 



           

Degree of  

sparsity = 93.25% 

# of tested ligands  

per receptor: >100 

34 Receptors 
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GPCRome Data Matrix: filling the gaps 



           

Issues Source Before curation After curation 

Organometallics ChEMBL Deleted 

Organosilicon PDSP Deleted 

Salts PDSP 

Tautomers ChEMBL PDSP 

Examples of structure curation 



           

Prazosin 

Targets 5-HT2A α-1A D2 

Standard 

Deviation 
2.80 0.63 0.4 

Assay records 

(pKi) 

5.15 

5.45 

 

10.15 

9.16 

10.22 

8.74 

8.14 

9.29 

9.23 

9.23 

7.24 

7.51 

7.84 

7.97 

7.02 

Biological Data Curation 



           
Different cutoff values were used to balance  

the ratio of actives and inactives. 
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34 Datasets: Distribution of  

Actives and Inactives 
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33 out of 34 models have 5-fold external CV cumulative  

balanced accuracy > 0.7 

External Prediction Accuracy 
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# of interacting targets 

• Most compounds are predicted to bind several GPCRs. 

Binding Promiscuity 



           

 

• 148 compounds were identified to 

bind one or two GPCRs. 

 55 selective 

 93 dual selective 

 

• These compounds are selected for 

further experimental investigation in B. 

Roth lab. 

   predicted non-binder 

   experimental non-binder 

   predicted binder 

   experimental binder 

34 Receptors 
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Selective Ligands 



Case study 4: Chemocentric Integrative 

Informatics?  Application to 5HT6 lihgands 

30 
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PubChem 

DBpedia 

ChEMBL 

PDB 

DrugBank 

PubMed 

STITCH 

PDSP 

STITCH 

PDD 

CTD 

Diseasome 

CMAP 

KEGG 

STITCH 

CTD 

GeneID 

OMIM 

Entrez 

Gene 

Pfam 

UniProt 

CAS 

CTD 

KEGG 

ERGO 

BioCyc 

MetaCyc 

CMAP 

miR2Dis

-ease 

miRBase 

TarBase 

PuTmiR 

HMDB 

METLIN 

METLIN 

HMDB 

UCbase 

miRfunc 

PubMed 

CTD 

HMPDb 



Disease 
gene 

signatures 

Disease  
related 

genes or 
proteins 

Text/database 
mining 

Network mining 

PubMed/ 
Chemotext 

CTD 

HMDB 

Disease 
related 

proteins 

cmap 
ChemoText 

New hypothesis about connectivity between 
chemicals and diseases 

Binding 
data 

Target 
related 
ligands 

Functional  
data 

QSAR 

Predictive models 

Database mining 

Structural hypothesis 
“putative drug candidates” 

Accept common 

 hits only 

New testable hypothesis 
with higher confidence 

Disease-Target 
Association 

32 Hajjo et al, Chemocentric Informatics Approach  

to Drug Discovery:…J Med Chem. 2012, in press  



5-HT6 

predictor 

300 VS Hits 
“Actives” 

59 K cps. 

5-HT6 receptor QSAR models & 
QSAR-based VS 

Model statistics 

94 Inactives  
Ki ≥ 10 µM 

 196 cps. 

 102 Actives  
Ki < 10 µM 

Dataset Virtual screening 

Source: PDSP Ki-DB 
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Step3 : list of correlated 
compounds 

Step2: query the cmap 

Database 

The connectivity map 

Step1: upload signature 

Output 

High correlation  

Low correlation 

Null 

Biological state 1 

Control 

Signature 

Input 

34 
Lamb, J. et al. Science, 313, 1929-1935 (2006) 

Lamb, J. Nature 7, 54-60 (2007) 
 



 Querying the cmap 

cmap 

1.00 

0.00 

0.00 

-1.00 

cmap SCORE 

Upload signature Query the cmap List of compounds 

(S1)  (S2)  

S1: Hata, R. et al., Biochem. Biophys. Res. Commun 284, 310 (2001). 
S2: Ricciarelli, R. et al., IUBMB Life 56, 349 (2004). 

Alzheimer’s disease  
gene signatures 

35 



97 COMMON HITS with S1 

106 COMMON HITS with S2 

Chemocentric 

Informatics  

QSAR 

FILTER 

Further 

selection 

34 Higher  

Confidence Hits 

CONSENSUS 

HYPOTHESES 
300 5-HT6 

Active HITS 

WDI 

DATABASE 

73 COMMON HITS with S1 & S2 

cmap 

FILTER 

cmap 

DATABASE 

881 instances with S1 

861 instances with S2 

59 K 

compounds 

6.1 K  

Individual 

instances 

36 

Antipsychotics 
Antidepressants 
Calcium Channel Blockers 
Selective Estrogen Receptor  

Modulators (SERMs) 



SERMs predicted as 5-HT6  
receptor ligands 

37 



Raloxifene identified as a 5-HT6 receptor ligand  
and potential preventative for Alzheimer’s disease  
 

 Raloxifene binds to 5-HT6 

receptor with a Ki= 750 nM. 

 

 Raloxifene given at a dose of 

120 mg/day led to reduced risk 

of cognitive impairment in post-

menopausal women.  

Yaffe, K. et al., Am J Psychiatry, 162, 

683–690 (2005). 

 

 A newly funded study by NIH is 

ongoing to evaluate its effects 

in AD patients.  

 

Competition binding at 5-HT6  receptors for 

raloxifene (yellow triangle) and chlorpromazine 

(square) versus [3H] LSD. Tested by our 

collaborators at PDSP. 

38 

  
http://www.nia.nih.gov/alzheimers/public
ations/adprevented/ 

 

Raloxifene 

Chlorpromazine 



Human Effects 

Cheminformatics 

Exploration and exploitation of diverse 

data streams 

Bioinformatics 
Multiple 

biological 
assays 

Inherent 
chemical 
properties 

Integrate cheminformatics and short term assay 

data to improve predictive power and interpretability 



In Vitro 

Assays 

Chemical 

Descriptors 

In vitro data alone cannot explain in vitro 

effects 

Thomas R., et al. A Comprehensive Statistical Analysis of Predicting In Vivo Hazard Using High-Throughput In Vitro  

Screening. Toxicol Sci. 2012 May 31. [Epub ahead of print] 



Emerging approaches combining 

cheminformatics and short-term assays: 
The Use of Biological Screening Data as Additional 

Biological Descriptors Improves the Prediction 

Accuracy of Conventional QSAR Models of 

Chemical Toxicity  

-    Zhu, H., Rusyn I, Richard A, Tropsha A. Use of cell viability assay data improves the prediction accuracy of 

conventional quantitative structure-activity relationship models of animal carcinogenicity. EHP, 2008, (116): 506-

513 

-    Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, Tropsha A. Use of in vitro HTS-derived concentration-

response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. EHP, 2011, 

119(3):364-70. 

- Low et al., Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res 

Toxicol. 2011 Aug 15;24(8):1251-62  

-  Rusyn et al, Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures 

and short-term toxicity assay data. Tox. Sci., 2012, 127(1):1-9 



Biological 
model 

Combined 
matrix of 
features 

QSAR 
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model 

Consensus 
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 Rusyn et al,. Tox. Sci., 2012 127(1):1-9 

Approaches to Hybrid QSAR Modeling 



Case study 5. In vitro dose-response data 

improve the predictive power of QSAR 

models of in vivo toxicity (rat LD50 ) 

 
 
•1408 substances  
•382 chemical structure descriptors (Dragon v5.5) 
• 13 in vitro NCGC cell viability assays * : 

 qHTS (quantitative HTS) data 

 14 test concentrations: 0.6nm .. 92.2μm 
 
May yield up to 13x14 = 182 in vitro qHTS descriptors, but 
the issue of data noise becomes important. 
 

*Inglese J., Douglas S. A. et al. PNAS, 2006, v103(31), p11473 



Modeling Workflow 



QSAR Table – qHTS descriptors 

ID Name Structure 
3T3 

9.2mkM 

3T3 

21mkM 
… 

SHSY 

92mkM 

1 Acrolein 0 0 … -92 

2 
2-Amino-4-
nitrophenol 

 

 

 

 

 

0 -22 … 0 

... ... … … … … … 

369 
Tebuco-
nazole 

 

 

 

 

 

 

 

-21 -24 … -18 

Descriptor #:      1            2           …    182 



SMOOTHING CONCENTRATION-
RESPONSE CURVES. 

Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, Tropsha A. EHP, 2011, 119(3):364-70 



Smoothing the concentration-

response data improves the 

prediction accuracy of hybrid models. 

% 

Chemical 

descriptors 

only 

Hybrid 

descriptors 

(Original) 

Hybrid 

descriptors 

(THR=15%) 

Sensitivity 68±8 63±9 76±5 

Specificity 85±4 86±4 87±2 

CCR 76 ±5 * 74 ±5 82 ±3 

Sensitivity 74±9 66±8 77±10 

Specificity 82±7 87±4 86±3 

CCR 78 ±4 * 77 ±5 82 ±5 

Shown are averaged results of five-fold external validation. *Chemical descriptors only models were significantly different 
(p < 0.05) from all other models of the corresponding group by the permutation test (10,000 times). 

kNN  
models 

Random 
Forest  (RF) 
models 



Hybrid QSAR models have higher 

predictive power than commercial 

software TOPKAT  

% TOPKAT 

Chemical 

descriptors only 

Hybrid 

descriptors 

(Original) 

Hybrid descriptors 

(THR=15%) 

kNN RF kNN RF kNN RF 

Sensitivity 0.45 0.73 0.73 0.55 0.82 0.91 0.91 

Specificity 0.93 0.78 0.80 0.85 0.78 0.85 0.83 

CCR 0.69 * 0.75 0.77 0.70 0.80 0.88 0.87 

Results are shown  for 52 compounds in our external validation sets, which were also absent in 
the TOPKAT training set.  
*TOPKAT model was significantly different (p < 0.05) from all other models by the permutation 
test (10,000 times). 



Conclusions and Outlook 

• Methodology 

– data curation is critical (NB: QSAR models could be used to 
spot and correct erroneous data!) 

– Rigorous external model validation is mandatory and should 
precede any mechanistic interpretation 

– Consensus (collaborative!) prediction using all acceptable 
models affords the highest accuracy and chemical space 
coverage 

– Novel chemical descriptors for (so far) uncommon 
substances (mixtures, materials, nanomaterials) 

 

– outcome: decision support tools for prioritizing compounds 
for experimental  screening and/or regulatory decision 
making 

 

 

 



Conclusions and Outlook 
 

• Emerging trends in QSAR modeling 

– Rapid accumulation of large biomolecular datasets 
(especially, in public domain) 

– Non-traditional sources of datasets (text mining of 
biomedical literature, patents, EMRs, …) 

– Extension of QSAR modeling beyond organic molecules 
(mixtures, materials, nanomaterials, …) 

– Integration of inherent chemical properties with short term 
biological profiles (biodescriptors ) in the context of structure 
– in vitro – in vivo extrapolation 

– Interpretation of significant chemical and biological 
descriptors emerging from externally validated models to 
inform the selection or design of effective and safe 
chemicals 

 

 



QSAR Modeling: Where have you been, 

where are you going? 

Where have you been? 

Where are you going to? 

I want to know what is new 

I want to go with you 

What have you seen? 

What do you know that is new? 

Where are you going to? 

Because I want to go with you 

 Chris Rea, “The Blue Café” song 

 



Experiment-Assisted Computational Drug Discovery?  

Recent examples of experimentally validated QSAR-

based predictions 
• Anticonvulsants: Shen, M. et al, J. Med. Chem. 2004, 47, 

2356-2364.    

• HIV-1 reverse transcriptase inhibitors: Medina-Franco, J., et 
al, J. Comput. Aided. Mol. Des., 2005, 19, 229–242 

• D1 receptor antagonists: Oloff et al, J. Med. Chem., 2005, 
48, 7322-32  

• Anticancer agents: Zhang et al, J. Comp. Aid. Molec. Des.,  
2007, 21, 97-112.  

• AmpC inhibitors: Hsieh, J.-H.. et al, J. Comp. Aid. Molec. 
Des.,  2008,  22(9):593-609 

• HDAC inhibitors: Wang, S. et al,  (JCIM, 2009, 49, 461-76) 

• GGT-I inhibitors: Wang, Peterson, et al (JMC, 2009, 
52(14):4210-20; provisional patent) 

• 5Ht2B binders: Hajjo et al, JMC, 2010, 11;53(21):7573-86 
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• 5HT7 binders; 5HT1A ligands, etc...(in preparation) 
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