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Key questions in structure-based drug design

PROTEIN

PROTEIN
Where is the binding site?

given a protein:

Target structure

What is the structure of the complex?

given a binding site and a ligand structure:

What is the energy of interaction? PROTEIN-LIGAND 
COMPLEX

What is a suitable, tight-binding ligand?

given a binding site:

PROTEIN

Required: some sort of affinity prediction
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Why is affinity prediction a challenge?

1.) Protein-ligand complexes are dynamic systems in aqueous solution

2.) The prediction methods need to be fast

Database screens: ~ 103 – 106 molecules need to be compared

Docking runs:   ~ 107 – 109 configurations need to be evaluated 

„Scoring functions“ required:

Fast, simplified, heuristic methods for prediction of binding strength

• simultaneous, unperiodic, 
continuously changing interactions

• huge number of particles 

needs integration over entire phase space!

Simulation methods required!

Statistical thermodynamics: Calculation of ∆G°

Computationally very expensive!

Scoring functions: Goals

The ultimate goals of an ideal function:

• accurate within less than 1 pKd unit (<1.4 kcal/mol)

• generally valid (not system specific; large affinity range)

• robust (tolerant with respect to small structural uncertainties)

• widely applicable (docking, virtual screening)

• physically meaningful (interpretable)

• fast and easy to compute
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Application tasks:

Scoring functions: Tasks and types

Available approaches:

• Force field-based methods

• Knowledge-based scoring functions

• Empirical scoring functions

A) Identification of the correct binding mode for a given ligand

B) Identification of new active ligands

C) Affinity ranking for compound series

Pose prediction in docking

Virtual screening

Ligand design, lead optimization

Force field-based methods

Scoring protein-ligand complexes:

+ for pose prediction in docking

– for ligand ranking by affinity

Terms accounting for (de)solvation & entropic factors required (cf. MM-PBSA)

Molecular Mechanics (MM):

• atoms  charged spheres

• bonds  springs

• classical potentials

• no electrons  no bond formation / cleavage

• typically parameterized to reproduce 
molecular potential energy surface
( conformational ∆H in the gas phase!)
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Knowledge-based scoring functions
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Statistical potential

No experimental affinities used!

Empirical scoring functions

pKi =  pKin fn(structure)Regression-based:

affinity weighting factors structure descriptors

determined via regression analysis (MLR, PLS)

Data:

Experimental 
binding affinities

Experimental 
structures
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A not too unusual result 
after over 20 years of scoring function development …
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Wang et al., J. Chem. Inf. 
Comp. Sci. 44 (2004), 2114

Correlation with affinity
for a test set of 800 
known complexes:

in general,
r < 0.55  (r2 < 0.3)

A more detailed look at scoring function performance …

Where do we stand with scoring?

Cheng et al., J. Chem. Inf. Model. 49 (2009), 1079

rmsd < 1.0 Å

rmsd < 2.0 Å

rmsd < 3.0 Å

Success rate for identifying
best-scored ligand binding pose
with

- Test set of 195 complexes of 65 different targets

- 100 low-energy poses per complex (0-10 Å rmsd)

- 29 scoring functions tested

Identification of near-native binding pose
among a set of geometric decoys

Performance of scoring functions

A) Pose prediction in docking

DSXCSD 85%

• native poses can be detected fairly well

• success rates of up to ~80%

• knowledge-based approaches work best
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Detection of active compounds in screening databases

...

Compiled by Moitessier et al., Br. J. Pharmacol. 153 (2008), S7

Problem: Testing scoring function performance in virtual screening is not trivial!

• significant enrichment can be obtained

• not always for the right reasons

• no function performs consistently well

B) Virtual screening

Performance of scoring functions

Correlation of scores with experimental binding affinities

C) Affinity prediction

Performance of scoring functions
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Functions tested by
Cheng et al. 2009

Pearson correlation coefficient RP

Test set compiled by Cheng et al., 2009: 195 PDBbind complexes

With most functions:

• poor correlation for generic data sets

• hardly possible to obtain correct ranking

• of limited use for ligand optimization
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Performance of scoring functions

CSAR-NRC HiQ evaluation set: 343 (332) complexes
Dunbar et al., J. Chem. Inf. Model. 51 (2011), 2036; Smith et al., J. Chem. Inf. Model. 51 (2011), 2115

Correlation of scores with experimental binding affinities

C) Affinity prediction

Performance across 17 core methods:

• RP in the range 0.35 – 0.76 (only 3 >0.65)

• RMSE in the range 2.99 – 1.51 (pKd units)

• correlation with heavy atom count: RP 0.51

How to improve current scoring functions?

pKi =  pKin fn(structure)Regression-based:

affinity weighting factors structure descriptors

determined via regression analysis (MLR, PLS)

Data:

Experimental 
binding affinities

Experimental 
structures

Empirical scoring functions

Development options:

• training sets

• descriptors

• regression methods
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The SFCscore approach

• Training sets:

Data collection from public & industry sources

SFC: Scoring Function Consortium

up to 855 complexes with affinity data

• Descriptors: 

• Regression method: MLR + PLS 

pKi  =  - pKi1  n_rot_bonds

+  pKi2  neutral_H_bonds

+  pKi3  metal_interaction

+  pKi4  AHPDI

+  pKi5  ring-ring_interaction

+  pKi6  ring-metal_interaction

+  pKi7  total_buried_surface

+  pKi8

Example: SFCscore function
„sfc_290m“

R R2 s F Q2            sPRESS

0.843 0.711 1.09 99.2 0.692 1.12

Statistical parameters for training set (n = 290):

Sotriffer et al., Proteins 73 (2008), 395

SFCscore



9

SFCscore

Performance of SFCscore functions: 
Cheng test set (195 complexes)
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SFCscore functions

Functions tested by
Cheng et al. 2009

Pearson correlation coefficient RP

Remaining limitations:

• data set issues (IC50 etc.)

• implicit model assumptions (i.e., 

functional form of descriptors, 

linear regression techniques)

growth of PDBbind   →   1105 complexes with Ki data

Non-parametric machine-learning methods:

• Training sets:

(not overlapping with Cheng test set)

• Regression methods:

(not imposing any particular functional form)

Random Forestin particular :

SFCscore

Overcoming the limitations
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Random Forest

Decision Tree (or Recursive Partitioning)

Advantages:

• handles high-dimensional data well

• has ability to ignore irrelevant descriptors

• handles multiple mechanisms of action

• is amenable to model interpretation

Svetnik et al., JCICS 43 (2003), 1947

Disadvantage:

• Relatively low prediction accuracy

can be overcome by using ensembles of trees

one ensemble method: Random Forest (RF)

Random Forest

RF: outputs of all trees are aggregated
to produce one final prediction

for classification:
class predicted by majority of trees

for regression:
average of the individual tree predictions

Training of a Random Forest:

1) Draw a random sample of the training data

2) For each sample, grow a tree to maximum size (no pruning) as follows:

at each node choose the best split among a randomly selected subset 
of mtry descriptors

3) Repeat the above steps until a sufficiently large number of trees are grown

Svetnik et al., JCICS 43 (2003), 1947
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Random Forest for scoring functions

First scoring function trained with Random Forest:

RF-Score (Ballester & Mitchell, Bioinformatics 2010)

• Training set: 1105 PDBbind complexes

• Descriptors: count of protein-ligand atom type pair contacts withing 12 Å

9 atom types (C, N, O, S, P, F, Cl, Br, I)  →  36 pairs

→ each complex characterised by vector of 36 contact counts

RF-Score yields much higher Rp for Cheng test set!

BUT:   Do the pure contact counts sufficiently well capture

the physicochemical interaction features?

Random Forest for scoring functions: SFCscoreRF

use SFCscore descriptors to train Random Forest model!

SFCscoreRF • Training set: 1105 PDBbind complexes

• Descriptors: 63 SFCscore descriptors

Test set (Cheng)

RP = 0.787   RMSE = 1.53 Increase of the mean squared error 
when randomly permuting the descriptor values

Relative descriptor importance
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SFCscore functions

Functions tested by
Cheng et al. 2009

RF functions

Performance comparison: Cheng test set (195 complexes)

Pearson correlation coefficient RP

SFCscoreRF

Performance on CSAR-NRC set

SFCscoreRF

Complete CSAR-NRC (343 complexes)
overlap: 100 complexes

RP = 0.80 RMSE = 1.35

Reduced CSAR-NRC (243 complexes)
no overlap

RP = 0.74 RMSE = 1.53
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Performance on CSAR-NRC set

SFCscoreRF

Complete CSAR-NRC (343 complexes)
overlap: 100 complexes

RP = 0.80 RMSE = 1.35

Reduced CSAR-NRC (243 complexes)
no overlap

RP = 0.74 RMSE = 1.53

Inherent experimental error
limits the possible correlation between scores and measured affinity. 

RP is limited to:
∼0.91 ~0.83

when fitting to the data set when scoring the data set with a
without overparameterizing method trained on outside data

(estimate based on error with σ = 1.0 log K)

Dunbar et al., J. Chem. Inf. Model. 51 (2011), 2146

Where are the limits?

Fundamental limitations of scoring functions (I)

• Accuracy of experimental data!

> Structural data (mainly X-ray) of protein-ligand complexes

> Affinity data of protein-ligand complexes

Knowledge-based and empirical scoring methods 

cannot be better than the exp. data they are based on!

- depend highly on pH, buffer, salt concentration, temperature

- enyzme kinetics: inhibition mechanism must be known

- IC50 ↔ Ki ↔ Kd

- multiple conformations (highly dynamic systems)

- hydrogen atom positions (protonation states) not observable

- side-chain orientation may be ambiguous (Asn, Gln, His)

- water molecules are only partially observable

- binding modes may depend on crystallization conditions and crystal packing
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Leave-Cluster-Out (LCO) Validation: Target-dependent performance

Random Forest for scoring functions: SFCscoreRF

RMSE

Correl. coeff. RP

Limitations

The TGT example - or: Limitations of scoring functions

NH

NH

NH2

O

O

NH

NH

O

O

N
H

N

Backbone flip

Inclusion of 
water molecule

Hardly accounted for

by current scoring function!

pKi = 5.08 pKi = 4.08
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Fundamental limitations of scoring functions (II)

• G0 =  RT ln KD = H0 - TS0

difference between
two states (bound/unbound)

depending on the entire
accessible phase spacereferring to an 

equilibrium observable

yet scoring functions in general …
… consider only the complexed state 
… consider only a single (or very few) configurations
… attempt to provide G0 also for arbitrary non-equilibrium states (poses)

„Dynamics – Water – Entropy“

Overall, the simplistic scoring functions work surprisingly well!!

Scoring 
Function 
Consortium
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