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Key questions in structure-based drug design

given a protein:
Where is the binding site?

/

given a binding site and a ligand structure:
—— What is the structure of the complex?

What is the energy of interaction?

Target structure

\ given a binding site: UV%D O

What is a suitable, tight-binding ligand?

==)> Required: some sort of affinity prediction




Why is affinity prediction a challenge?

* simultaneous, unperiodic,
continuously changing interactions

==) Simulation methods required!

Statistical thermodynamics: Calculation of AG®
needs integration over entire phase space!

==> Computationally very expensive!

2.) The prediction methods need to be fast

Database screens: ~ 103 — 108 molecules need to be compared
Docking runs: ~ 107 — 10° configurations need to be evaluated

==)>  Scoring functions® required:
Fast, simplified, heuristic methods for prediction of binding strength

Scoring functions: Goals

The ultimate goals of an ideal function:
« accurate within less than 1 pK, unit (<1.4 kcal/mol)
« generally valid (not system specific; large affinity range)

* robust (tolerant with respect to small structural uncertainties)

» widely applicable (docking, virtual screening)
* physically meaningful (interpretable)

« fast and easy to compute

Huos: Klebe, Wirkstofidesign, 2. Aufl © Spektrum Akademischer Verlag GmbH, 2009




Scoring functions: Tasks and types

Application tasks:

A) Identification of the correct binding mode for a given ligand
Pose prediction in docking

B) Identification of new active ligands
Virtual screening

C) Affinity ranking for compound series
Ligand design, lead optimization
Available approaches:

« Force field-based methods

» Knowledge-based scoring functions

» Empirical scoring functions

Force field-based methods

Molecular Mechanics (MM):

» atoms — charged spheres Bonds &\Qtﬂr.

* bonds — springs

0 v
« classical potentials Angles .\%’

* no electrons — no bond formation / cleavage

.\.— Y
« typically parameterized to reproduce Torsions (—.\.
molecular potential energy surface ®
(— conformational AH in the gas phase!)
. Lo Electrostatics @® = v r
==)> Scoring protein-ligand complexes:
+ for pose prediction in docking v

van der Waals . &

— for ligand ranking by affinity

==)> Terms accounting for (de)solvation & entropic factors required (cf. MM-PBSA)




Knowledge-based scoring functions

Derivation from

crystal-structure data
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Empirical scoring functions

Regression-based:

affinity

pKi = £ pKi, f,(structure)

/

!

weighting factors

!

N\

structure descriptors

determined via regression analysis (MLR, PLS)

Data:

AffinDB’

Affinity database for pre

Experimental
binding affinities

Experimental
structures

Molecale of the Mosith: Sulfotranserases




Where do we stand with scoring?

A not too unusual result
after over 20 years of scoring function development ...
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==> A more detailed look at scoring function performance ...

Performance of scoring functions

A) Pose prediction in docking

Identification of near-native binding pose
among a set of geometric decoys

- Test set of 195 complexes of 65 different targets
- 100 low-energy poses per complex (0-10 A rmsd)
- 29 scoring functions tested
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Performance of scoring functions

B) Virtual screening

Detection of active compounds in screening databases

Problem: Testing scoring function performance in virtual screening is not trivial!
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Performance of scoring functions

C) Affinity prediction
Correlation of scores with experimental binding affinities
Test set compiled by Cheng et al., 2009: 195 PDBbind complexes

Pearson correlation coefficient Rp

With most functions:

06 * poor correlation for generic data sets

04 + hardly possible to obtain correct ranking

M Functions tested by
Cheng et al. 2009

02 - » of limited use for ligand optimization




Performance of scoring functions

C) Affinity prediction
Correlation of scores with experimental binding affinities
CSAR-NRC HiQ evaluation set: 343 (332) complexes

Dunbar et al., J. Chem. Inf. Model. 51 (2011), 2036; Smith et al., J. Chem. Inf. Model. 51 (2011), 2115

Table 1. Parametric and Nonparametric Measures of Correlation Between the Scores and Experimental Binding Affinities”

method Pearson R Spearman p Kendallz R o RMSE* Med |Ert[*
code 1 0.76 (0.80-0.71) 0.74 (0.79-0.68) 0.55 (0.60-0.50) 0.58 (0.64-0.50) 143 151 1.00
code 2
o Performance across 17 core methods:
code §
code 6
coie 7 * Rp in the range 0.35 - 0.76 (only 3 >0.65)
code 8
code 9
code 10 . .
wde 1 * RMSE in the range 2.99 — 1.51 (pK, units)
code 12
code 13
code 14 . .
» correlation with heavy atom count: Ry 0.51
code 16 - — — — — ~ — - - - =
md:n 0.35 (0.4 u.zs; 0.3720.46 0‘27; 025 Emz 0.18) 012 (020-0.06) 207
Yardsticks (Maximum and “Null” Correlations)
trained on 343 set’ 0.93 (0.94-091) 093 (094-0.90) 0.77 (0.80-074) 086 (0.89-0.83) 0.82 095 048
heavy atoms 0.51 (0.58-0.42) 049 (0.57-0.40) 0.35 (0.41-028) 026 (0.34—0.18) 1.90
SlogP 0.46 (0.54-0.38) 050 (0.58—0.41) 0.34 (0.40-028) 022 (030-0.14) 195

How to improve current scoring functions?
Empirical scoring functions
Regression-based: pKi = X pKi,, f,(structure)

s N\

affinity weighting factors structure descriptors

}

Development options:
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The SFCscore approach

* Training sets: ‘ SFC: Scoring Function Consortium ‘

==)> Data collection from public & industry sources

up to 855 complexes with affinity data

Abbrevision

e

« Descriptors:

EERADSESLUEEYE

* Regression method: MLR + PLS

rotatable bonds

H-bonds and metal interactions

hydrophobic interactions
ring interactions

surface areas

SFCscore

Example: SFCscore function
,sfc_290m*

pKi = - pKi, x n_rot_bonds

pKi, x neutral_H_bonds

pKi; x metal_interaction

pKi, x AHPDI

pKis x ring-ring_interaction

pKig x ring-metal_interaction

pKi, x total_buried_surface

+ + + + o+ o+ o+

pKig

Statistical parameters for training set (n = 290).

pred. pKi

R R? s F Q2 SPRESS
0.843 0.711 1.09 99.2 0.692 1.12

Sotriffer et al., Proteins 73 (2008), 395
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SFCscore

Performance of SFCscore functions:
Cheng test set (195 complexes)

Pearson correlation coefficient Rp

09

08 | Remaining limitations:

07

061 « data set issues (ICy, etc.)

0,5

04 L : ,
0 | * implicit model assumptions (i.e.,
02 functional form of descriptors,
0,1 —— . . .

o linear regression techniques)
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SFCscore functions

M Functions tested by
Cheng et al. 2009

SFCscore

Overcoming the limitations

+ Training sets:

growth of PDBbind — 1105 complexes with K; data
(not overlapping with Cheng test set)

* Regression methods:

Non-parametric machine-learning methods:
(not imposing any particular functional form)

in particular :

Random Forest




Random Forest

Decision Tree (or Recursive Partitioning)

Initial set
Mean pK; 6.0

Advantages <= Descriptorl >
subset 1 Value A Subset 2
* handles high-dimensional data well mean pk, 5.2 Mean pk, 7.8
e . . . <= Descriptor2 >
* has ability to ignore irrelevant descriptors Value B
subset 3 Subset 4
mean pk; 6.5 Mean pK; 8.3

» handles multiple mechanisms of action

<=_~"Descriptor3 >
Value C

* is amenable to model interpretation ST SIEEERE

mean pK; 6.0 Mean pK; 7.2

Disadvantage:
* Relatively low prediction accuracy
==)> can be overcome by using ensembles of trees

==)> one ensemble method: Random Forest (RF)

Svetnik et al., JCICS 43 (2003), 1947

Random Forest

RF: outputs of all trees are aggregated
to produce one final prediction

for classification:
class predicted by maijority of trees

for regression:
average of the individual tree predictions

Training of a Random Forest:
1) Draw a random sample of the training data

2) For each sample, grow a tree to maximum size (no pruning) as follows:

at each node choose the best split among a randomly selected subset
of m,, descriptors

3) Repeat the above steps until a sufficiently large number of trees are grown

Svetnik et al., JCICS 43 (2003), 1947
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Random Forest for scoring functions

First scoring function trained with Random Forest:
RF-Score (Ballester & Mitchell, Bioinformatics 2010)

* Training set: 1105 PDBbind complexes

« Descriptors: count of protein-ligand atom type pair contacts withing 12 A
9 atom types (C, N, O, S, P, F, CI, Br, I) — 36 pairs
— each complex characterised by vector of 36 contact counts

== RF-Score yields much higher R, for Cheng test set!

BUT: Do the pure contact counts sufficiently well capture

the physicochemical interaction features?

Random Forest for scoring functions: SFCscoreRF

==)> use SFCscore descriptors to train Random Forest model!

- SFCscoreRF

Test set (Cheng)
Rp=0.787 RMSE =1.53

Predicted affinty (SFCscore-RF)

* Training set: 1105 PDBbind complexes
* Descriptors: 63 SFCscore descriptors

Relative descriptor importance

Increase of the mean squared error
when randomly permuting the descriptor values

%IncMISE

TatBurSurf —
HH_HA_AH_AA_surfc _
PH_HP_PA_AP_surfc ﬁ
Pr_suriczpolsursur | s

Hascore |

2 4 6 8 10 12

Measured binding affinity (PDBbind DB)

T
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SFCscoreRF

Performance comparison: Cheng test set (195 complexes)

Pearson correlation coefficient Rp

0,9

0,8

0,776 0,787
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) SFCscore functions

— M Functions tested by
Cheng et al. 2009

| B 14 RF functions

RN TP S P 2
IR P

SR
S F el VYAV
S° & & &) &l o) so
OC’QQ @(ro c}" é)\ t;\" ‘}

o

¥

S o
o‘)" \-'59 00\'
o
5\
)

R

SFCscoreRF

Performance on CSAR-NRC set

Complete CSAR-NRC (343 complexes)
overlap: 100 complexes

R, =0.80 RMSE =1.35

o

Predicted affinty (SFCscore-RF)

Experimental binding affinity (Binding-MOAD)

Predicted affinty (SFCscore-RF)

Reduced CSAR-NRC (243 complexes)
no overlap

Rp,=0.74 RMSE = 1.53

|

Experimental binding affinity (Binding-MOAD)
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SFCscoreRF

Performance on CSAR-NRC set

Complete CSAR-NRC (343 complexes)  Reduced CSAR-NRC (243 complexes)
overlap: 100 complexes no overlap

R, =0.80 RMSE =1.35 R, =0.74 RMSE = 1.53

Where are the limits?

Inherent experimental error
o - limits the possible correlation between scores and measured affinity.

Rp is limited to:

Predicted affinty (SFCscore-RF)
6
I

. ~0.91 ~0.83
when fitting to the data set when scoring the data set with a
o 4 without overparameterizing method trained on outside data
o (estimate based on error with o = 1.0 log K) | |

Dunbar et al., J. Chem. Inf. Model. 51 (2011), 2146

Fundamental limitations of scoring functions (1)

* Accuracy of experimental data!

> Structural data (mainly X-ray) of protein-ligand complexes
- multiple conformations (highly dynamic systems)
- hydrogen atom positions (protonation states) not observable
- side-chain orientation may be ambiguous (Asn, GIn, His)
- water molecules are only partially observable

- binding modes may depend on crystallization conditions and crystal packing
> Affinity data of protein-ligand complexes
- depend highly on pH, buffer, salt concentration, temperature

- enyzme kinetics: inhibition mechanism must be known

- 1G5« K Ky

Knowledge-based and empirical scoring methods
cannot be better than the exp. data they are based on!
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Random Forest for scoring functions: SFCscoreRF
Leave-Cluster-Out (LCO) Validation: Target-dependent performance

HIV protease
— RMSE penicillopepsin

trypsin
carboxypeptidase A | thrombin
Correl. coeff. R, 2

alpha-mannosidase carbonic anhydrase

endothiapepsin PTP1B

tRNA-guanine transglycosylase factor Xa
beat-secretase urokinase
P38 kinase transporters
glutamtate receptor 2 c-AMP dependent kinase
CDK2 kinase beta-glucosidase
thermolysine antibodies
ribonuclease casein kinase Il

Limitations

The TGT example - or: Limitations of scoring functions

I
27 Nz
z—Z=

[¢] (o]
PK;=5.08 Backbone flip pK;=4.08

A\ 1

ﬁ Hardly accounted for

by current scoring function!

N

Inclusion of
}R water molecule }:
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Fundamental limitations of scoring functions (ll)

« AG®= RTIn K,=AH?- TASO

depending on the entire

referring to an accessible phase space

. equilibrium observable
difference between

two states (bound/unbound)

yet scoring functions in general ...

... consider only the complexed state

... consider only a single (or very few) configurations

... attempt to provide AG° also for arbitrary non-equilibrium states (poses)

,Dynamics — Water — Entropy"“

==)> Overall, the simplistic scoring functions work surprisingly well!!
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