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Docking and Shape Matching are Both Recognition Problems

• Ignoring flexibility, docking and shape matching are both 6D search problems

• The challenge – find computationally efficient representations for:

• protein docking ↔ translational + rotational search

• ligand shape matching ↔ mainly rotational search

Protein-Protein Interactions and Therapeutic Drug Molecules

• Protein-protein interactions (PPIs) define the machinery of life

• Humans have about 30,000 proteins, each having about 5 PPIs

• Understanding PPIs could lead to immense scientific advances

• Small “drug” molecules often inhibit or interfere with PPIs

Why is Protein Docking Difficult ?

• Protein docking = predicting protein interactions at the molecular level

• If proteins are rigid => six-dimensional search space

• But proteins are flexible => multi-dimensional space!

• Current scoring functions cannot predict protein-protein binding affinity



ICM – Multi-Start Pseudo-Brownian Monte-Carlo Energy Minimisation

• Start by sticking “pins” in protein surfaces at 15Å intervals

• Find minimum energy for each pair of starting pins (6 rotations each):

E = EHV W + ECV W + 2.16Eel + 2.53Ehb + 4.35Ehp + 0.20Esolv

• Often gives good results, but is computationally expensive

Fernández-Recio, Abagyan (2004), J Mol Biol, 335, 843–865

Predicting Protein-Protein Binding Sites

• Many algorithms / servers are available for predicting protein binding sites

• For recent review, see: Fernández-Recio (2011), WIREs Comp Mol Sci 1, 680–698

• Many docking algorithms often show clusters of preferred orientations – docking “funnels”

• Lensink & Wodak proposed that docking methods are the best predictors of binding sites

Fernández-Recio, Abagyan (2004), J Mol Biol, 335, 843–865

Lensink, Wodak (2010), Proteins, 78, 3085–3095

Protein Docking Using Fast Fourier Transforms

• Conventional approaches digitise proteins into 3D Cartesian grids...

• ...and use FFTs to calculated TRANSLATIONAL correlations:

C[∆x,∆y,∆z] =
∑

x,y,z A[x, y, z] × B[x + ∆x, y + ∆y, z + ∆z]

• BUT for docking, have to REPEAT for many rotations – EXPENSIVE!

• Conventional grid-based FFT docking = SEVERAL CPU-HOURS

Katchalski-Katzir et al. (1992) PNAS, 89 2195–2199

Protein Docking Using Polar Fourier Correlations

• Rigid body docking can be considered as a largely ROTATIONAL problem

• This means we should use ANGULAR coordinate systems
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• With FIVE rotations, we should get a good speed-up?



Some Theory – The Spherical Harmonics

• The spherical harmonics (SHs) are examples of classical “special functions”

• Spherical polar coordinates: r = (r, θ, φ)
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• The spherical harmonics are products of Legendre polynomials and circular functions:

• Real SHs: ylm(θ, φ) = Plm(θ) cosmφ + Plm(θ) sinmφ

• Complex SHs: Ylm(θ, φ) = Plm(θ)eimφ

• Orthogonal:
∫

ylmykjdΩ =
∫

YlmYkjdΩ = δlkδmj

• Rotation: ylm(θ′, φ′) =
∑

j R
(l)
jm(α, β, γ)ylj(θ, φ)

Spherical Harmonic Molecular Surfaces

• Use SHs as orthogonal shape “building blocks”:

• Encode distance from origin as SH series to order L:

• r(θ, φ) =
∑L

l=0

∑l
m=−l almylm(θ, φ)

• Reals SHs: ylm(θ, φ)

• Coefficients: alm

• Solve the coefficients by numerical integration

• Normally, L=6 is sufficient for good overlays

Ritchie and Kemp (1999) J. Comp. Chem. 20 383–395

Docking Needs a 3D “Spherical Polar Fourier” Representation

• Need to introduce special orthonormal Laguerre-Gaussian radial functions, Rnl(r)

• Rnl(r) = N
(q)
nl e

−ρ/2ρl/2L
(l+1/2)
n−l−1 (ρ); ρ = r2/q, q = 20.
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• Surface Skin: σ(r) =

{

1; r ∈ surface skin

0; otherwise
Interior: τ (r) =

{

1; r ∈ protein atom

0; otherwise

• Parametrise as: σ(r) =
∑N

n=1

∑n−1
l=0

∑l
m=−l a

σ
nlmRnl(r) ylm(θ, φ)

• TRANSLATIONS: aσ′′
nlm =

∑N
n′l′ T

(|m|)
nl,n′l′(R)aσ

n′l′m

SPF Protein Shape-Density Reconstruction

Interior density: τ (r) =

N
∑

nlm

aτ
nlmRnl(r)ylm(θ, φ)

Image Order Coefficients

A Gaussians -

B N = 16 1,496

C N = 25 5,525

D N = 30 9,455

Ritchie (2003) Proteins Struct. Funct. Bionf. 52 98–106



Protein Docking Using SPF Density Functions

τ
σ(r)

(r)

Favourable:

∫

(σA(rA)τB(rB) + τA(rA)σB(rB))dV

Unfavourable:

∫

τA(rA)τB(rB)dV

Score: SAB =

∫

(σAτB + τAσB − QτAτB)dV Penalty Factor: Q = 11

Orthogonality: SAB =
∑

nlm

(

aσ
nlmbτnlm + aτ

nlm

(

bσnlm − Qbτnlm
))

Search: 6D space = 1 distance + 5 Euler rotations: (R, βA, γA, αB, βB, γB)

D.W. Ritchie and G.J.L. Kemp (2000) Proteins Struct. Funct. Bionf. 39 178–194

Hex Polar Fourier Correlation Example – 3D Rotational FFTs

• Set up 3D rotational FFT as a series of matrix multiplications...

Rotate: a
′

nlm =
l

∑

t=−l

R
(l)
mt(0, βA, γA)alt

Translate: a
′′

nlm =
N
∑

kj

T
(|m|)
nl,kj (R)a

′

kjm

Real to complex: Anlm =
∑

t

a
′′

nltU
(l)
tm, Bnlm =

∑

t

bnltU
(l)
tm

Multiply: Cmuv =
∑

nl

A∗
nlmBnlvΛ

um
lv

3D FFT: S(αB, βB, γB) =
∑

muv

Cmuve
−i(mαB+2uβB+vγB)

• On one CPU, docking takes from 15 to 30 minutes

Exploiting Proir Knowledge in SPF Docking

• Knowledge of even only one key residue can reduce search space enormously...

• This accelerates the calculation and helps to reduce false-positive predictions

The CAPRI Experiment (Critical Assessment of PRedicted Interactions)

Predictor Software Algorithm T1 T2 T3 T4 T5 T6 T7

Abagyan ICM FF ** *** **

Camacho CHARMM FF * *** ***

Eisenstein MolFit FFT * * ***

Sternberg FTDOCK FFT * ** *

Ten Eyck DOT FFT * * **

Gray MC ** ***

Ritchie Hex SPF ** ***

Weng ZDOCK FFT ** **

Wolfson BUDDA/PPD GH * ***

Bates Guided Docking FF - - - ***

Palma BIGGER GF - - ** *

Gardiner GAPDOCK GA * * - - - - -

Olson Surfdock SH * - - - -

Valencia ANN * - - - - - -

Vakser GRAMM FFT * - - - -

∗ low, ∗∗ medium, ∗ ∗ ∗ high accuracy prediction; − no prediction

Mendez et al. (2003) Proteins Struct. Funct. Bionf. 52 51–67



Hex Protein Docking Example – CAPRI Target 3

• Example: best prediction for CAPRI Target 3 – Hemagglutinin/HC63

Ritchie and Kemp (2000), Proteins Struct. Funct. Bionf. 39 178–194

Ritchie (2003), Proteins Struct. Funct. Genet. 52 98–106

CAPRI Results: Targets 8–19 (2003 – 2005)

Predictor Software T8 T9 T10 T11 T12 T13 T14 T15–T17 T18 T19

Abagyan ICM ** * ** *** * *** ** **

Wolfson PatchDock ** * * * * - ** ** *

Weng ZDOCK/RDOCK ** * *** *** *** ** **

Bates FTDOCK * * ** * ** ** *

Baker RosettaDock - ** *** ** *** ***

Camacho SmoothDock ** *** *** ** ** *

Gray RosettaDock *** - - ** *** **

Bonvin Haddock - - ** ** *** ***

Comeau ClusPro ** *** * *

Sternberg 3D-DOCK ** * * ** *

Eisenstein MolFit *** * *** **

Ritchie Hex ** *** * *

Zhou - - - *** ** * *

Ten Eyck DOT *** *** **

Zacharias ATTRACT ** - - - - *** **

Valencia * * * - -

Vakser GRAMM - - - - - ** **

Homology modelling # # #

Cancelled #

Mendez et al. (2005) Proteins Struct. Funct. Bionf. 60 150-169

High Order FFTs, Multi-Threading, and Graphics Processors

• Spherical polar coordinates give an analytic formula for 6D correlations:

In particular: SAB =
∑

jsmlvrt

Λrm
js T

(|m|)
js,lv (R)Λtm

lv e−i(rβA−sγA+mαB+tβB+vγB)

• This allows high order FFTs to be used – 1D, 3D, and 5D

• ... multiple FFTs can easily be executed in parallel

• ... also, it is relatively easy to implement on modern GPUs

• Up to 512 arithmetic “cores”

• Up to 6 Gb memory

• Easy API with C++ syntax

• Grid of threads model (“SIMT”)

• Due to memory latency effects, 1D FFTs are MUCH FASTER than 3D FFTs ...

Ritchie, Kozakov, Vajda (2008), Bioinformatics 24 1865–1873

Ritchie, Venkatraman (2010), Bioinformatics, 26, 2398–2405

Protein Docking Speed-Up using Multiple GPUs and CPUs

• With multi-threading, we can use as many GPUs and CPUs as are available

• For best performance: use 2 GPUs alone, or 6 CPUs plus 2 GPUs

• With 2 GPUs, docking takes about 10 seconds – very important for large-scale!



Speed Comparison with ZDOCK and PIPER

• Hex: 52000 x 812 rotations, 50 translations (0.8Å steps)

• ZDOCK: 54000 x 6 deg rotations, 92Å 3D grid (1.2Å cells)

• PIPER: 54000 x 6 deg rotations, 128Å 3D grid (1.0Å cells)

• Hardware: GTX 285 (240 cores, 1.48 GHz)

Kallikrein A / BPTI (233 / 58 residues)#

ZDOCK PIPER† PIPER† Hex Hex Hex‡

FFT 1xCPU 1xCPU 1xGPU 1xCPU 4xCPU 1xGPU

3D 7,172 468,625 26,372 224 60 84

(3D)⋆ (1,195) (42,602) (2,398) 224 60 84

1D – – – 676 243 15

# execution times in seconds

* (times scaled to two-term potential, as in Hex)

• What’s next?

• Better energy functions & constraints...

• Modeling flexibility...

• Using homology templates...

• Multi-component complexes...

“Hex” and “HexServer”

• Multi-threaded Hex: first (only) docking program to get full benefit of GPUs

• Hex: Over 25,000 down-loads...

• HexServer: About 1,000 docking jobs per month...

Ritchie and Kemp (2000) Proteins, 39, 178–194

...

Ritchie and Venkatraman (2010) Bioinformatics, 26, 2398–2405

Macindoe et al. (2010), Nucleic Acids Research, 38, W445–W449

Can Cross-Docking Distinguish The Correct PPI Partners?

• Wass et al. used Hex to cross-dock 56 true protein pairs with 922 non-redundant “decoys”

• For each pair, they plotted the profile of the best 20,000 docking scores...

(negative scores are good; red/blue = correct PPI; red/cyan = incorrect interactions)

• 48/56 true PPIs have significantly (statistically) higher energies than background false pairs

• Only 8/56 true PPIs have indistinguishable profiles to the non-binders

• NB. this experiment is detecting energy funnels, not necessarily the correct docking pose

Wass et al. (2011) Mol Sys Biol 7, article 469

Knowledge-Based Protein Docking:
CAPRI Target 40 (2009) – API-A/Trypsin

• We searched SCOPPI and 3DID for similar domain interactions to the target

• This helped to identify two key inhibitory loops on API-A around L87 and K145

• Performing focused Hex + MD refinement gave a total of 9 “acceptable” solutions



The KBDOCK Database and Web Server

• Content: 2,721 non-redundant hetero DDIs involving 1,029 PFAM domain families

• For each PFAM family, all DDIs are superposed and spatially clustered

http://kbdock.loria.fr/

• Aim: to provide PFAM family-level structural templates for knowledge-based docking

KBDOCK – Analysis of PFAM Domain Family Binding Sites

• Nearly 70% of PFAM domain families have just one binding site

• Very few domains have more than two or three binding sites

• This supports the notion that protein binding sites are often re-used...

KBDOCK – Template-Based Protein Docking Results

• The Protein Docking Benchmark 4.0 contains 176 protein-protein complexes

• We selected 73 single-domain complexes

• A “Full-Homology” (FH) template matches both target domains

• A “Semi-Homology” (SH) template matches just one target domain

Target Total FH Two SH One SH Zero

class targets templates templates template templates

Without date filtering

Enzyme 36 24 / 24 (3 + 1) / 5 3 / 5 2

Other 37 21 / 21 (0 + 0) / 3 5 / 11 2

With date filtering

Enzyme 36 13 / 13 (2 + 1) / 5 7 / 11 7

Other 37 13 / 13 (0 + 0) / 1 8 / 15 8

• If a FH template exists, it is almost always correct

• Even if there is no FH template, SH templates can still provide useful information

Ghoorah et al. (2011), Bioinformatics, 27, 2820–2827

But What About the Virtual Screening ?



ParaSurf – SH Surfaces & Properties from Semi-Empirical QM

• From MOPAC or VAMP calculate:

• Density contours of 2 × 10−4e/Å
3

( ∼ SAS)

• Key local properties: MEP, IEL, EAL, αL

• Encode as SH expansions to L=15: f(θ, φ) =
∑L

l=0

∑l
m=−l flmylm(θ, φ)

Lin & Clark (2005) J Chem Inf Model, 45, 1010–1016; Clark (2004) J Mol Graph 22 519–525

ParaFit – High Throughput SH Surface & Property Matching

Distance: D =

∫

(rA(θ, φ) − rB(θ, φ)
′)2dΩ (in units of area)

Orthogonality: D = |a|2 + |b|2 − 2a.b′

Rotation: b′lm =
∑

m′

R
(l)
mm′(α, β, γ)blm′

Hodgkin: S = 2a.b′/(|a|2 + |b|2)

Carbo: S = a.b′/(|a|.|b|)

Tanimoto: S = a.b′/(|a|2 + |b|2 − a.b′)

Multi-property: S = pSshape + qSMEP + rSIEL + sSEAL + tSαL

Perez-Nueno et al. (2010), Mol Inf, 30, 151–159

SH-Based Virtual Screening of HIV Entry Inhibitors

• Database of 248 CXCR4 and 354 CCR5 inhibitors + 4696 decoys

• Performed SH-based VS to distinguish actives from decoys...

(for CXCR4, query = AMD3100; for CCR5, query = TAK779)

Pérez-Nueno et al. (2008) J Chem Inf Model 48, 509–533

SH Consensus Shapes Can Improve VS Screening Performance

• The Consensus shape is the “average” of a group of shapes...

r̃(θ, φ) =
1

N

N
∑

k=1

∑

lm

ak
lmylm(θ, φ)

• For CXCR4, using the consensus of top 3 actives gives best overall VS performance

Pérez-Nueno et al. (2008) J Chem Inf Model 48, 509–533



Clustering and Classifiying Diverse HIV Entry Inhibitors

• We clustered the 354 known inhibitors for CCR5

• We classified the inhibitors into four main clusters; merging clusters worsens the AUCs

• Therefore, the CCR5 ligands form no less than FOUR main groups

• Docking with Hex indicates these groups bind within THREE sub-sites in the CCR5 pocket

Pérez-Nueno, Ritchie, et al., (2008) J Chem Inf Model 48(11) 2146-2165

Promiscuous Protein Targets Seem to be Rather Common

• Example: ALR2 is know to bind at least 5 different ligand scaffold families...

• Several other promiscuous targets in the literature:

• the α1β1 and α2β1 integrins,

• factor H, LRP6, PPAR-γ, LXR-β,

• ACHE, P38, FXA, VEGFR2, PXR,

• β-secretase, thrombin, CDK2,

• LAIR-1, LAIR-2, LTBLP-2, NS2B-NS3.

• For ligand-based virtual screening, these examples suggest:

• cluster the 3D shapes of any known ligands before performing VS ...

• compare shape-based VS performance with and without clustering ...

• ... any large differences could suggest a promiscuous (multi-site?) substrate.

Pérez-Nueno, Ritchie (2011). Expert Opinion on Drug Discovery, 7, 1–17.

Conclusions and Future Prospects

• Polar Fourier representations are useful for protein docking and VS

• Rigid-body protein docking on a GPU now takes only a few seconds

• Knowledge-based protein docking is becoming increasingly useful

• Most Pfam families have just one binding site – often re-used

• Several proteins bind multiple ligand families – promiscuous targets

• SH consensus shape queries can improve and explain VS performance

• GPU-based correlation techniques could open several possibilities:

• All-vs-all protein docking and ligand shape-matching ?
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