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Protein-Protein Interactions and Therapeutic Drug Molecules

e Protein-protein interactions (PPls) define the machinery of life

e Humans have about 30,000 proteins, each having about 5 PPls

Protein-Protein  Small-Molecule
Docking Virtual Screening

!

Therapeutic Drugs

e Understanding PPIs could lead to immense scientific advances

e Small “drug” molecules often inhibit or interfere with PPls

Docking and Shape Matching are Both Recognition Problems

e Ignoring flexibility, docking and shape matching are both 6D search problems

e The challenge — find computationally efficient representations for:
e protein docking <> translational + rotational search

e ligand shape matching <> mainly rotational search

Why is Protein Docking Difficult ?

e Protein docking = predicting protein interactions at the molecular level

o If proteins are rigid =>> six-dimensional search space
e But proteins are flexible => multi-dimensional space!

e Current scoring functions cannot predict protein-protein binding affinity



ICM — Multi-Start Pseudo-Brownian Monte-Carlo Energy Minimisation

e Start by sticking “pins” in protein surfaces at 15A intervals
e Find minimum energy for each pair of starting pins (6 rotations each):

E = Eyvw + Ecvw + 2.16 Ey + 2.53Ep; + 4.35Ep, + 0.20E, 1,

e Often gives good results, but is computationally expensive

Fernandez-Recio, Abagyan (2004), J Mol Biol, 335, 843-865

Protein Docking Using Fast Fourier Transforms

e Conventional approaches digitise proteins into 3D Cartesian grids...

e ...and use FFTs to calculated TRANSLATIONAL correlations:

ClAz, Ay, Az] =3 Alz,y,z] X Blx + Az, y + Ay, z + Az]

Y,z
e BUT for docking, have to REPEAT for many rotations — EXPENSIVE!

e Conventional grid-based FFT docking = SEVERAL CPU-HOURS

Katchalski-Katzir et al. (1992) PNAS, 89 2195-2199

Predicting Protein-Protein Binding Sites

e Many algorithms / servers are available for predicting protein binding sites
e For recent review, see: Fernandez-Recio (2011), WIREs Comp Mol Sci 1, 680-698

e Many docking algorithms often show clusters of preferred orientations — docking “funnels”

e Lensink & Wodak proposed that docking methods are the best predictors of binding sites

Fernandez-Recio, Abagyan (2004), J Mol Biol, 335, 843-865
Lensink, Wodak (2010), Proteins, 78, 3085-3095

Protein Docking Using Polar Fourier Correlations

¢ Rigid body docking can be considered as a largely ROTATIONAL problem

e This means we should use ANGULAR coordinate systems

~|rQp

e With FIVE rotations, we should get a good speed-up?



Some Theory — The Spherical Harmonics

e The spherical harmonics (SHs) are examples of classical “special functions”

e The spherical harmonics are products of Legendre polynomials and circular functions:

e Spherical polar coordinates: r = (7,0, ¢)

e Real SHs: Yim (0, ) = Py () cosmep + P, (0) sinmep

e Complex SHs: Yim(0, ¢) = P, (0)e™®

° Orthogonal: fylrnykjdﬂ = lemYk]dQ = Jlkémj

« Rotation: Yim (0, ¢') = 3; R (c, B,7)y1;(0, ¢)

Docking Needs a 3D “Spherical Polar Fourier” Representation

e Need to introduce special orthonormal Laguerre-Gaussian radial functions, R,,;(r)
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Spherical Harmonic Molecular Surfaces

e Use SHs as orthogonal shape “building blocks”:

e Encode distance from origin as SH series to order L:

o Q % L4 7‘(0, d)) = ZIL:O Z{m:—l almylm(ga d))
% & & e Reals SHs:  v;,,(0, ¢)

F e Coefficients: ay,,

e Solve the coefficients by numerical integration

e Normally, L=6 is sufficient for good overlays

Ritchie and Kemp (1999) J. Comp. Chem. 20 383-395

SPF Protein Shape-Density Reconstruction

N
Interior density: T(r) = Z a Rt (1) yim (6, @)

nlm

Image Order Coefficients
A Gaussians -
B N = 16 1,496
C N =25 5,525
D N = 30 9,455

Ritchie (2003) Proteins Struct. Funct. Bionf. 52 98-106



Protein Docking Using SPF Density Functions

w0 "

Favourable: /(crA(zA)TB(zB») + Ta(ry)op(ry))dV
Unfavourable: /TA(EA)TB(KB)dV
Score: Sap = /(UATB + Ta0p — QTaTp)dV Penalty Factor: Q = 11
Orthogonality: Sap = Z (a%,, b0 + aly (5, — QbT, )
nlm
Search: 6D space = 1 distance + 5 Euler rotations: (R, 34,4, a5, 88, YB)

D.W. Ritchie and G.J.L. Kemp (2000) Proteins Struct. Funct. Bionf. 39 178-194

Exploiting Proir Knowledge in SPF Docking

Intermolecular Axis
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Interface Residues

e Knowledge of even only one key residue can reduce search space enormously...

e This accelerates the calculation and helps to reduce false-positive predictions

Hex Polar Fourier Correlation Example — 3D Rotational FFTs

e Set up 3D rotational FFT as a series of matrix multiplications...

1

/ 1
Rotate: A = Z R’fn)t(o’ Ba,va)au
t=—1
N
Translate: Ay = ZTy(LllZzlj)(R)akjm
kj

" !
Real to complex: A, = Z anltUt(,l,)L, Bim = Z bnltUt(n)z
t t
Multlply Cmu'u = Z A:lmBnlvAZJm
nl

3D FFT: S(aB? ﬁB’ 7B) = Z Cmuve_i(maB-'—zuﬂB_FU'YB)

muv

e On one CPU, docking takes from 15 to 30 minutes

The CAPRI Experiment (Critical Assessment of PRedicted Interactions)

Predictor Software Algorithm | T1 (T2 |T3 |T4 | T5 | T6 | T7
Abagyan ICM FF *% kKK | Kk
Camacho CHARMM FF * dkk | kokok
Eisenstein MolFit FFT * | ks
Sternberg FTDOCK FFT * *k |k
Ten Eyck DOT FFT * |k **

Gray MC k% | kkk
Ritchie Hex SPF *k *kk
Weng ZDOCK FFT *k *ok
Wolfson BUDDA/PPD GH * okeok
Bates Guided Docking FF - - - Hkk
Palma BIGGER GF - - % |k
Gardiner GAPDOCK GA Fo I I (R - -
Olson Surfdock SH * - - - -
Valencia ANN - - - - - -
Vakser GRAMM FFT * - - - -
* low, %% medium, * % x high accuracy prediction; — no prediction

Mendez et al. (2003) Proteins Struct. Funct. Bionf. 52 51-67



Hex Protein Docking Example — CAPRI Target 3

CAPRI Results: Targets 8-19 (2003 - 2005)

e Example: best prediction for CAPRI Target 3 — Hemagglutinin/HC63 ig:;:zr ISglt/tlware 1’3 T9 T:O 1;11 1’:5 T:3 1’:: T15-T17 'I;1*8 1;1*9
Wolfson PatchDock o * * * - *k *k *
Weng ZDOCK/RDOCK | ** ® | dekk | koksk | dokok T
Bates FTDOCK * * kK * sk o *
Baker RosettaDock _ sk | kkk | ok | kK sk
Camacho SmoothDock *k sk | kkk | kk *% *
Gray RosettaDock ddk | - sk | kK sk
Bonvin Haddock - - *k | okk sokk | kkok
Comeau  ClusPro *k *k% | %
Sternberg 3D-DOCK *k * * o
Eisenstein MolFit Hkk * | kxx %
Ritchie Hex *k | kkk |k *
Zhou - _ _ kkk | k% * %
Ten Eyck DOT dfkk | kkk | kk
Zacharias ATTRACT *k - - _ - sokok $%
Valencia * * % _ B
Vakser GRAMM - - - - _ ok o
Ritchie and Kemp (2000), Proteins Struct. Funct. Bionf. 39 178-194 Homology modelling # # #
Ritchie (2003), Proteins Struct. Funct. Genet. 52 98-106 Cancelled #

Mendez et al. (2005) Proteins Struct

High Order FFTs, Multi-Threading, and Graphics Processors

e Spherical polar coordinates give an analytic formula for 6D correlations:

. . _ rman(Im|) tm _—i(rBa—sya+map+tBp+vyB)
In particular: Sap = E AT, (R)Ae
jsmlort 337

e This allows high order FFTs to be used — 1D, 3D, and 5D
e ... multiple FFTs can easily be executed in parallel

e ... also, it is relatively easy to implement on modern GPUs

Time (seconds)

e Up to 512 arithmetic “cores”

e Up to 6 Gb memory

e Easy APl with C++4 syntax

1D_SHAPE

e Grid of threads model (“SIMT”)

e Due to memory latency effects, 1D FFTs are MUCH FASTER than 3D FFTs ...

~1XCPU ~2XCPU ~4XCPU -6XCPU ~BXCPU

3D_SHAPE

1D_SHAPE_ELECTROSTATICS

. Funct. Bionf. 60 150-169

HEX Results - Tandem Blind Docking Search Performance (N=16; N=25)
2XGPU -2xCPU_1xGPU -4xCPU_2XGPU -6xCPU_2XxGPU -8xCPU_2xGPU

e For best performance: use 2 GPUs alone, or 6 CPUs plus 2 GPUs

o With multi-threading, we can use as many GPUs and CPUs as are available

3D_SHAPE_ELECTROSTATICS,

e With 2 GPUs, docking takes about 10 seconds — very important for large-scale!

Ritchie, Kozakov, Vajda (2008), Bioinformatics 24 1865-1873
Ritchie, Venkatraman (2010), Bioinformatics, 26, 2398-2405

Protein Docking Speed-Up using Multiple GPUs and CPUs




Speed Comparison with ZDOCK and PIPER

e Hex: 52000 x 812 rotations, 50 translations (0.8A steps)
e ZDOCK: 54000 x 6 deg rotations, 92A 3D grid (1.2A cells)
e PIPER: 54000 x 6 deg rotations, 128A 3D grid (1.0A cells)
e Hardware: GTX 285 (240 cores, 1.48 GHz)

Kallikrein A / BPTI (233 / 58 residues)#
ZDOCK PIPER! PIPERf Hex Hex Hex!
FFT 1xCPU 1xCPU 1xGPU 1xCPU 4xCPU 1xGPU
3D 7,172 468,625 26,372 224 60 84
(3D)*| (1,195) (42,602) (2,398) 224 60 84
1D - - - 676 243 15

# execution times in seconds
* (times scaled to two-term potential, as in Hex)

e What'’s next?

e Better energy functions & constraints... e Using homology templates...

o Modeling flexibility... e Multi-component complexes...

Can Cross-Docking Distinguish The Correct PPl Partners?

e Wass et al. used Hex to cross-dock 56 true protein pairs with 922 non-redundant “decoys”

e For each pair, they plotted the profile of the best 20,000 docking scores...
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(negative scores are good; red/blue = correct PPI; red/cyan = incorrect interactions)

e 48/56 true PPIs have significantly (statistically) higher energies than background false pairs

e Only 8/56 true PPIs have indistinguishable profiles to the non-binders

e NB. this experiment is detecting energy funnels, not necessarily the correct docking pose

Wass et al. (2011) Mol Sys Biol 7, article 469

“Hex” and “HexServer”

e Multi-threaded Hex: first (only) docking program to get full benefit of GPUs

Hex Server Hex Server

Docking Definition - step 1 of 2 Dacking Parameters - step 2 of 2

e Hex: Over 25,000 down-loads...
e HexServer: About 1,000 docking jobs per month...

Ritchie and Kemp (2000) Proteins, 39, 178-194

Ritchie and Venkatraman (2010) Bioinformatics, 26, 2398-2405
Macindoe et al. (2010), Nucleic Acids Research, 38, W445-W449

Knowledge-Based Protein Docking:
CAPRI Target 40 (2009) — API-A/Trypsin

e We searched SCOPPI and 3DID for similar domain interactions to the target

e This helped to identify two key inhibitory loops on API-A around L87 and K145

Peptidase Trypsin API-A Trypsin
: Trypsin Site B | Site A

Amylase

e Performing focused Hex + MD refinement gave a total of 9 “acceptable” solutions



The KBDOCK Database and Web Server KBDOCK - Analysis of PFAM Domain Family Binding Sites

e Content: 2,721 non-redundant hetero DDIs involving 1,029 PFAM domain families e Nearly 70% of PFAM domain families have just one binding site
e For each PFAM family, all DDIs are superposed and spatially clustered e Very few domains have more than two or three binding sites
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e Aim: to provide PFAM family-level structural templates for knowledge-based docking

e This supports the notion that protein binding sites are often re-used...

KBDOCK — Template-Based Protein Docking Results

e The Protein Docking Benchmark 4.0 contains 176 protein-protein complexes
e We selected 73 single-domain complexes
e A “Full-Homology” (FH) template matches both target domains

e A “Semi-Homology” (SH) template matches just one target domain

But What About the Virtual Screening ?

Target Total FH Two SH One SH Zero
class targets templates templates template templates
Without date filtering

Enzyme 36 24 / 24 B3+1)/5 3/5 2
Other 37 21/ 21 0+0)/3 5/11 2
With date filtering

Enzyme 36 13 /13 2+1)/5 7/11 7
Other 37 13 /13 0+0)/1 8/15 8

e If a FH template exists, it is almost always correct

e Even if there is no FH template, SH templates can still provide useful information

Ghoorah et al. (2011), Bioinformatics, 27, 2820-2827



ParaSurf — SH Surfaces & Properties from Semi-Empirical QM

e From MOPAC or VAMP calculate:
o Density contours of 2 x 10~%e/A* ( ~ SAS)
e Key local properties: MEP, IE_, EA|, o
e Encode as SH expansions to L=15: f(0,¢) = ZlL:O Zin:,l JimYim (6, ¢)

« Q%

Lin & Clark (2005) J Chem Inf Model, 45, 1010-1016; Clark (2004) J Mol Graph 22 519-525

SH-Based Virtual Screening of HIV Entry Inhibitors

e Database of 248 CXCR4 and 354 CCRS5 inhibitors + 4696 decoys

e Performed SH-based VS to distinguish actives from decoys...
CXCR4 Inhibitors

excRa + AMD3100

% Actives Found
Enrichment

0 10 20 30 40 50 60 70 80 90 100 1% 5% 10%
% Database Screened % Database Screened

M ROCS2.2: Shape Tanimoto
ROCS2.2: Combo Score
i PARAFIT06: Tanimoto Score
I HEX4.8: Tanimoto Score
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(for CXCR4, query = AMD3100; for CCR5, query = TAK779)

Pérez-Nueno et al. (2008) J Chem Inf Model 48, 509-533

ParaFit — High Throughput SH Surface & Property Matching
(in units of area)

Distance: D= /(rA(G, o) — rp(0, ¢))?dQ

Orthogonality: D = |a|* + |b)* — 2a.b

Rotation: = Z Rﬁffm,(a, Bs ) bim
Hodgkin: S = 2a.b'/(lal* + |b]*)
Carbo: S =a.b'/(lal.b])
Tanimoto: S =a.b'/(|la)* + |b|* — a.b)

Multi-property: S = pgshave 4 g GMEP 4 1. GIEL 4 oQPAL | tgoL

Perez-Nueno et al. (2010), Mol Inf, 30, 151-159

SH Consensus Shapes Can Improve VS Screening Performance

e The Consensus shape is the “average” of a group of shapes...

N
7(0,0) = % 3> af ym (6, 9)

k=1 lm

2) Consensus shape of the CXCR4 three most active dataset compounds
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e For CXCR4, using the consensus of top 3 actives gives best overall VS performance

Pérez-Nueno et al. (2008) J Chem Inf Model 48, 509-533



Clustering and Classifiying Diverse HIV Entry Inhibitors Promiscuous Protein Targets Seem to be Rather Common

o We clustered the 354 known inhibitors for CCR5 e Example: ALR2 is know to bind at least 5 different ligand scaffold families...

e the @131 and 231 integrins,

' *— 6]‘ e Several other promiscuous targets in the literature:

s r\" e factor H, LRP6, PPAR-, LXR-3,
& % & o ACHE, P38, FXA, VEGFR2, PXR,
i ‘ e (3-secretase, thrombin, CDK2,
‘ KO s ‘ e LAIR-1, LAIR-2, LTBLP-2, NS2B-NS3.

e For ligand-based virtual screening, these examples suggest:

o We classified the inhibitors into four main clusters; merging clusters worsens the AUCs e cluster the 3D shapes of any known ligands before performing VS ...

e Therefore, the CCR5 ligands form no less than FOUR main groups e compare shape-based VS performance with and without clustering ...
e Docking with Hex indicates these groups bind within THREE sub-sites in the CCR5 pocket e ... any large differences could suggest a promiscuous (multi-site?) substrate.
Pérez-Nueno, Ritchie, et al., (2008) J Chem Inf Model 48(11) 2146-2165 Pérez-Nueno, Ritchie (2011). Expert Opinion on Drug Discovery, 7, 1-17.
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e Polar Fourier representations are useful for protein docking and VS
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Matthieu Chavent

Lazaros Mavridis
e Knowledge-based protein docking is becoming increasingly useful Violeta Pérez-Nueno

e Rigid-body protein docking on a GPU now takes only a few seconds

e Most Pfam families have just one binding site — often re-used Vishwesh Venkatraman

e Several proteins bind multiple ligand families — promiscuous targets
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e SH consensus shape queries can improve and explain VS performance

Software & Papers: http://hex.loria.fr/

e GPU-based correlation techniques could open several possibilities:

e All-vs-all protein docking and ligand shape-matching ? HexServer: http://hexserver.loria.fr/



