Patent Cheminformatics

Identification of key compounds in patents

3rd Strasbourg Summer School on Chemoinformatics Strasbourg, France, 25-29 June 2012

Dr. Sorel Muresan

AstraZeneca R&D Mölndal

AstraZeneca 🚸

Unrestricted

Patents, brief into

Sources for accessing full text patents

Compound extraction from patents

Key compound prediction

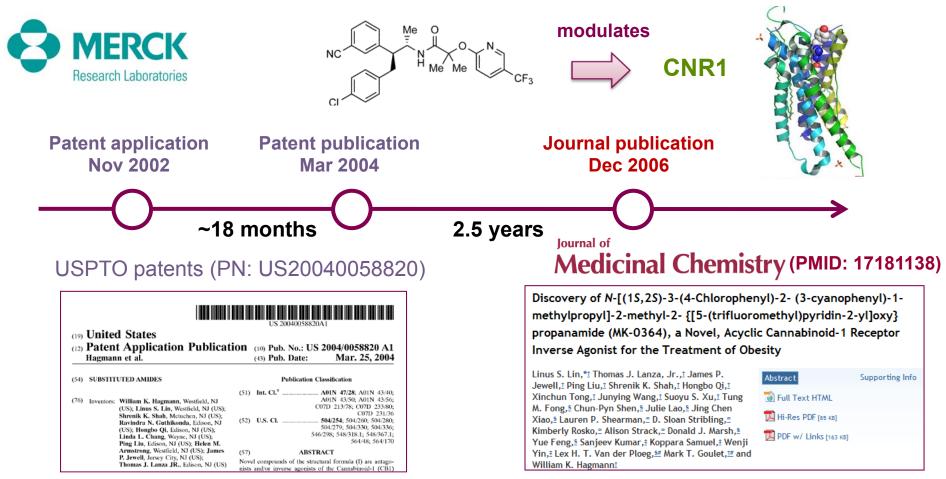
What is a patent?

A patent application is an agreement between inventor and state, allowing an inventor a **MONOPOLY** over their invention for a limited time. In the EU, applicants are required to **disclose their inventions** in a manner sufficiently clear and complete for them to be carried out by a person skilled in the art. In the United States, inventors are additionally required to include the 'best mode' of making or practicing the invention.

Patents are very interesting documents

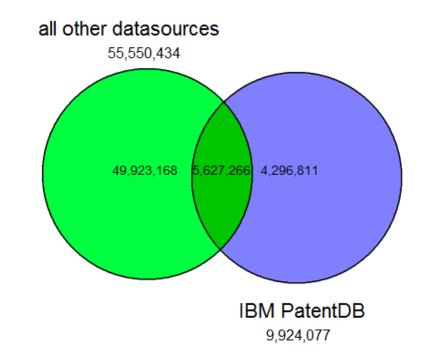
Three reasons why life scientists should read patents more frequently

- 1. Some information appears earlier in patents than in scientific journals
- 2. Patents may contain sound data that never appear in the literature.
- 3. Patents are a source of hard-to-get information from commercial suppliers.


Seeber, F. Nat. Protocols 2007

Patents as pharmaceutical data source

Complementary between journals and patents


"In certain fields, new advances are disclosed in patents long before they are published in peer-reviewed journals." *Grubb. W.P.*

"Novel Cannabinoid-1 Receptor Inverse Agonist for the Treatment of Obesity"

Unique chemistry from patents

Data from AstraZeneca's Chemistry Connect

~6% of compound structures exemplified in patents were also published in journal articles

Muresan, S. et al. *DDT* 2011 Southan, C. et al *J.Cheminfo.* 2009

Anatomy of a patent

Front page - contains a wealth of information about the patent

Detailed description of the invention - the heart of a patent application. It generally describes one or more preferred embodiments of the invention in enough detail to enable someone of ordinary skill in the art to make or use the invention without having to resort to undue experimentation

Claims - the most important part of the patent application. Define the scope of patent protection afforded to the owner of a patent.

C.P. Miller, M.J. Evans, The Chemist's Companion Guide to Patent Law, 2011

United States Patent [19]

Edwards et al.

[54] (SUBSTITUTED ARALKYL) HETEROCYCLIC COMPOUNDS

- [75] Inventors: Philip N. Edwards, Bramhall; Michael S. Large, Stoke-on-Trent, both of England
- [73] Assignee: Imperial Chemical Industries plc, London, England
- [21] Appl. No.: 204,743
- [22] Filed: Jun. 10, 1988

[30] Foreign Application Priority Data

Jun. 16, 1987 [GB] United Kingdom 8714013

- [51] Int. Cl.⁵ C07D 249/08; A61K 31/41

[56] References Cited

U.S. PATENT DOCUMENTS

4,226,878	10/1980	Iizuka et al	548/335
4,271,170	6/1981	Tanouchi et al	546/284
4,713,387	12/1987	Watanabe et al	514/332
4,749,713	6/1988	Bowman et al	514/341
4,755,526	7/1988	Hirsch et al	514/399

FOREIGN PATENT DOCUMENTS

0165778 12/1985 European Pat. Off. .

OTHER PUBLICATIONS

Iizuka et al., J. Med. Chem., 1981, 24, 1139–1148.
Tanouchi et al., J. Med. Chem., 1981, 24, 1149–1155.
Chem. Abstr., 99, 139652b, Mitsubishi Chemical.
J. Org. Chem., 1987, 52(5), 946–8, (Eq. to Chem. Abstr., 106, 102640).

Chem. Abstr., 106, 50050u.

Chemical Abstracts, vol. 107, No. 21, Nov. 23, 1987, Columbus, Ohio, U.S.A., Wickings, E. J.; Middleton, M. C., "Non-Steroidal Inhibition of Granulosa Cell Aromatase Activity in Vitro", p. 88, col. 2, Abstract No. 191 136j.

Primary Examiner—Glennon H. Hollrah Assistant Examiner—Patricia L. Morris Attorney, Agent, or Firm—Cushman, Darby & Cushman

[57] ABSTRACT

A (substituted-aralkyl)heterocyclic compound of the formula I

[11] Patent Number: 4,935,437
[45] Date of Patent: Jun. 19, 1990

R1R2R3C

T

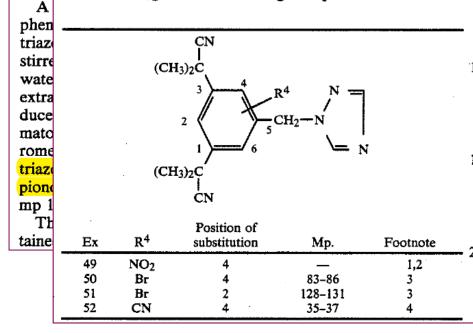
wherein R1 is an azido, carbamoyl, cyano, formyl, hydroxy or nitro radical, a 1-6C 1-hydroxyalkyl, alkoxy, alkylcarbamoyl, alkylthio, alkylsulphinyl or alkylsulphonyl radical, a 2-cvanoethyl radical, optionally bearing one to four 1-6C alkyl substituents, or a 2-6C alkanoyl, halogenoalkanoyl, alkanoyloxy, alkanoylamino, dialkylcarbamoyl or alkoxycarbonyl radical; R2 and R3, which may be the same or different, are each a hydrogen atom, a 1-6C alkyl, dueterioalkyl or halogenoalkyl radical, or a phenyl or phenyl(1-6C alkyl) radical, in each of which the phenyl may optionally bear one or more substituents; or R2 and R3, together with the carbon atom to which they are attached, may form a 3- to 6-membered ring; or R1R2R3C- is a 1,1-dicyanoethyl or trifluoromethylsulphonyl radical: R4 is a hydrogen or halogen atom, a cyano or nitro radical or a 1-6C alkyl or halogenoalkyl radical; R5 has any of the values defined above for the group R1R2R3C but is not necessarilv the same as R1R2R3C, or has any of the values defined above for R4 but is not necesarily the same as R4, or is a carbamoyl, 1-pyrrolidinyl-carbonyl, piperidinocarbonyl, morpholinocarbonyl or nitro radical, a 1-6C alkoxy or halogenoalkoxy radical or a 2-6C alkanoyl or alkoxy-carbonyl radical; A is a methylene or ethylene radical optionally bearing one or more substituents selected from deuterium and halogen atoms, carbamovl. cyano and hydroxy radicals, 1-6C alkyl and alkoxy radicals, and 2-6C alkanoyloxy radicals provided that when A is linked to R6 through a nitrogen atom thereof. it may not bear a hydroxy, alkoxy or alkanoyloxy substituent on the carbon atom adjacent to such nitrogen atoms; and R6 is a 1H-1,2,4-triazol-1-yl, 4H-1,2,4-triazol-4-vl. 1H-imidazol-1-vl. 5-cvano-1H-imidazol-1-vl. 3pyridyl or 5-pyrimidinyl radical, or a 1H-imidazol-1-yl radical, bearing at the 5-position thereof a 1-6C alkyl substituent which is itself optionally substituted by one or more carbamoyl, cyano, hydroxy or 2-6C alkoxycarbonyl radicals; and provided that when R2, R3, R4 and R⁵ are hydrogen, A is a methylene radical and R⁶ is a 3-pyridyl radical, R¹ is not a cyano, hydroxy or hydroxymethyl radical, and when R1 is a hydroxy radical, R3, R4 and R5 are hydrogen, A is a methylene radical and R6 is 3-pyridyl, R2 is not a methyl or a 2-chloro-1methylethyl radical, and provided that when R1 is a methoxycarbonyl radical, R2, R3, R4 and R5 are hydrogen and A is a methylene radical, R1 is not a 1Himidazol-1-yl radical; and the pharmaceutically acceptable acid addition salts thereof.

EXAMPLE 66

A mixture of 2-[2-bromo-5-(1H-1,2,4-triazol-1-ylme-thyl)-phenyl]-2-methylpropiononitrile (0.15 g), dimethylformamide (2 ml) and cuprous cyanide (0.09 g) was 5 stirred and heated under reflux for 8 h. The cooled mixture was treated with acucous potessium evolde

solut

utes.


The dryn

purif

19

EXAMPLES 49–52

by v The process described in Example, 1 was repeated, 5-(11 using the appropriate 2- or 4-substituted 2,2-(5-methylpion 1,3-phenylene)di(2-methylpropiononitrile) as starting 5 159° material, to give the following compounds:

EXAMPLE 69

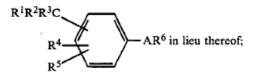
A 20% (w/v) solution of sodium nitrite in water was added dropwise in a stirred mixture of 4 amino-1-[3,5bis (1-cyano-1-methylethyl)benzyl]-1H-1,2,4-triazolium bromide and 2N aqueous hydrochloric acid (10 ml), until a slight excess of nitrite was present. The solution

4,935,437

20

EXAMPLE 53

A mixture of 2,2'-(5-chlorodideuteriomethyl-1,3phenylene)-di(2-trideuteriomethyl-3,3,3-trideuteriopropiononitrile) (0.65 g), dimethylformamide (5 ml) and sodium triazole (0.45 g) was stirred at room temperature for 18 h. The mixture was diluted with water (30 ml) and extracted with ethyl acetate, and the extract was dried and evaporated to dryness under reduced pres-10 sure. The residue was purified by flash chromatogra-


 phy, using ethyl acetate as eluant, to give 2,2'-[5-dideuterio-(1H-1,2,4-triazol-1-yl)methyl-1,3-phenylene]-di(2trideuteriomethyl-3,3,3-trideuteriopropiononitrile), mp 82°-83° after crystallisation from ethyl acetate/cy-15 clohexane.

The starting material from the above process may be prepared as follows:

The process used to prepare methyl 3,5-bis(1-cyano-1-methylethyl)benzoate, described in the later part of 20 Example 8, was repeated, using trideuterioiodomethane instead of iodomethane, to give methyl 3,5-bis[1-cyano-2,2,2-trideuterio-1-(trideuteriomethyl)ethyl]-benzoate, m.p. 83°-84°.

We claim:

1. A (substituted-aralkyl)heterocyclic compound of ³⁵ the formula I

wherein R¹ is an azido, carbamoyl, cyano, formy droxy or nitro radical, a 1-6C 1-hydroxyalkyl, a alkylcarbamoyl, alkylthio, alkylsulphinyl or all phonyl radical, a 2-cyanoethyl radical, optionally ing one to four 1-6C alkyl substituents, or a 2-6C oyl, halogenoalkanoyl, alkanoyloxy, alkanoyla dialkylcarbamoyl or alkoxycarbonyl radical; R² a which may be the same or different, are each a alkyl, deuterioalkyl or halogenoalkyl radica R¹R²R³C-is a 1,1-dicyanoethyl or trifluorometh phonyl radical; R⁴ is a hydrogen or halogen at cvano or nitro radical or a 1-6C alkyl or halogen radical: R⁵ has any of the values defined above f group R¹R²R³C, or has any of the values defined for R⁴, or is a carbamoyl, 1-pyrrolidinyl-carl piperidinocarbonyl, morpholinocarbonyl or nitro cal, a 1-6C alkoxy or halogenoalkoxy radical or alkanoyl or alkoxy-carbonyl radical; A is a meth or ethylene radical optionally bearing one or mor stituents selected from the group consisting of rium and halogen atoms, carbamoyl, cyano an droxy radicals, 1-6C alkyl and alkoxy radicals, and alkanoyloxy radicals provided that when A is link R⁶ through a nitrogen atom thereof, it may not hydroxy, alkoxy or alkanovloxy substituent on th

bon atom adjacent to such nitrogen atoms; and R⁶ is a 1H-1,2,4-triazol-1-yl or 4H-1,2,4-triazol-4 yl; and the pharmaceutically acceptable acid addition salts thereof. 2. A compound as claimed in claim 1 wherein R¹ is an

29

ycarbonyl, butoxycarbonyl, isobutoxycarbonyl, secbutoxycarbonyl, tert-butoxycarbonyl or pentyloxycarbonyl radical; R² and R³, which may be the same or different, are each a methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, 5 hexyl, trideuteriomethyl, mono-, di or tri-chloromethyl, mono-, di- or trifluoromethyl, 2,2,2-trichloro- or trifluoro-ethyl, 1,2,2-trichloro-or trifluoro-ethyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, 2,2-dichloro-3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, 5,5,5-tri- 10 fluoropentyl or 6,6,6-trifluorohexyl radical, or R¹R²R³C is a 1,1-dicyanoethyl or trifluoromethylsulphonyl radical; R⁴ is a hydrogen atom, a cyano or nitro radical, or a 1-6C alkyl or halogenoalkyl radical as defined above; R⁵ has any of the values defined above 15 for the group R¹R²R³C, or has any of the values defined above for R⁴, or is a 1-6C alkoxy or a 2 6C alkanoyl or alkoxycarbonyl radical as defined above, or a carbamoyl, 1-pyrrolidinylcarbonyl, piperidinocarbonyl, morpholinocarbonyl or nitro radical, a fluorine, chlorine, 20 bromine or iodine atom, or a mono-, di- or tri-chloromethoxy, mono-, di- or trifluoromethoxy, bromomethoxy, iodomethoxy, 2,2,2-trichloro- or trifluoro-ethoxy, 1,2,2trichloro- or trifluoro-ethoxy, pentafluoroethoxy, 2,2,3,3,3-pentafluoropropoxy, 2,2-dichloro-3,3,3-tri- 25 fluoropropoxy. 4.4.4-trifluorobutoxy. 5.5.5-trifluoropentyloxy or 6,6,6-trifluorohexyloxy radical; A is an ethylidene, propylidene, butylidene, 1- or 2methylethylene, 1,2-dimethylethylene, dideuteriomethylene, difluoromethylene, hydroxymethylene, 30 cyanomethylene or carbamoylmethylene radical, or a 1-hydroxyethylene radical (in which C-1 of the ethylene is linked to the benzene ring) radicals.

3. A compound as claimed in claim 1 which is a hydrochloride, hydrobromide, sulphate, nitrate, phos- 35 phate or toluene-p-sulphonate.

4. A compound as claimed in claim 1, 2 or 3 wherein R¹ is a carbamoyl, cyano, hydroxy, 1-hydroxyethyl, methylthio, methylsulphinyl, methylsulphonyl or acetyl radical R^2 and R^3 , which may be the same or different. 40 are each a methyl, ethyl, trideuteriomethyl or fluoro-

4,935,437

30

methyl radical; R⁴ is a hydrogen, fluorine or bromine atom or a cyano, nitro, isopropyl or chloromethyl radical; R⁵ is a 1-cvano-1-methylethyl, 1,1-dimethyl-2-oxopropyl, 1-carbamoyl-1-methylethyl, 1-cyano-1trideuteriomethyl-2,2,2-trideuterioethyl, 1-cvano-2fluoro-1-(fluoromethyl)ethyl, 1-methyl-1-(methylsulphonyl)-ethyl, 1-cyano-1-ethylpropyl, carbamoyl, 1piperidinocarbonyl, 1-morpholinocarbonyl, acetyl or methoxycarbonyl radical; A is a methylene, ethylene, ethylidene, isopropylidene, dideuteriomethylene, hydroxymethylene, cyanomethylene, fluoromethylene or difluoromethylene radical, or a 1-hydroxyethylene radical in which the carbon atom bearing the hydroxy substituent is bonded to the benzene ring; and R⁶ is a 1H-1,2,4-triazol-1-yl, 4H-1,2,4-triazol-4-yl.

 A compound as claimed in claim 1 wherein R¹ is a cyano radical, R⁵ is a radical of the formula R¹R²R³C wherein \mathbb{R}^1 is a cyano or hydroxy radical, and \mathbb{R}^6 is a 1H-1.2.4-triazol-1-vl radical.

6. A compound as claimed in claim 5 wherein R² and R^3 , both in the group $R^1R^2R^3C$ and in R^5 , are methyl or trideuteriomethyl radicals, and A is a methylene or dideuteriomethylene radical.

A compound as claimed in claim 1 which is 2.2'-[5-(1H-1,2,4-triazol-1-ylmethyl)-1,3-phenylene]di(2-2-[3-(1-hydroxy-1-methylemethylpropiononitrile), thyl)-5-(1H-1,2,4-triazol-1-ylmethyl)phenyl]-2-methylpropiononitrile, 2,2'-[5-dideuterio(1H-1,2,4-triazol-1vl)-methyl-1,3-phenyleneldi(2-trideuteriomethyl-3,3,3trideuteriopropiononitrile) or 2,2'-[5-dideuterio(1H-1,2,4-triazol-1-yl)methyl-1,3-phenylene]di(2-methylpropiononitrile).

8. A pharmaceutical or veterinary composition which comprises an effective amount of a compound as claimed in claim 1 together with a pharmaceutically or veterinarily acceptable diluent or carrier.

9. A method of treating steroid hormone-dependent tumours which comprises administering to a host in need of such treatment an effective amount of a compound as claimed in claim 1.

* * * * *

Searching for patents

Official public portals

F

The United States Palent and Trademark Offic an agency of the Department of Commerce WIPO Encouraging Creativity and Innovation

Open full-text

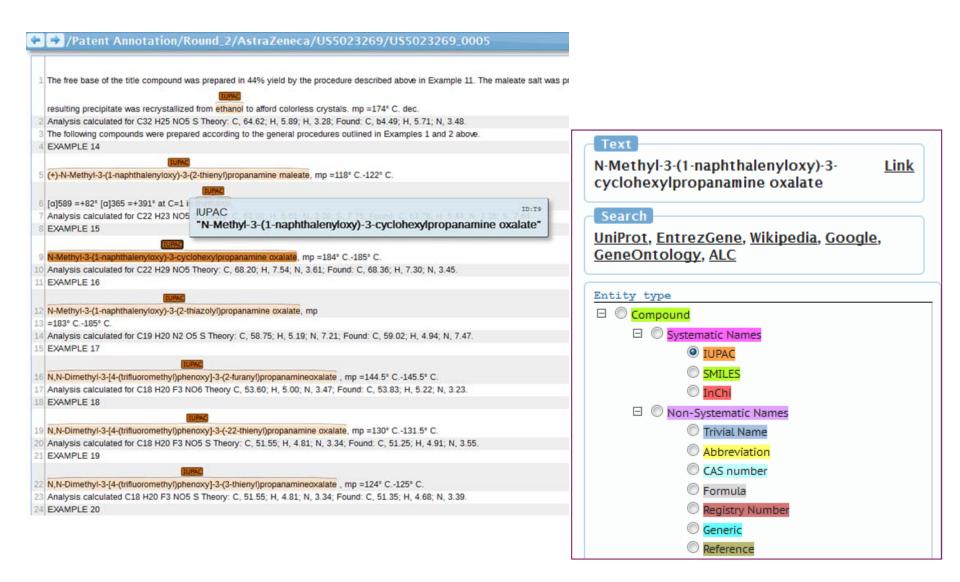
IP Research Tools, Data, & Communities

Google patents

Structure -> Patents & Patent -> Structure

SureChemOpen

Pub©hem


Manually extracted SAR data (commercial)

- GOSTAR (GVKBIO Online Structure Activity Relationship Database) is a comprehensive database that captures explicit relationships between the three entities of publications, compounds and sequences.
- It includes 2.6 million compounds linked to 3,500 sequences with 12.5M SAR points extracted from 43,000 patents and 67,000 articles from 125 journals

User: Muresan, Sorel															
Select a database All (5297068 records)	Select a co	All (529706	8 rec	AZ Numbe	r: AZ1001862	2] 6	ompound N	ame: 2-[3-(1	-cyano-1	methyl-ethy	yl)-5-(1,2,	4-triazol-1-ylmethyl)phenyl]-2-methyl-		
Structure and (a) or (C) not (C)	Reference				1		1 .	ropanenitri olecular W			293.3				
					N=		d	logP: SA:			1.47				
	Document type Paten	ts 🔻		Ņ				ZFILTERS:			Core				
	Defend Number		e		"J. J. J.	<u> </u>		latform Na			Mcd Compound				
	Patent Number			· ·		,N_		laim/Exam			Anastrozo	le			
N	Year				N.		1	MILES: CC(+ SID (struct	C)(C#N)c1cc(:c(c1)C(0	(C)C#N)Cn7 G5000045!				
								hemSpider			20570646				
							_								
				Title		: A	romatas	e inhibito	rs and inact	vators f	or the treat	ment of p	oostmenopausal breast cancer: a review	v	
				Authors		:)	urgen Geis	sler							
				Company	Address	: 8	laukeland	University	Hospital, De	artment	of Medicine,	Section of	Oncology, N-5021 Bergen, Norway		
	Category Target/Source	Activity Physchem F	Propen	Journal/I	Patent	• •	Curr. Med	l. Chem. I	mun. Endoc	and Me	tab. Agents	s. , 2003,	3 (3) 216-276 Glides		
N	Protein -	Equals -		Bio Assay	,	: A	romatase	inhibitor :	Useful in the	treatmen	t of breast c	ancer			
N—//	Approved Symbol 🔻	Equals -	Prote	n Source	Cells/Cell-	Approved	Entrex		Locus Act		ivity Activity		Enzyme / Cell Assay	3	Assay
	Entrez Gene ID 👻	Equals -	0.000	20000	Line/Organ Plasma cells	Symbol	Gene ID	Loci	Ref Ty Activ		M Prefix	Value 80	Percent suppress of plasma estradiol leve	el in healthy male an	d FI
	Source 👻	Equals -	Aroma	ase HUMAI	•	CYPISAL	1500		Inhit	ition %	-	96.7	Inhibitory activity of the compound again at dose of 1 mg once daily	ast human Aromatase	м
			Aroma	ase HUMAI	•	CYPISAL	1588		Inhit	tion %	=	98.1	Inhibitory activity of the compound again at dose of 1 mg once daily	st human Aromatase	M
				HUMA	Breast cancer cells				Activ	ty %	=	83.5	Percent suppress of plasma estrone sulfa postmenopausal breast cancer patients	ste level in	FI
Substructure Similarity Exact				HUMA	cells				Activ	ty %	=	98.1	Percent suppress of total body aromatiza postmenopausal breast cancer patients at	t the dose of 10 mg	FI
	Submit Clear			HUMAI	cells				Activ	ty %	=	93.5	Percent suppress of plasma estradiol level breast cancer patients		
Release 1.4.1 for AstraZeneca			_		Breast cancel cells				Activ	ty %	-	86.5	Percent suppress of plasma estrone level breast cancer patients		
			2		Breast cancel cells		-		Activ		=	96.7	Percent suppress of total body aromatiza postmenopausal breast cancer patients at Inhibitory activity of the compound again	t the dose of 1 mg	FI
				ase HUMAI		CYP19A1	1588		Inhib		-	97.3	at dose of 1 mg once in daily In vitro inhibitory activity of the compound		8
			Aroma	ase HUMAI	1	CYP10A1	1589 vative		ICS0 Mechanism	nM	rt #	15	placental Aromatase Indication	Binding Site	B
			Aroma			Jern	auve	Inhibi			CARCINON	1A, BREAS		omanig site	

Annotate patents manually

Brat – rapid annotation tool (http://brat.nlplab.org/index.html)

Annotate patents manually

Brat – rapid annotation tool (http://brat.nlplab.org/index.html)

EXAMPLE 15

N-Methyl-3-(1-naphthalenyloxy)-3-cyclohexylpropanamine oxalate, mp =184° C.-185° C. Analysis calculated for $C_{22}H_{29}NO_5$ Theory: C, 68.20; H, 7.54; N, 3.61; Found: C, 68.36; H, 7.30; N, 3.45.

8 EXAMPLE 15

IUPAC

9 N-Methyl-3-(1-naphthalenyloxy)-3-cyclohexylpropanamine oxalate, mp =184° C.-185° C.

10 Analysis calculated for C22 H29 NO5 Theory: C, 68.20; H, 7.54; N, 3.61; Found: C, 68.36; H, 7.30; N, 3.45.

T6 M 567 634 (+)-N-Methyl-3-(1-naphthalenyloxy)-3-(2-thienyl)propanamine maleate

T8 M 693 701 methanol

```
T9 M 841 903 N-Methyl-3-(1-naphthalenyloxy)-3-cyclohexylpropanamine oxalate
```

```
T11 M 1043 1108 N-Methyl-3-(1-naphthalenyloxy)-3-(2-thiazolyl)propanamine oxalate
```

```
T13 M 1252 1327 N,N-Dimethyl-3-[4-(trifluoromethyl)phenoxy]-3-(2-furanyl)propanamineoxalate
```

T16 M 1474 1552 N,N-Dimethyl-3-[4-(trifluoromethyl)phenoxy]-3-(-22-thienyl)propanamine oxalate

```
T18 M 1699 1774 N,N-Dimethyl-3-[4-(trifluoromethyl)phenoxy]-3-(3-thienyl)propanamineoxalate
```

```
T21 M 1916 1987 N-Methyl-3-[4-(trifluoromethyl)phenoxy-3-(2-thienyl)propanamine oxalate
```

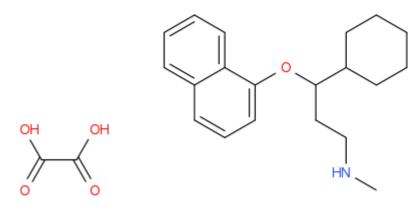
Name-2-structure

OPSIN – http://opsin.ch.cam.ac.uk/

OPSIN: Open Parser for Systematic IUPAC nomenclature

🐂 University of Cambridge > Department of Chemistry > Unilever Centre for Molecular Science Informatics

Enter a chemical name into the box and then click submit. If the name can be interpreted, a depiction, a SMILES string, its InChI and its CML will be returned.


Submit

N-Methyl-3-(1-naphthalenyloxy)-3-cyclohexylpropanamine oxalate

Updated 30/5/12: Minor bug fixes and minor vocabulary improvements

A paper describing OPSIN is now available from JCIM. If you have found OPSIN useful in your work citing it would be very much appreciated.

Depiction courtesy of the Indigo Toolkit

InChl:

InChI = 1/C20H27NO.C2H2O4/c1-21-15-14-19(17-9-3-2-4-10-17)22-20-13-7-11-16-8-5-6-12-18(16)20; 3-1(4)2(5)6/h5-8, 11-13, 17, 19, 21H, 2-4, 9-10, 14-15H2, 1H3; (H, 3, 4)(H, 5, 6)/f/h; 3, 5H

SMILES:

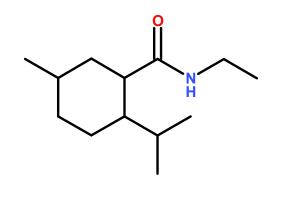
C(C(=0)0)(=0)0.CNCCC(C1CCCCC1)0C1=CC=CC2=CC=CC12

Chemical Named Entity Recognition (CNER)

tion (10) Pub. No.: US 2008/0038386 A1 (43) Pub. Date: Feb. 14, 2008

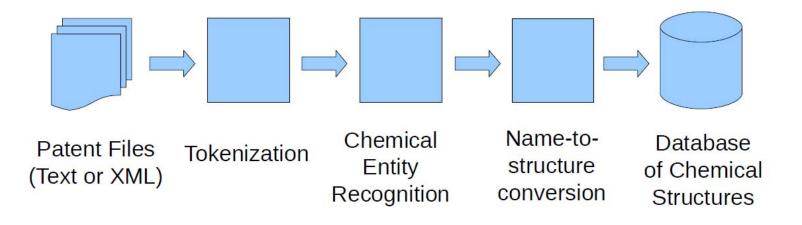
(52) U.S. Cl. 424/755; 514/514; 424/769; 424/760; 424/773; 514/617

(57) ABSTRACT


The present invention is directed to a sensate composition consisting of a liquid cooling composition, and at least one warming, tingling, or pungent sensate ingredient of either synthetic or natural origin which provides enhanced warming, tingling, or pungent properties. The liquid cooling sensate of the invention is a eutectic mixture of 2-Isopropyl-N,2,3-trimethylbutyramide and N-Ethyl-p-menthane-3-carboxamide, or at least one cooling agent selected from the group consisting of N-(2-hydroxyethyl)-2,3-dimethyl-2-isopropylbutanamide, N-(3-ethoxypropyl)-2,3-dimethyl-2-isopropylbutanamide, N-(3-butoxypropyl)-2,3-dimethyl-2-isopropylbutanamide, N-(3-butoxypropyl)-2,3-dimethyl-2-isopropylbutanamide, N-Ethyl-2,2-

diisopropylbutanamide, N-(1,1-dimethyl-2-hydroxyethyl)-2,2-diethylbutanamide, N-(2-ethoxyethyl)-2,3-dimethyl-2isopropylbutanamide and N-(3-methoxypropyl)-2,3dimethyl-2-isopropylbutanamide. The warming, tingling, or pungent sensate of the invention consists of at least one component that is an isothiocyanate and/or an amide or a natural product that contains at least one warming, tingling, or pungent principle that is an isothiocyanate and/or an amide. The present invention is further directed to a method of using the sensate composition in a food, pharmaceutical or personal care product.

N-Ethyl-p-menthane-3-carboxamide


Name-to-Structure *software*

C(C)NC(=O)C1CC(CCC1C(C)C)C

WS3 cooling agent (CAS 39711-79-0)

Compound extraction via chemical text mining Traditional text mining pipeline

- Determining the start and end of IUPAClike names in free text is a tricky business.
- Chemical names can contain whitespace, hyphens, commas, parenthesis, brackets, braces, apostrophes, superscripts, greek characters, digits and periods.
- This is made harder still by typos, OCR errors, hyphenation, linefeeds, XML tags, line and page numbers and similar noise.

OCR Errors: Compound Names

- IH-ben zimidazole \rightarrow 1H-benzimidazole
- 4- (2-ADAMANTYLCARBAM0YL) -5-TERT-BUTYL-PYRAZOL-1-YL] BENZOIC ACID → 4-(2-adamantylcarbamoyl)-5-tert-butyl-pyrazol-1yl]benzoic acid
- triphenylposhine \rightarrow triphenylphosphine

Text Mining Conversion by Name Class

Class	Category	Names	ChemA conver		n2s_3 (%)	None (%)
Μ	Molecule	7,262,798	01.4	64.8	77.1	7.8
D	Dictionary	26,876	38.1	45.1	3.5	38.5
R	Registry number	304,064	0	0	0	100
С	CAS number	47,815	0	0	0	100
Е	Element	836				Deset
Р	Fragment	2,663,677	NCI/CA		cal identifie	er Resolver
Α	Atom fragment	96	50.0		_	<u></u>
Υ	Polymer	295	0	44.1	22.7	36.9
G	Generic	1263	2.6	6.3	0.5	91.9
N	Noise	104	32.7	24	19.2	52.9
	Total	10,307,824	76.3	61.0	54.3	14.1


Muresan, S. ChemAxon UGM 2011

Extraction compounds from US20100221398 Google Patents + Chemicalize.org (ChemAxon)

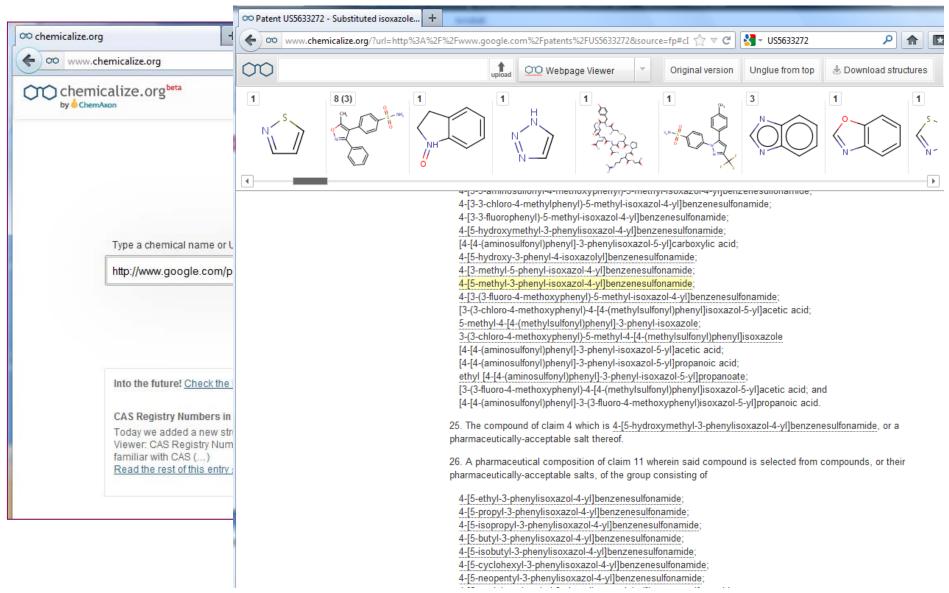
+You Search Im									
	nages Maps	Play	YouTube	News	Gmail	Documents	Calendar	More -	
Google									۹
Patents							Read	this patent	Download PDF

Substituted isoxazoles for the treatment of inflammation

John J. Talley et al

Go

Patent number: 5633272 Filing date: Jun 7, 1995 Issue date: May 27, 1997


alkoxycarbonylalkyl, aralkylthioalkyl, lowe cycloalkyl, cycloalky heteroaryl; wherein R independently select haloalkyl, hydroxyl, le aminoalkyl, nitro, hal

Inventors: John J. Ta Stealey, Paul W. Col Primary Examiner: Current U.S. Classif 548/186; 548/190; 54 548/245: 548/247: 54 International Classi

A class of substituted isoxazolyl compounds is described for use in treating inflammation and i related disorders. Compounds of particular interest are defined by Formula II ##STR1## whereir selected from hydroxyl, lower alkyl, carboxyl, lower carboxyalkyl, lower aminocarbonylalkyl, low 26. A pharmaceutical composition of claim 11 wherein said compound is selected from compounds, or their pharmaceutically-acceptable salts, of the group consisting of 4-[5-ethyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-propyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-isopropyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-butyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-isobutyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-cyclohexyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-neopentyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-cyclohexylmethyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-(4-chlorophenyl)methyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-trifluoromethyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-difluoromethyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-chloromethyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-methyl-3-phenylisoxazol-4-yl]benzenesulfonic acid; 4-[5-propyl-3-phenylisoxazol-4-yl]benzenesulfonic acid; 4-[5-methoxymethyl-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[5-3-hydroxypropyl)-3-phenylisoxazol-4-yl]benzenesulfonamide; 4-[3-4-chlorophenyl)-5-methyl-isoxazol-4-yl]benzenesulfonamide; 4-[3-4-fluorophenyl)-5-methyl-isoxazol-4-yl]benzenesulfonamide;

4-[3-3-fluoro-4-methylphenyl)-5-methyl-isoxazol-4-yl]benzenesulfonamide;

Extraction compounds from US20100221398 Google Patents + Chemicalize.org (ChemAxon)

What is a key compound?

Drug candidate

Compound(s) with optimal physicochemical properties

Compouns(s) with the most suitable pharmacokinetic profile

The most biologically active tool or probe

Key compounds from patents

"Old school" techniques Look for clues in text: "most preferred" wording in claims; crystal form info; scale of synthesis

Structural information alone Frequency of group (FOG) analysis of exemplified compounds

Structures and SAR data Work out SAR using biological data and structures

Key compound prediction from patents

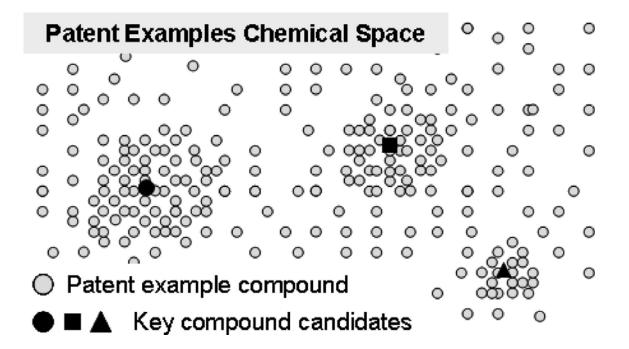
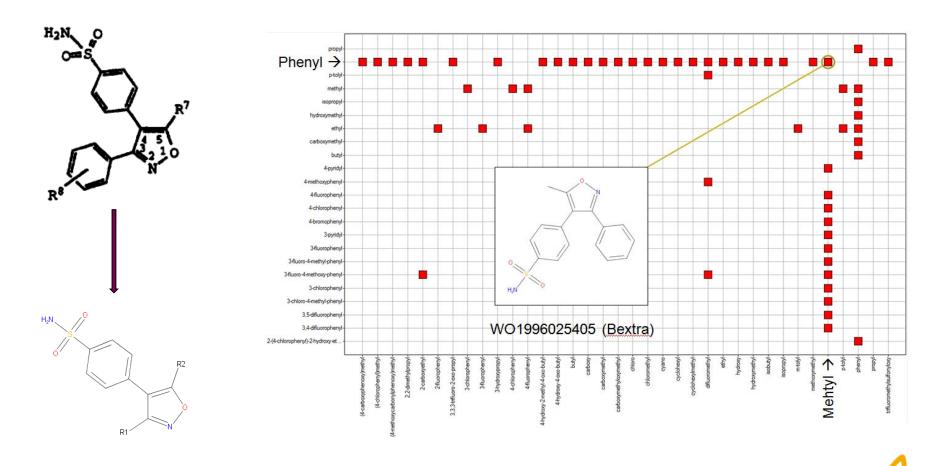



Figure 2. Graphical image of patent example compounds in chemical space. Each gray circle represents an example compound. The black circle, square, and triangle represent key compound candidates.

Theory: Chemists carry out extensive SAR around key compounds. Cluster examples and look for centres of densely populated regions

Key compound prediction from patents

From **WO1996025405** the earliest patent which claims it, can you work out the structure of Bextra (Valdecoxib), the Pfizer NSAID?

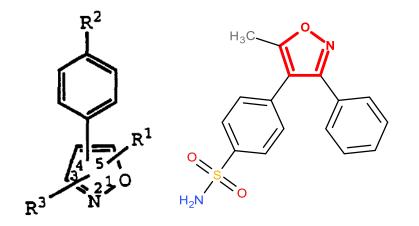
74 exemplified cmpds

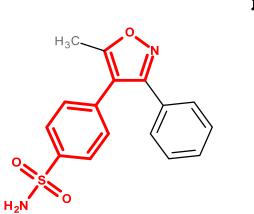
R-group decomposition (Free-Wilson like)

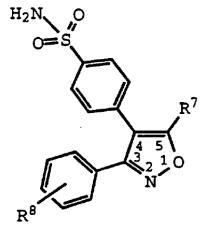
A	В	С	D	E	F
cmpdID	cmpdSmiles	error	coreSmiles	R1	R2
200000516_BEXTRA	CH ₃ N N N N	None	N HILL AND	(R1) A :	(A) C A (R2)
208014805		None	(Rt) A I I A I A I A I A I A I A I A I A I		F - (R2) F
206771831	N N N N N N N N N N N N N N N N N N N	None	(Rt) N H (R2)	(R1) A	(R2) A N
256502606	H ₃ C O NH ₂	Unable to map core	None		
200271239		Unable to map core	None		

FOG ranking

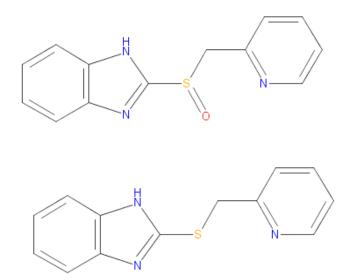
cmpdID	smiles	score	R1	R1_count	R2	R2_count
200000516_BEXTRA	CH 3 H 3 O	54		34	(A) C — A (R2)	20
256227569	H ₂ N N	38	(R1) A 	34	A (R2)	4
200004495	H ₂ N N F F	38		34	F	4
220904851		36		34	HO O (R2) A C (A)	2
207700988		36	(R1) A	34	HO HO	2



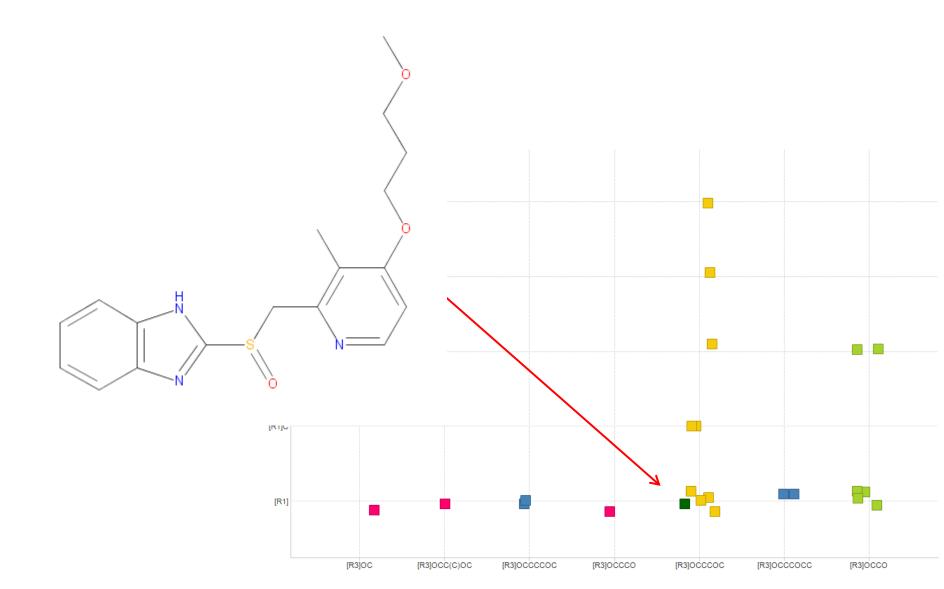

Key compound prediction from patents Frequency of group (FOG) analysis

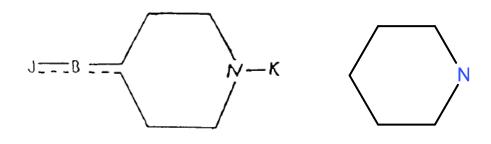

- 1) Extract compounds from patents
 - manual curation (GVKBIO)
 - text mining (SureChemOpen, OSCAR)
- 2) Define core
 - manually (e.g. from patent Markush)
 - automated core perception
- 3) R-group decomposition (ChemAxon's JChem)
- 4) Rank compounds based on FOG (Spotfire, EXCEL)

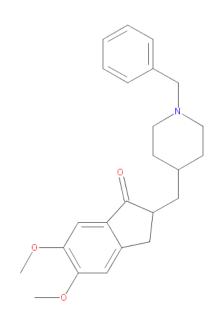
WO1996025405 - Bextra


Source	#compounds	Bextra exists	Bextra ranked
GVKBIO	74	Y	1 (broad core) 1 (narrow core)
SureChem	501	Y	1 (broad core) 1 (narrow core)

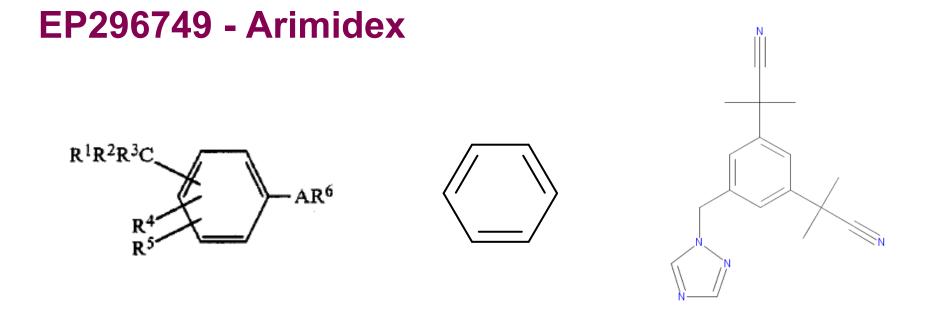
(Z)


 $I_{N} = CH_{2} = I_{N} (I)$

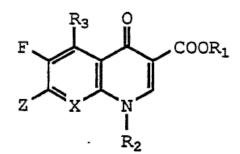


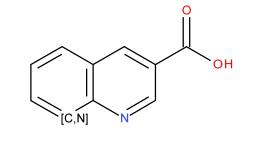

Source	#compounds	Aciphex exists	Aciphex ranked
GVKBIO	27	Y	2 (core1) 1 (core2)
SureChem	168	Y	1 (core1) 1 (core2)

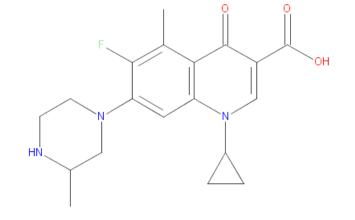
EP268956 - Aciphex



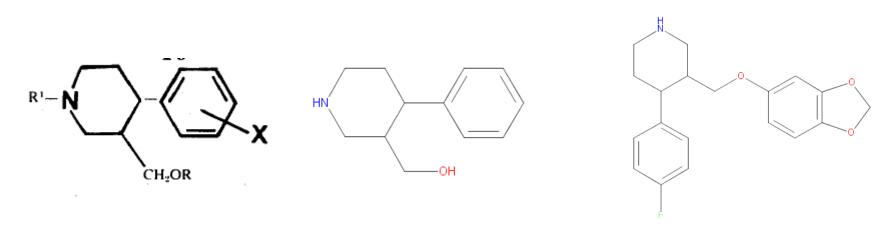
Source	#compounds	Aricept exists	Aricept ranked
GVKBIO	76	Y	1
SureChem	108	Y	1





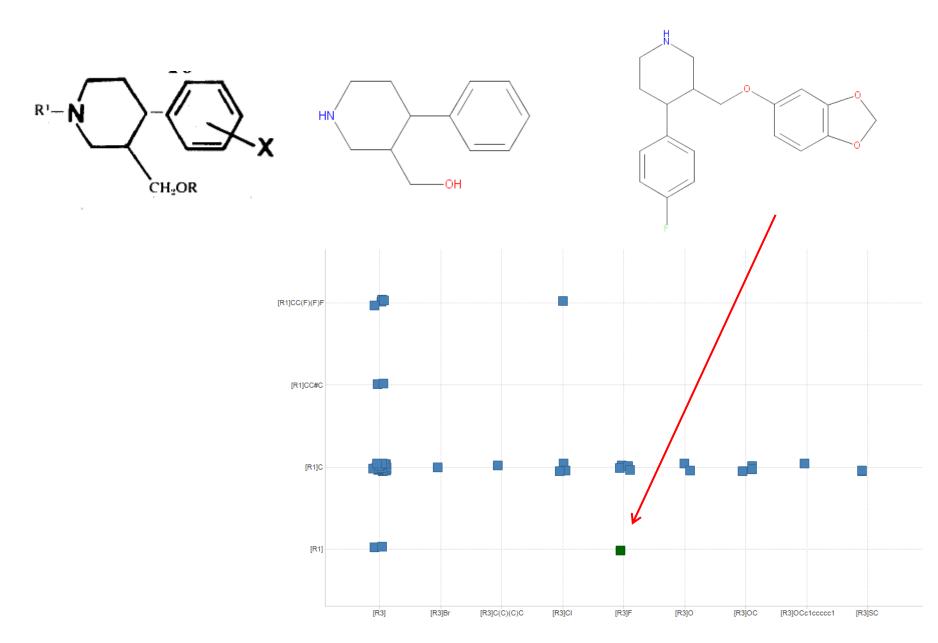

Source	#compounds	Arimidex exists	Arimidex ranked
GVKBIO	70	Y	1
SureChem	267	Y	1

WO1989006649 - Raxar



X is CH, CF, CCI, or N.

Source	#compounds	Raxar exists	Raxar ranked
GVKBIO	102	Y	5
SureChem	0	Ν	n/a



Source	#compounds	Paxil exists	Paxil ranked
GVKBIO	60	Y	54

US3912743 – PAXIL

Key compound prediction

48 drug patents, with more than 10 compounds, including the drug

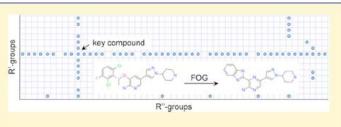
Method	Key compound as the first ranked compound	Key compound within the first 5 ranked compounds	CSA 15 Molecular 26 8 12 11 12 FOG 17
Cluster seed analysis	11 (23%)	26 (54%)	
Molecular Idol	5 (10%)	22 (46%)	
Frequency of group analysis	11 (23%)	17 (35%)	

JCIM paper http://dx.doi.org/10.1021/ci3001293

Article pubs.acs.org/jcim

Exploiting Structural Information in Patent Specifications for Key Compound Prediction

Christian Tyrchan,*'[†] Jonas Boström,[†] Fabrizio Giordanetto,[†] Jon Winter,[§] and Sorel Muresan[‡]


[†]AstraZeneca R&D, CVGI iMed, Pepparedsleden 1, S-431 83 Mölndal, Sweden

[‡]AstraZeneca R&D, Discovery Sciences Computational Sciences, Pepparedsleden 1, S-431 83 Mölndal, Sweden

[§]AstraZeneca R&D, Oncology iMed, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom

S Supporting Information

ABSTRACT: Patent specifications are one of many information sources needed to progress drug discovery projects. Understanding compound prior art and novelty checking, validation of biological assays, and identification of new starting points for chemical explorations are a few areas where patent analysis is an important component. Cheminformatics methods can be used to facilitate the identification of so-called key compounds in patent specifications. Such methods, relying on

- Unique chemistry from patents (8% out of 55M parent structures in AstraZeneca's Chemistry Connect)
- Public sources for full text patent access and open source software for chemical text mining
- Frequency of group analysis is a simple process to visualize and rank patent compounds

Acknowledgements

- Jon Winter
- Christian Tyrchan
- Jonas Boström
- Mats Eriksson
- Paul Xie
- Chris Southan
- GVKBIO
- IBM
- SureChem
- Next Move Software
- ChemAxon
- Unilever Centre for Molecular Science Informatics

