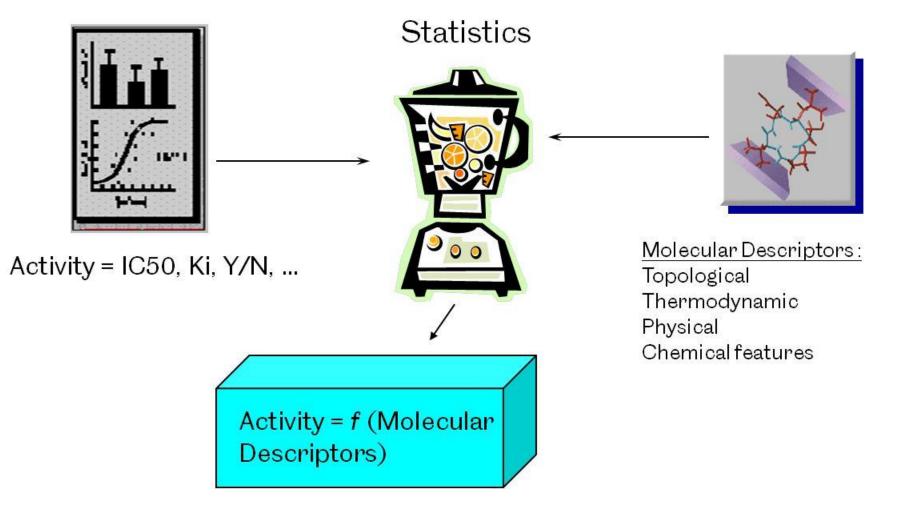


In-silico approaches to toxicity prediction

Val Gillet University of Sheffield

Outline

- Background
- In silico methods for toxicity prediction
 - QSAR
 - Machine learning methods
 - Expert systems
- Use of emerging pattern mining to assist knowledgeworkers in building the knowledge-base of an expert system


Toxicity prediction

- Avoid late stage failures in drug discovery
- Large numbers of compounds available early in drug discovery and not possible to test all
- In-silico prediction: low cost high-throughput process
 - Can be used to prioritise compounds
 - Highlight potential problems with compounds
 - Allows predictions to be made on virtual compounds as well as real compounds
 - Lead to a reduction in in-vivo tests

Toxicity prediction

- Multiple different endpoints exist
- The same endpoint can arise through multiple mechanisms
- For many endpoints, such as carcinogenicity, the mechanisms are poorly understood
- Lack of availability of reliable data

Statistical methods: QSAR

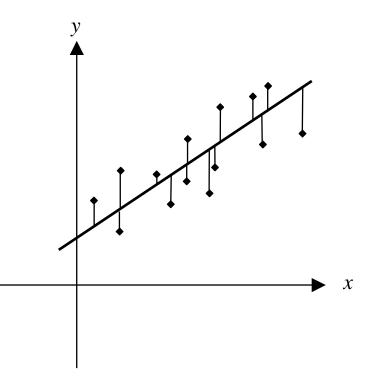
Training set is used to develop a model of activity

Molecular descriptors

- Many thousands of descriptors
- Physicochemical properties
 - ClogP, MW, MR, PSA,
- 2D descriptors
 - based on the connection table
 - unweighted (MACCS eg count of the number of acids)
 - deterministic
- 3D descriptors
 - based on geometric patterns of features
 - partially subjective

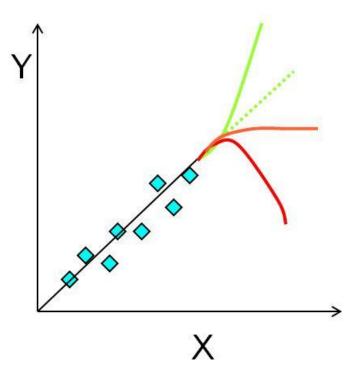
Handbook of Molecular Descriptors Roberto Todeschini, Viviana Consonni, Wiley-VCH, 2009

Linear Regression


• Requirements

- Congeneric series of compounds as training set
- High degree of similarity in structures

y = mx + c

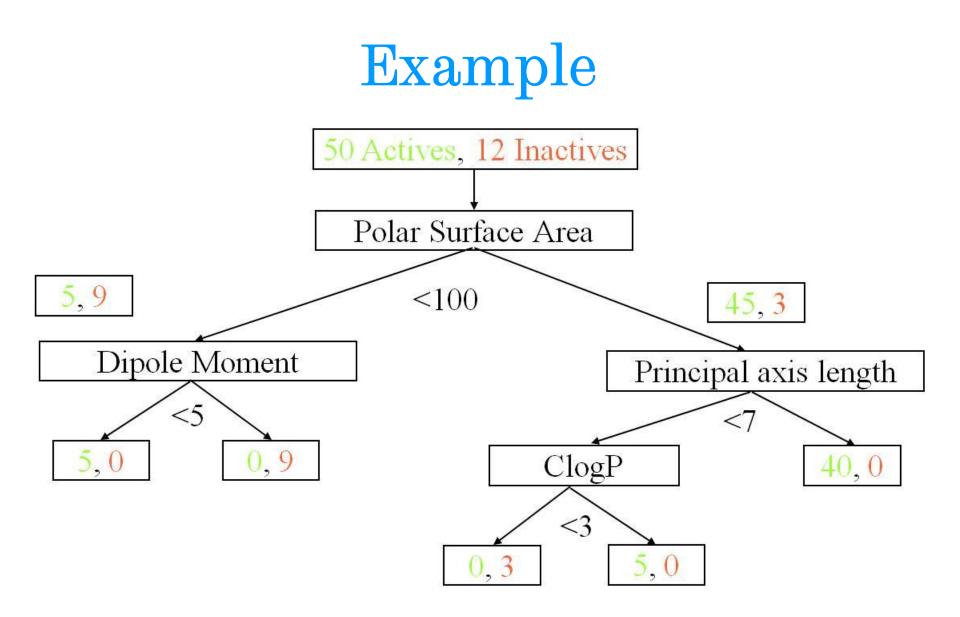

y is the dependent variable (activity) x is the independent variable eg a molecular descriptor

Aim is to find *m* and *c* to minimise differences in predicted values and actual values

Extrapolation?

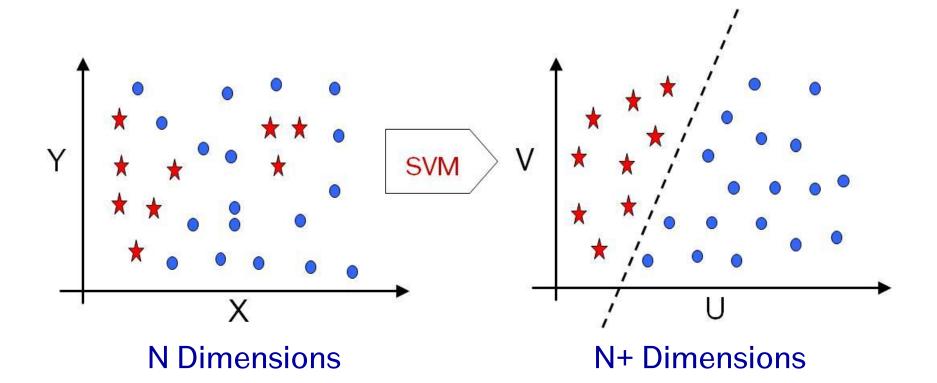
- Choose the training set with care
- The model explains the data it was trained on (r²)
- Validate the model (q², pred r²)
- Can only reliably predict for compounds that are similar to those in the training set
- Local vs global models

Muster W, Breidenbach B, Fischer H, Kirchner S, Mueller L, Pahler A. Computational toxicology in drug development. Drug Discovery Today 13, 2008, 303-310

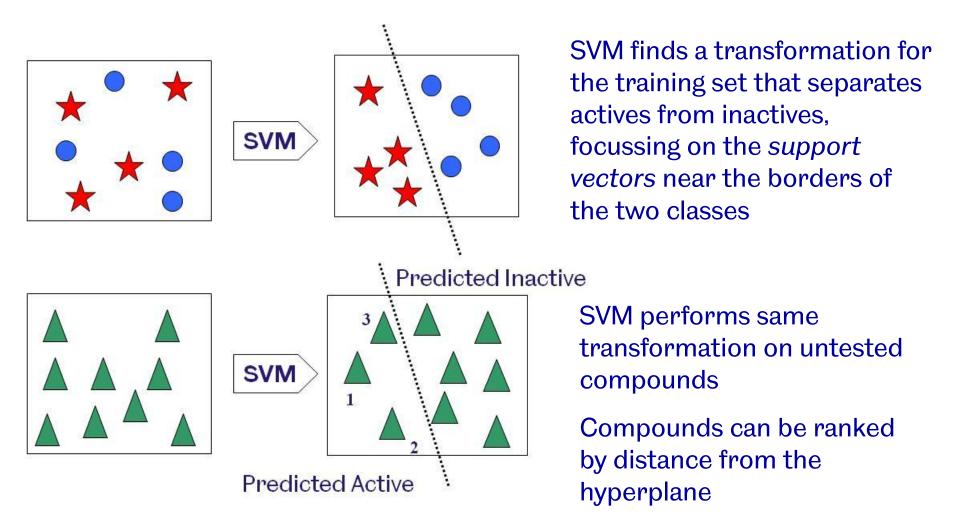

Machine learning methods

- Training set is used to develop a model of activty
- Can be used with more heterogeneous datasets
- Qualitative or quantitative predictions are possible
- Many different approaches
 - Substructural analysis
 - Recursive partitioning
 - Support vector machines
 - K nearest neighbours
 - Neural networks

Recursive Partitioning


- Classification approach that constructs a decision tree from qualitative data
 - active/inactive, soluble/insoluble, toxic/non-toxic
- Identification of a rule that gives the best statistical split into classes, with the lowest rate of misclassification
 - Example drug|non-drug: MW < 500|MW > 500
- Repeat on each set coming from the previous split until no more reasonable splits can be found
- Can generate good models but with poor predictive power if used without care
 - Use leave-many-out strategies to validate
 - Easy to interpret/drive what-next decisions

Hamman F, Gutmann H. Voigt N, Helma C, Drewe J. Prediction of adverse drug reactions using decision tree modeling. Clin Pharmacol Ther, 2010, 88, 52-59.


Test compounds are dropped through the tree. Prediction depends on whether they fall into "active" or inactive nodes"

Support Vector Machines (SVMs)

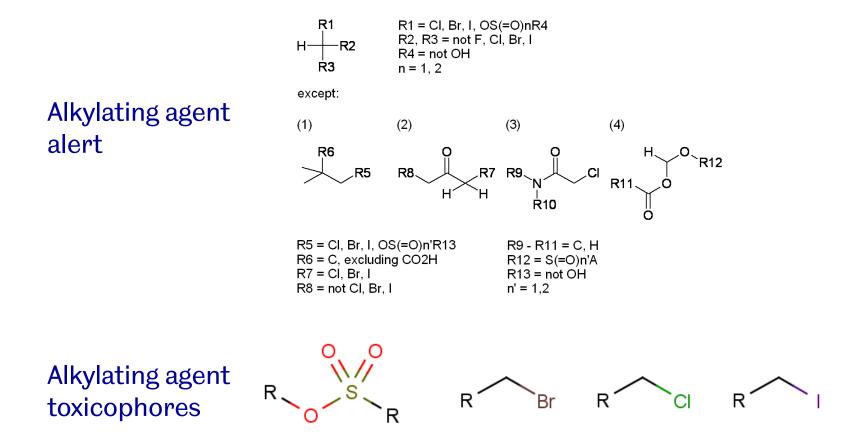
SVM transforms data into a, usually higher dimensional, space where the actives and inactives are separated by a hyperplane

Applying an SVM model

Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A. Cheminformatics analysis of assertions mined from literature that describe dug-induced liver injury in different species. Chem Res Toxicol 2010, 23, 171-183

Nearest neighbour methods

- Select the k most similar compounds in training set to query compound
- Use the toxicological activities these to predict the activity of the query
- Lazar
 - lazy learning method training compounds are selected at the time of processing a query compound
 - Allows models to be updated as new data become available
 - Includes models for mutagenicity and rodent carcinogenicity


Helma C. Lazy structure-activity relationships (lazar) for the prediction of rodent carcinogenicity and Salmonella mutagenicity. Mol Divers 2006, 10, 147-158

Expert systems

- Toxicological knowledge of human experts encoded as rules
- Can provide predictions about multiple mechanisms
- Include information relating to mechanism of action
- Derek for Nexus
 - Structural alerts
 - Reasoning model used to weigh up multiple arguments for and against toxicity eg using physiochemical properties, relationship between endpoints
 - Level of confidence in prediction is provided
 - Eg improbable, plausible, certain
 - Literature references are provided

Structural alerts

• Alerts: collection of substructures (toxicophores) that are associated with a toxic effect

Derek Nexus (www.lhasalimited.org)

🕑 Der	rek Nexus						x
File	Edit Reports Prediction Batch Tools Help						
	🗁 🖻 🔯 🍺 🔻 🔞 🌾 🐎 🛞 📋						
>> (₽ new-4 🕱 🗖 🗖	🕕 Alert Explorer 🛛 🏶 Reasoning Explorer					- 0
			HERG channel inhibition	n in vitro			
		▼ Alert 647 (HERG Pharmacophore II)			A	lert Match 1 🊔 of	2
		R3 R1	Comments Validation Comments This alert describes a structure-based phar reported to be moderate or strong inhibito				
		R1 = A(aromatic) or A(not aromatic)-A(aromatic) R2 = C(ap3) R3, R4 = H or C(sp3, chain of maximum 3 atoms)	[Pearlstein et al, Cavalli et al, Ekins et al].				=
		Cely one of R3 or R4 may be H A = any atom n = 1-4 (A-A bonds may be of any type where valency allows) if n = 2 or 3 then R1 may be attached to the beta-3-atom if n = 4 then R1 may be attached to either the beta-or gamma-A-atom	A number of pharmaceutical drugs have b electrophysiology assays in a variety of cel [Traebert et al], imipramine [Teschemache	l types. Examples include noras	stemizole [Zhou et al], ch	loroquine	
	Double-click anywhere above to enter editing mode	If n + 4 then RT may be attached to either the beta- or gamma-A-atom Bondscan be of any type No CO2H groups allowed anywhere Show Full Size Image	HERG encodes for the alpha-subunit of a p delayed rectifier current IKr in the heart [M	otassium channel which is thou	ught to carry the rapid co	omponent of the	-
Ľ		References					
ar	± =	Title	Author	Source	Year	Supplemen 🔺	
	Filter reasoning by EQUIVOCAL 🔹 🚺	Toward a pharmacophore for drugs inducing the long Q	<u>T syn</u> , Cavalli A, Poluzzi E, De Ponti F and Re	c Journal of Medicinal Chemist	try, Vol 45 2002	available at "ht	
gation	▲ 📵 LHASA PREDICTIONS	QT interval prolongation by non-cardiovascular drugs: is		Pharmaceutical Science and		available at "ht	
)at	HERG channel inhibition in vitro	Effects of cyamemazine on hERG, INa, ICa, Ito, Isus and I				available at "h1 ≡	-
1 S	mammal - PROBABLE	Ract Finder Configuration					
Navi	(!) Alert 647 (HERG Pharmacophore II)						
	🛛 🛁 Hepatotoxicity	imipramine, 50-49-7					
	🐡 mammal - PLAUSIBLE	Example Image	Test Data				
	 Alert 558 (Dibenzodiazepine or analogue) Ocular toxicity 		Species	Assay	Result		
	📸 mammal - PROBABLE		hamster	HERG patch clamp IC50	moder	ate (1-10 uM)	
	() Alert 598 (Tricyclic antidepressant)		C References				
	Example 543 (amitriptyline) Phospholipidosis		Title	Author	Source	Year Supple.	
	🎲 mammal - PLAUSIBLE		Inhibition of the current of heterologously				
	() Alert 487 (Amine)						
	CUSTOM PREDICTIONS Nothing to report						
	A resulting to report						
		I Search Vitic					
>>			🗐 Knowledge Base:	Lhasa			

Expert systems predict positives only - lack of prediction does not mean non-toxic!

Expert systems

 Process of knowledge discovery can be very time consuming

• Requires detailed analysis of the literature by domain experts

Towards automation of knowledge discovery

- Aim is provide an automated tool to support the process of knowledge discovery through data mining
- Emerging pattern mining techniques used to identify substructural features that could be associated with toxicity
- The substructural features identified require validation through the literature by knowledge-base workers
- Collaborative project between University of Sheffield and Lhasa Limited

Emerging Patterns

• Emerging patterns are sets of properties (descriptors) that occur more often in one class compared to another

Molecules	a	b	с	d	е	Molecules	a	b	с	d	е
1	Х	Х	Х	Х	Х	7	Х		Х	Х	
2	Х	Х	Х	Х		8		_	Х	Х	Х
3	Х	Х	Х			9		Х		Х	Х
4	Х	Х	Х		Х	10	Х		Х		Х
5	Х	Х		Х	Х	11	Х		Х	Х	Х
6		Х	Х	Х		12		Х		Х	

- {b, e} is an emerging pattern supported by active molecules [1, 4, 5] and inactive molecule [9]
- Emphasis is on finding combinations of properties

[†]Dong, G.; Li, J. In Efficient mining of emerging patterns: discovering trends and differences, The Fifth International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 1999; Association for Computing Machinery Press: San Diego, CA, USA, 1999; pp 43-52.

Jumping Emerging Patterns (JEPs)

• JEPs are patterns of properties that occur in one class only compared to another

Molecules	a	b	с	d	е	Molecules	a	b	с	d	e
1	Х	Х	Х	Х	Х	7	Х		Х	Х	
2	Х	Х	Х	Х		8			Х	Х	>
3	Х	Х	Х			9		Х		Х	>
4	Х	Х	Х		Х	10	Х		Х		X
5	Х	Х		Х	Х	11	Х		Х	Х	X
6		Х	Х	Х		12		Х		Х	

• {a, b} is a JEP supported by actives [1, 2, 3, 4, 5] and no inactives

[†]Dong, G.; Li, J. In Efficient mining of emerging patterns: discovering trends and differences, The Fifth International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 1999; Association for Computing Machinery Press: San Diego, CA, USA, 1999; pp 43-52.

JEP mining by enumeration

	All	. patteri	ns		Occu	rrence
a	b	c	d	е	Actives	Inactives
Х					5	3
	Х				6	2
		Х			5	4
			Х		4	5
				Х	3	4
Х	Х				5	0
Х		Х			5	3
Х			Х		3	2
Х				Х	3	1
	Х	Х			5	0
	Х		Х		4	2
	Х			х	3	1
		Х	Х		3	3
		Х		Х	2	2
			Х	Х	2	3
Х	Х	Х			4	0

	All patt	erns co	ntinued	1	Occurrence			
a	b	с	d	e	Actives	Inactives		
Х	Х		Х		3	0		
Х	Х			Х	3	0		
Х		Х	Х		2	2		
Х		Х		Х	2	2		
Х			Х	Х	2	1		
	Х	Х	Х		3	0		
	Х	Х		Х	1	0		
	Х		Х	Х	2	1		
		Х	Х	Х	1	2		
Х	Х	Х	Х		2	0		
Х	Х	Х		Х	2	0		
Х	х		Х	Х	2	0		
Х		Х	Х	х	1	1		
	Х	Х	Х	Х	1	0		
х	Х	Х	Х	Х	1	0		

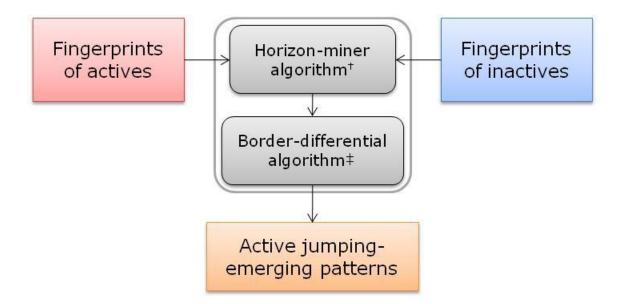
More efficient algorithms are available!

Applications of EPs in Chemoinformatics

- Auer & Bajorath
 - Physicochemical property ranges mapped to a binary bit string

Auer, J.; Bajorath, J. Emerging chemical patterns: a new methodology for molecular classification and compound selection. Journal of Chemical Information and Modeling 2006, 46, (6), 2502-2514.

- Lozano et al.
 - "Jumping fragments" in toxicity dataset
 - Subgraphs are enumerated in actives and searched for in inactives

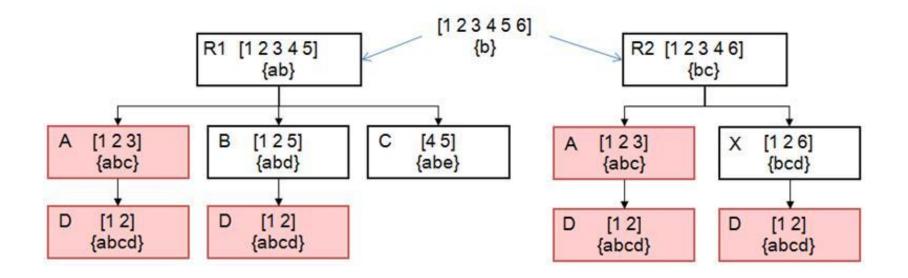

Lozano, S.; Poezevara, G.; Halm-Lemeille, M. P.; Lescot-Fontaine, E.; Lepailleur, A.; Bissell-Siders, R.; Crémilleux, B.; Rault, S.; Cuissart, B.; Bureau, R. Introduction of jumping fragments in combination with QSARs for the assessment of classification in ecotoxicology. Journal of Chemical Information and Modeling, 2010, 50, 1330–1339.

Mining JEPs in toxicity data

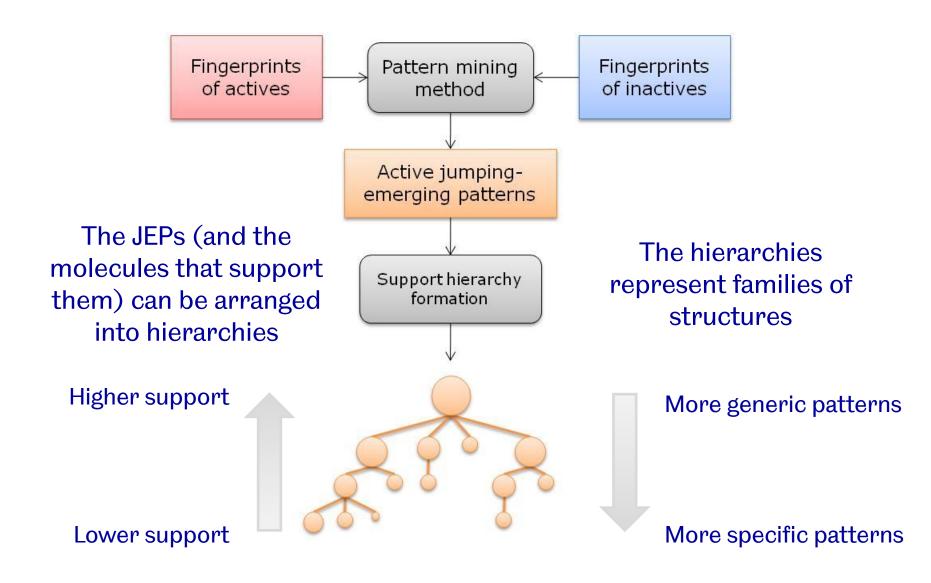
- Aim is to identify patterns (combinations of structural descriptors) that are present in toxic molecules but absent from non-toxic molecules
- Use the patterns to suggest substructural features to knowledge-base workers for validation through the literature
- Applied to small structural fragments
 - Atom pairs, circular fps, etc
 - Allows combinations of descriptors to be identified
 - Potential toxicphores can be constructed from the descriptors
 - Allows hierarchical relationships to be built that represent more detailed (but lower supported) substructural features

Mining JEPs in toxicity data

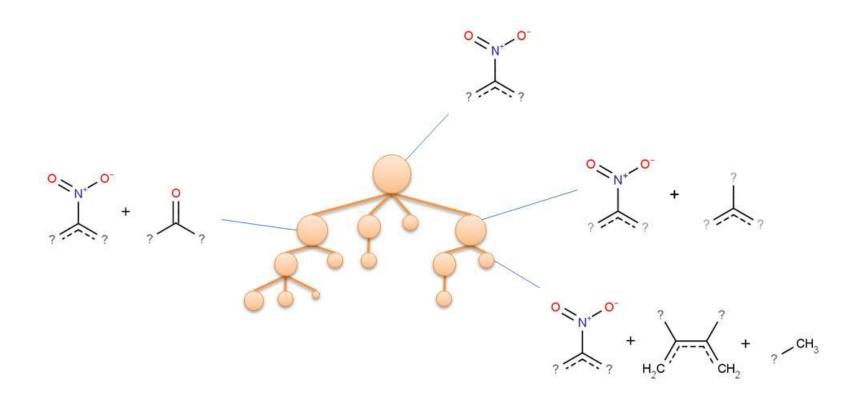
Given a dataset of toxic (active) and non-toxic (inactive) compounds


The set of toxic molecules that support a JEP are formed around a common sets of bits which describe a potential toxicophore

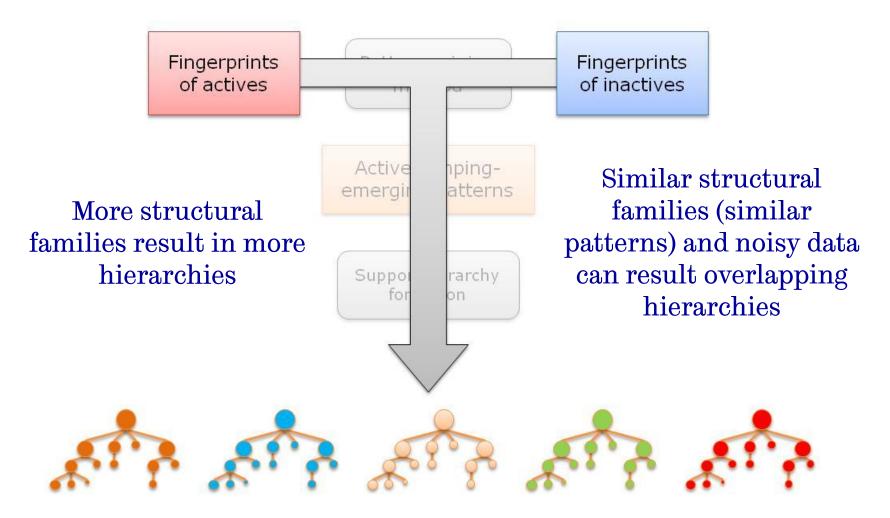
Form of supervised clustering


[†]Li, J.; Dong, G.; Ramamohanarao, K., Making use of the most expressive jumping emerging patterns for classification. Knowledge and Information Systems 2001, 3, (2), 131-145.

[†]Dong, G.; Li, J., Mining border descriptions of emerging patterns from dataset pairs. Knowledge and Information Systems 2005, 8, (2), 178-202.


Hierarchies of JEPs

Hierarchies of JEPs



Support hierarchies

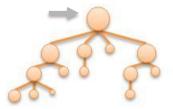
Exploring the hierarchies allows relationships between structures to be analysed

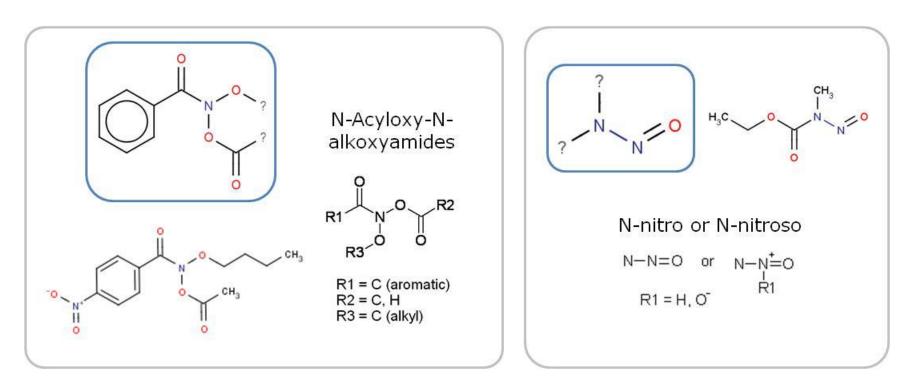
Support hierarchies

JEP mining algorithm

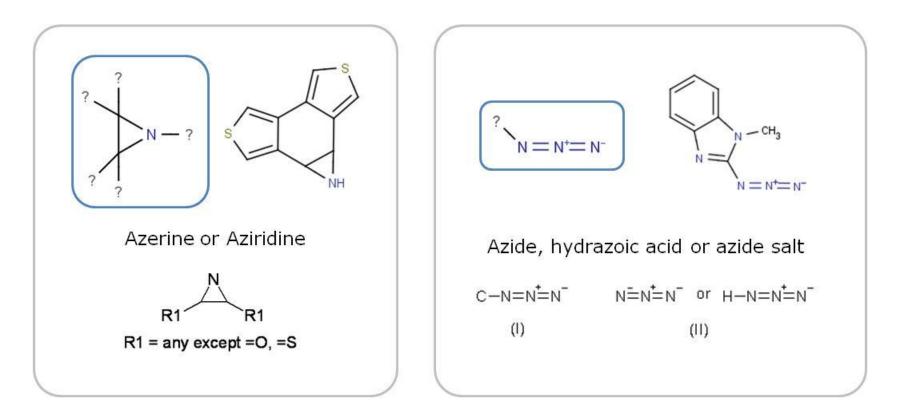
- Generate a set of binary fingerprints using the active compounds in the dataset and use these to form fingerprints for both the actives and inactives
- Apply the Horizon-Miner algorithm to extract the maximal patterns for both the actives and the inactives using the binary fingerprints
- Apply the border-differential algorithm to mine the set of all possible minimal JEPs in the actives compared to the inactives
- Reduce the set of minimal JEPs to those that occur in distinct sets of actives
- Identify relationships between the supporting actives of minimal JEPs, and arrange them into hierarchies
- Extract the maximum set of commonly occurring descriptors from the set of actives that support each minimal JEP, to form the largest and most descriptive representation of their common structural features.

Example: Ames mutagenicity

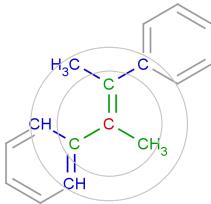

Endpoint


- Known to be caused by a diverse set of small activating substructures
- Dataset
 - Hansen[†] ames mutagenicity dataset was encoded as fingerprints using an in-house naïve fragmentation process
 - i.e. breaking all C-C, C-H and non-heterocyclic bonds
- Interpretable substructure fingerprints

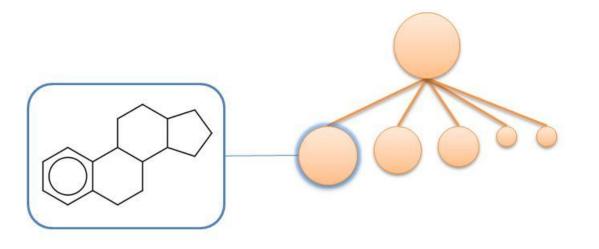
[†]Hansen, K. Mika, S.; Schroeter, T.; Sutter, A.; Laak, A.; Steger-Hartmann, T.; Heinrich, N.; Müller, K. R.; Benchmark data set for in silico prediction of Ames mutagenicity. Journal of Chemical Information and Modeling 2009, 49, (9), 2077.

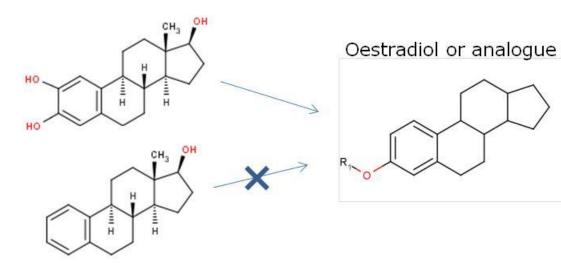

Ames mutagenicity

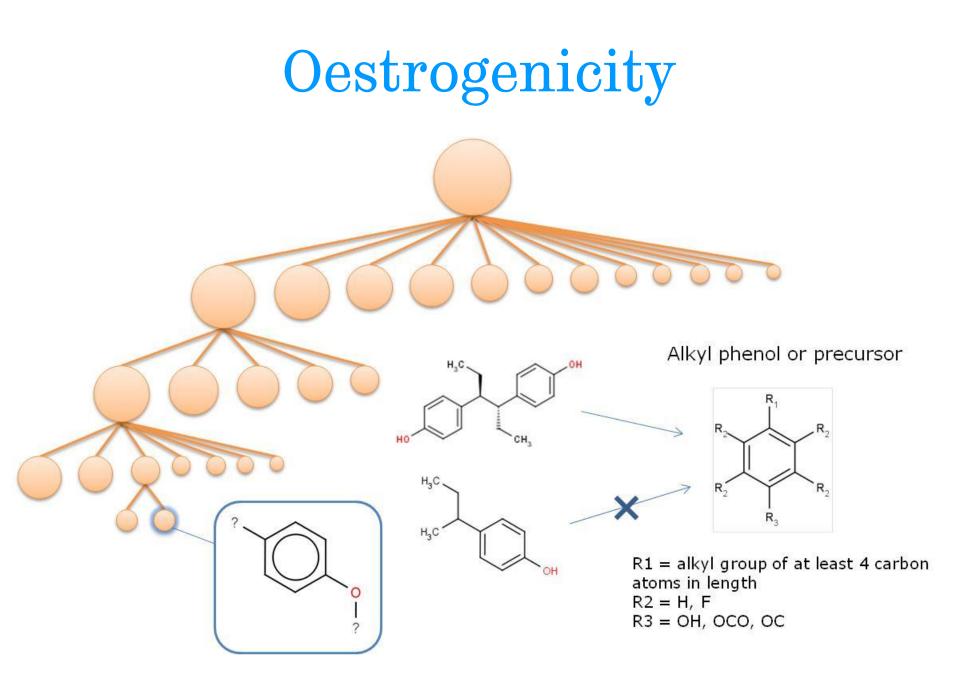
Root patterns with highest support are the most interesting

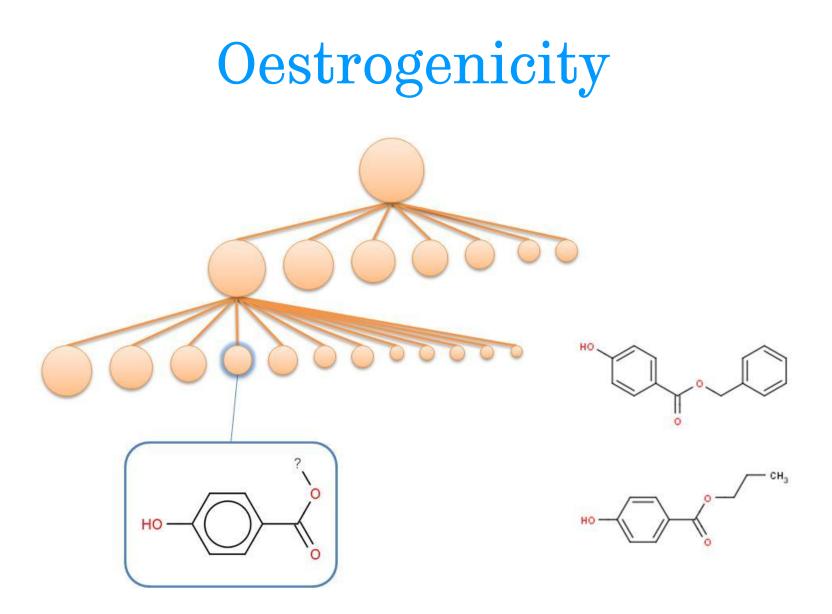

Ames mutagenicity

Found substructures that closely match existing alerts in Derek Nexus


Example: Oestrogenicity


- Endpoint
 - Known to result from a small number of loosely defined toxicophores
- The oestrogenicity dataset* was encoded as circular fingerprints




*The FDA National Center for Toxicological Research – Estrogen Receptor Binding (NCTRER) database obtained from the Distributed Structure-Searchable (DSSTox) network, hosted by the US EPA.

Oestrogenicity

Found substructures that are not known to Derek Nexus and which may be worth further investigation

Conclusions: JEPs

- The aim of the JEP mining described here is to assist knowledge-based workers in discovering new alerts to augment the knowledge-base
- Substructural features have been identified that are similar to known toxicophores
- Substructural features not already present in the knowledge-base have also been identified
- JEP mining could be used predictively (not explored here)
- Currently focused on EP mining
 - Improved handling of noisy data
 - Preliminary work has shown that a more manageable number of patterns is found

Acknowledgements

- Richard Sherhod
 - University of Sheffield & Lhasa Limited
- Jonathan Vessey, Philip Judson
 - Lhasa Limited
- Funding
 - Lhasa Limited
 - Technology Strategy Board
 - Engineering and Physical Sciences Research Council

Further Reading

- Marchant C. Computation Toxicology: A tool for all industries. WIREs Computational Molecular Sciences, 2011, doi: 10.1002/wcms.100
- Merlot C. Computational toxicology—a tool for early safety evaluation. Drug Discovery Today, 2010, 15, 16-22
- Modi S, Hughes M, Garrow A, White A. The value of in silico chemistry in the safety assessment of chemicals in the consumer goods and pharmaceutical industries. Drug Discovery Today, 2012, 17, 135-142.
- Muster W, Breidenbach B, Fischer H, Kirchner S, Mueller L, Pahler A. Computational toxicology in drug development. Drug Discovery Today, 2008, 13, 303-310
- Valerio Jr. L.G. In silico toxicology for the pharmaceutical sciences. Toxicology and Applied Pharmacology 2009, 241, 356–370
- Varnek A, Baskin I. Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis? Journal of Chemical Information and Modeling 2012, 52, 1413–1437