
Best practices for developing 
predictive QSAR models

Alexander Tropsha
Laboratory for Molecular Modeling

and 
Carolina Center for Exploratory Cheminformatics Research

School of Pharmacy
UNC-Chapel Hill



OUTLINE

• Introduction: Brief outline of the QSAR 
approach

• Why models fail (bad practices)
• Good practices.

– Predictive QSAR Modeling Workflow
– Examples of the Workflow applications
– Emerging applications of QSAR: chemocentric

informatics
• Conclusions: QSAR modeling is a decision 

support 



The rumors of QSAR demise 
have been greatly exaggerated
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Quantitative
Structure
Property 
Relationships
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~106 – 109

molecules

VIRTUAL 
SCREENING

CHEMICAL
STRUCTURES

CHEMICAL
DESCRIPTORS

PROPERTY/
ACTIVITY

PREDICTIVE
QSAR MODELS

INACTIVES

HITS

CHEMICAL 
DATABASE

The utility of QSAR models



QSAR Modeling appears easy…

Chemistry Biology
(IC50, Kd...)

Cheminformatics
(Molecular Descriptors)

Comp.1 Value1 D1 D2 D3 Dn

Comp.2 Value2 " " " "
Comp.3 Value3 " " " "

Comp.N ValueN " " " "
- - - - - - - - - - - - - - - - - - - - - -

Goal: Establish correlations between descriptors and the target 
property capable of predicting activities of novel compounds 

BA = F(D) {e.g., …}
(e.g., -LogIC50 = k1D1+k2D2+…+knDn)
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EXTERNAL TEST SET PREDICTIONS
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But … the unbearable lightness of model building 
for training sets…

…leads to unacceptable prediction accuracy. 
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BEWARE OF q2 (Kubinyi paradox)!!!
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Golbraikh & Tropsha, J. Mol. Graphics Mod. 2002, 20, 269-276. 

•Only a small fraction of “predictive” training set models with
LOO q2 > 0.6 is capable of making accurate predictions (r2 > 0.6)
for the test sets.



Major components of QSAR modeling

• Target properties (dependent variable)
– Continuous (e.g., IC50)
– Categorical unrelated (e.g., different pharmacological classes)
– Categorical related (e.g., subranges described as classes)

• Descriptors (or independent variables)
– Continuous (allows distance based similarity)
– Categorical related (allows distance based similarity)
– Categorical unrelated (require special similarity metrics)

• Correlation methods (with and w/o variable selection)
– Linear (e.g., LR, MLR, PCR, PLS)
– Non-linear (e.g., kNN, RP, ANN, SVM)

• Validation and prediction
– Internal (training set) vs. external (test set) vs. independent evaluation 

set
• Examples of applications and pitfalls

QSAR 
Pill



Complexity of QSAR modeling: 
Choices and Practices

• Descriptors (thousands and counting)
• Data-analytical methods (dozens and 

counting)
• Validation approaches (unfortunately (!) 

only a handful but counting)
• Experimental validation as part of model 

building (very rare)
BUT

• We typically use one (or at best very few) 
modeling techniques

• Publish successes only 
• Compete but (mostly) indirectly



Why models may fail 
• Incorrect data (structures and activities) in the dataset
• Modeling set is too small
• No external validation
• Incorrect selection of an external test set
• Incorrect division of a dataset into training and test sets
• Incorrect measure of prediction accuracy
• Insufficient statistical criteria to estimate predictive 

power of models 
• Lack or incorrect definition of applicability domain
• No Y-randomization test (overfitness) 
• Presence of leverage (structure) and activity outliers

Also, see Dearden JC, Cronin MT, Kaiser KL. How not to develop a quantitative structure-activity or 
structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res. 2009;20(3-4):241-66



• A typical target function (Classification Rate):
CR=N(classified correctly)/N(total)

A dataset:
Class 1: 80 compounds
Class 2: 20 compounds
Model: assign all compounds to Class 1.
Target function: CR=0.8 
The model appears to have high classification accuracy

Some reasons why QSAR models may fail: using 
incorrect target function in classification QSAR for 

biased datasets:

• Better target function:
CCR=0.5(Sensitivity+Specificity)

In the above example, CCR = 0.5

∑
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total
k

corr
k

N
N

K
CCR

1

1
• General formula:

K – the number of classes

Nk
corr – the number of compounds of

class k assigned to class k

Nk
total – total number of compounds

of class k

• For categorical response variable, target functions can depend also on the
absolute errors (differences between predicted and observed classes).

QSAR 
Pill
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Some reasons why QSAR models may fail: No 
Applicability Domain is defined for the Model
• Compounds which are highly dissimilar from all

compounds of the training set (according to the set of
descriptors selected) cannot be predicted reliably
Lack of the AD:

unjustified extrapolation
wrong prediction

Typical situation:
a compound of the test set for which error of prediction is high
is considered an outlier
HOWEVER: a compound of the test set dissimilar from all
compounds of the training set can be by chance predicted
accurately

QSAR 
Pill



Atelier Descripteurs 200

Applicability domain of QSAR models
For a given model, two parameters are
calculated:
- <Dk> : average Euclidian distance between
each compound of the training set and its k
nearest neighbors in the descriptors space;
- sk : standard deviation of the distances
between each compound of the training set
and its k nearest neighbors in the descriptors
space.

Descriptor 1

Descriptor 2

TRAINING SET



Atelier Descripteurs 200

Applicability domain of QSAR models

For each test compound i, the distance Di is
calculated as the average of the distances
between i and its k nearest neighbors in the
training set.

= NEW COMPOUNDDescriptor 1

Descriptor 2

TRAINING SET

For a given model, two parameters are
calculated:
- <Dk> : average euclidian distance between
each compound of the training set and its k
nearest neighbors in the descriptors space;
- sk : standard deviation of the distances
between each compound of the training set
and its k nearest neighbors in the descriptors
space.

OUTSIDE THE DOMAIN

Will not be predicted
by the model

Di ≤ <Dk> + Z × sk
with Z, an empirical parameter (0.5 by default)

The new compound will be predicted by
the model, only if :

INSIDE THE DOMAIN

Will be predicted
by the model

*Tropsha, A., Gramatica, P., Gombar, V. The importance of being earnest:…
Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69-77. 



Applicability domain vs. prediction 
accuracy (Ames Genotoxicity dataset)
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Some reasons why QSAR models 
may fail: Y-randomization test is not 

carried out
• Y-randomization test:

– Scramble activities of the training set
– Build models and get model statistics.
– If statistics are comparable to those obtained for models built with

real activities of the training set, the last are unreliable and should
be discarded.

Frequently, Y-randomization test is not carried out.

Y-randomization test is of particular importance, if
there is:

- a small number of compounds in the training or
test set
- response variable is categorical

QSAR 
Pill



Activity randomization: model robustness
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The lowest q2 = 0.51 in the top 10 models

The highest q2 =0.14 for randomized datasets
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The lowest q2 = 0.51 in the top 10 models

The highest q2 =0.14 for randomized datasets

Training set with real property values is 
expected to produce much higher q2 values 
than the same set with randomized 
property values.



Some reasons why QSAR models 
may fail: outliers 

• Many potential outliers can be detected in the dataset
prior to QSAR studies, but typically this is not done.

• Two types of outliers
- Leverage outliers: compounds dissimilar from all
other compounds in a dataset in the chemistry space.
-Activity outliers: compounds similar to some other
compounds in the dataset, but with activities quite
different from those of their nearest neighbors
(activity cliffs) . QSAR 

Pill



Why QSAR models may fail: insensitive descriptors. 
[Example: Optimal (left panel) and traditional (right 

panel) orientations of androgen (DHT shown in 
gold) and estrogen (estradiol shown in green) within 

human SHBG steroid-binding site].

A. Cherkasov, JMC, 2008

Identical q2 (CoMFA*) of 0.53

*CoMFA – Completely Misleading Famous Aberration



Recently, D.Young et al. pointed out the importance of cleaning
data, especially, in the context of QSAR modeling.

They investigated several public and commercial databases to
calculate their error rates: the latter were ranging from 0.1 to 3.4%
depending on the database.

Their main conclusions were that small structural errors within
dataset could lead to significant loss of predictive abilities for
the QSAR models which have been built using those erroneous
input data.



Why can’t we get it Right? Have not 
we tried enough? 

• Descriptors? No, we have plenty (e.g., 1000’s in 
Dragon)

• Datamining methods? No, we also have plenty (e.g., 
SAS)

• Training set statistics? NO, it does not work
• Test set statistics? Maybe, but it is still insufficient

So…what else can we do?????
• Change the success criteria! Leave behind the phase of 

“narcissistic” modeling and focus on external
predictivity and experimental validation. 

• Recognize QSAR as an empirical data modeling 
approach: just do it any (all) way you like but 
VALIDATE on independent datasets!



Revising QSAR Modeling Process : 
Predictive QSAR Modeling Workflow*

• Model Building: Combination of various 
descriptor sets and variable selection data 
modeling methods (Combi-QSAR)

• Model Validation
– Y-randomization
– Training, test, AND evaluation set selection
– Model sampling and selection criteria
– Applicability domain

• Consensus prediction using multiple models
*Tropsha, A., Gramatica, P., Gombar, V. The importance of being earnest:…
Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69-77;
Tropsha & Golbraikh, Curr. Pharm. Des., 2007, 13, 3494-3504



Original 
Dataset

Multiple
Training

Sets

Multiple
Test
Sets

Y-randomization

Combi-QSAR
Modeling

Activity
Prediction Only accept 

models that 
passed both 
internal and 

external 
accuracy 

filters
External validation
Using Applicability

Domain

Split into
Training, Test
and External

Validation 
sets

Experimental
Validation

Database
Screening Using

Applicability
Domain

Validated Predictive
Models with High 

Internal & External 
Accuracy

*Tropsha, A., Gramatica, P., Gombar, V. The importance of being earnest:…
Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69-77.
Tropsha & Golbraikh, Curr. Pharm. Des., 2007, 13, 3494-3504

Predictive QSAR Modeling Workflow*

Structure
Curation/

Harmonization



The importance of data curation:
What do these two men have in common?.



ChemAxon - Standardizer
OpenEye - Filter

ChemAxon - Standardizer
OpenBabel

Molecular Networks -
CHECK,TAUTOMER

ISIDA - Duplicates
HiT QSAR

CCG - MOE

ISIDA - EdiSDF
Hyleos - ChemFileBrowser

OpenBabel
ChemAxon - MarwinView

SOFTWARE

Muratov, Fourches, Tropsha. Trust but verify. JCIM, 2010, in press.



DATASET

EXTERNAL VALIDATION SETMODELING SUBSET

TRAINING SET TEST SET

Division of the Dataset into Three Subsets and 
External Validation

"PREDICTIVE" MODELS 

Rational division

MODELS Model Validation

External Validation

Random division

PREDICTIVE MODELS 

Golbraikh et al., J. Comp. Aid. Mol. Design 2003, 17, 241–253.
Tropsha & Golbraikh, Curr. Pharm. Des., 2007, 13, 3494-3504



COMBINATORIAL QSAR

C-Qics
KNNKNN

BINARY QSAR,…BINARY QSAR,…

COMFA descriptorsCOMFA descriptors

MolconnMolconn Z Z 
descriptorsdescriptors

Chirality descriptorsChirality descriptors

VolsurfVolsurf descriptorsdescriptors

Comma descriptorsComma descriptors

MOE descriptorsMOE descriptors

Dragon descriptorsDragon descriptors

SAR Dataset

Compound representation 

Selection of best models

Model validation 

and external test sets 
using  Y-Randomization

QSAR modeling
g SVMSVM

DECISION TREEDECISION TREE

Lima, P., Golbraikh, A., Oloff, S., Xiao, Y., Tropsha, A. Combinatorial QSAR Modeling of P-Glycoprotein 
Substrates. J. Chem. Info. Model., 2006 46, 1245-1254.
Kovatcheva, A., Golbraikh, A., Oloff, S., Xiao, Y., Zheng, W., Wolschann, P., Buchbauer, G., Tropsha, A. 
Combinatorial QSAR of Ambergris Fragrance Compounds. J Chem. Inf. Comput. Sci. 2004, 44, 582-95



The OECD Principles of model validation
To facilitate the consideration of a QSAR model 

for regulatory purposes, it should be associated with the 
following information:

 a defined endpoint

 an unambiguous algorithm;

 a defined domain of applicability
 appropriate measures of goodness-

of-fit, robustness and predictivity
 a mechanistic interpretation, 

if possible;

-

http://www.oecd.org/dataoecd/33/37/37849783.pdf



104 models that 
have a 

R2 > 0.60
q2 > 0.60

Multiple 
Training Sets

Validated Predictive 
Models with High Internal 

& External Accuracy

Application of Predictive QSAR Workflow 
to GGTase-I Inhibitors*

48 GGTase-I
Inhibitors

Multiple 
Test Sets

Automatic Lazy 
Learning (ALL) QSARDivide into 

Training and 
Test Sets

Activity 
Prediction

Y-Randomization

Screen 9.5x106

Compound 
Database

79 Hits predicted 
as GGTase-I

Inhibitors

Experimental 
Validation

Partial Least Square 
(PLS) QSAR

k Nearest Neighbor 
(kNN) QSAR

*Collaboration with P. Casey and Y. Peterson, Duke



2 Training Set Scaffolds

GGTIDUx Series
Pyrazoles

Peterson & Casey

GGTIx Series
Peptidomimetics

Hamilton & Sebti

Novel Scaffolds Discovered
Database Mining Reveals Unique Chemical Entities
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A Large Commercial Database 
of 515,000 Compounds

Similarity Search

• Similarity Metric: Tanimoto 
Coefficient; of every single 
compound in the training set

• Fingerprint: MACCS Structural 
Keys

• 425 hits obtained for TC=0.80;
2 hits obtained for TC=0.90

QSAR Database Search

• Global search based on the 
whole chemical space (MZ 4.09 
des.) of training set

• 12 hits obtained after global 
search (Z = 0.5) and subjected to 
consensus predictions

• 2 selected for experimental 
validation based on high 
predicted activity, uniqueness of 
structure & availability

Database Mining: Similarity Search vs. QSAR Search

There was NO overlap between the hits from two protocols; All 12 
QSAR hits were below TC=0.80 of training set.



Recent examples of experimentally 
validated QSAR-based predictions

• Anticonvulsants: Shen, M. et al, J. Med. Chem. 2004, 47, 
2356-2364.   

• HIV-1 reverse transcriptase inhibitors: Medina-Franco, J., et 
al, J. Comput. Aided. Mol. Des., 2005, 19, 229–242

• D1 receptor antagonists: Oloff et al, J. Med. Chem., 2005,
48, 7322-32

• Anticancer agents: Zhang et al, J. Comp. Aid. Molec. Des.,  
2007, 21, 97-112. 

• AmpC inhibitors: Hsieh, J.-H.. et al, J. Comp. Aid. Molec. 
Des.,  2008,  22(9):593-609

• HDAC inhibitors: Wang, S. et al,  (JCIM, 2009, 49, 461-76)
• GGT-I inhibitors: Wang, Peterson, et al (JMC, 2009, 

52(14):4210-20; provisional patent)
• 5HT7 binders: Zhao et al (in preparation)



Characteristic AmpC Ligands and Decoys and Their Ranks by Different Scoring 
Functions. Blue = DOCK, magenta = ScreenScore, yellow = FlexX, cyan = PLP, purple 
= PMF, and red = SMoG (SMoG ranks are based on a ranking, which does not include 
halogenated compounds).

*J. Med. Chem. 2005, 48, 3714-3728

QSAR vs. Docking: Application of QSAR 
Approaches to the Analysis of Binding Decoys

Decoys are frequently 
indistinguishable from binders 

using typical SB scoring 
functions.*



Study Design (AmpC β-lactamase dataset)

80 nonbinders21 inhibitors

Modeling Set
51 compounds

Binary kNN QSAR
Model Building

(MolConnZ descr)

342
Predictive Models

Database Mining

50 nonbinders
dissimilar to 

inhibitors
10 compounds

64 HTS ‘hits’
(non-binders)

Similarity Search

Class 1 Class 2

Correct Classification Rate (CCR) =  0.5 * (TP/N1+TN/N0)

N1: Total number of inhibitors
N0: Total number of nonbinders

Hsieh JH, Wang XS, Teotico D, Golbraikh A, Tropsha A
J Comput Aided Mol Des. 2008;22(9):593-609



The QSAR models do not predict the majority of the 
64 HTS ‘Hits’ as binders in agreement with 

experimental study by Shoichet group

Z = 0.5;  Accuracy = 20/25 = 0.8
Z = 3.0;  Accuracy = 47/55 = 0.85
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Descriptor Interpretation
Rank Descriptor ID Frequency Interpretation

1 nHCsatu 32.2 CHn
(unsatuaed)

2 Hsulfonamide 28.4

3 nnitrile 27.5

4 Hmin 27.2

5 naaO 26.3 :O:(aromatic)

6 naaS 26.3 :S: (aromatic)

7 SaaCH 26.0 :CH:

8 n3Pad24 26.0

9 SssCH2 26.0 -CH2-

10 SHBint5 25.4

11 Xvch5 24.3

12 n2Pag23 24.3

13 IDW 24.0

14 htets2 23.7

15 nimine 23.7

Cl

N

O
N+

N

NHN

N

S
NH

O

HO

S
O

-O O O

inhibitor nonbinder

S
O

O N

C N
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Virtual Screening of a PubChem AMPc 
HTS dataset of 69,653 Compounds

Database mining of 69653 compounds (Z-cutoff = 0.5)

No. of models in prediction

100 120 140 160 180 200 220 240 260 280
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Hit selection criteria:
- Within AD of at least 
50% of models
- 80% of those predict a 
compound as an 
inhibitor

This leads to 15 Hits



One “inactive” compound (CID 69951) Shows 
Micro-molar Inhibitory Activity

Kd = 18µM, Ki = 135µM

Log[I](Log(mM)
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CID: 699751

Experiments done by Dr. D. Teotico at UCSF
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Pairwise potential (PPL) descriptors are applied to 
characterize protein-ligand interactions 

Protein-ligand 
interfaces

Delaunay Tessellation

Each tetrahedron is 
categorized by
a) receptor/ligand atoms 
b) Chemical atom type
In total, there are 554
theoretical descriptor types 
(m) [2].

[1]: Parr RG, Szentpaly LV, Liu S J. Am. Chem. Soc. 1999, 121, 1922
[2]: Zhang S. et al. J. Med. Chem., 2006; 49(9); 2713-2724

3.    Each descriptor’s value is the SUM of protein (p)-
ligand (l)pairwise potential  for  the same tetrahedral 
type at the interface (n)kpll
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1. Delaunay tessellation of protein-ligand interface
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2.     For each atom at the protein-ligand interface, assign 
the maximal charge transfer (MCT) value calculated by 
Conceptual Density Functional theory DFT [1].



Target-specific filter construction

X-ray structure of the protein + 
its bound native ligand 

Docking (e.g. Fred) to generate 
~1000 geometric poses 

Generate pairwise potential 
descriptors for each pose

Classify the poses into 
native-like/decoy based 

on RMSD cutoff (4Å)

Training/test set External validation set

Select acceptable models 
(Accuracy > 95%) for 
consensus prediction

Build binary classification 
models using k-NN or LIBSVM Accuracy > 95% 



A proposed screening protocol for structure-based virtual screening

A mix of ligands and decoys
from DUD

Docking (e.g. Fred) and save 
multiple poses for each 

compound 

Target-specific filter
/multi-target filter

Exclude poses predicted as 
decoys

Re-ranking
(e.g. MedusaScore*)

Performance 
evaluation

MedusaScore was developed in 
Dr. N. Dokholyan’s lab in UNC
J. Chem. Inf. Model. 2008, 48, 1656–1662

Generate 
geometric poses

Build QSAR 
classification 

model

Generate 
Pairwise potential 

descriptors

Select 
acceptable 

models

Protein-ligand 
complex(es)



Docking enrichment plot for DHFR 
using DUD

(log)



Application to 5-HT6 receptor
linked to Alzheimer’s disease

Chemocentric Informatics: Integration of 
QSAR modeling with other approaches to drug 

discovery: structural hypothesis fusion.  



Disease 
gene 

signatures

Disease  
related 

genes or 
proteins

Text/database 
mining Network mining

PubMed

CTD

HMDB

Disease 
related 

proteins

cmap
ChemoText

New hypothesis about connectivity between 
chemicals and diseases

Binding 
data

Target 
related 
ligands

Functional  
data

QSAR

Predictive models

Database mining

Structural hypothesis
“putative drug candidates”

Accept common
hits only

New testable hypothesis 
with higher confidence

Disease-Target
Association

47



QSAR Modeling of 5-HT6 Ligands

5-HT6 Dataset:
 79 Binders (Ki < 10 µM),
 99 Non-binders (Ki ≥ 10µM)

48

5-HT6 Dataset 
Structure 

Activity Data

99 
Non-binders

79
Binders

Source: PDSP Ki Database 



Comparison of the QSAR Approaches to 
Classify 5-HT6 Receptor Ligands
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Step3 : list of 
correlated compounds

Step2: query the cmap

Database

Lamb, J. et al. Science, 313, 1929-1935 (2006)

Step1: upload signature

Output

High positive score 

High negative 
score

Null

Biological state 1

Control
Signature

Input

The Connectivity Map
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Alzheimer’s disease gene signatures 
“Two different signatures” from 

hippocampus (S1) and cerebral cortex 
(S2) from two independent reports

Signature database
“Pattern Matching”

cmap

F

E

C
B
A

Identification
of possible treatments 
(A,B,C) and causes (F)

1.00

0.00

0.00

-1.00

cmap SCORE
Positive 
Connectivity
“possible 
causes for 
disease state”

Negative 
Connectivity
“possible 
treatments for 
disease state”

Upload signature Query the cmap List of compounds

(S1) (S2) 

Querying the cmap with Alzheimer’s 
Disease Gene Signatures
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34 Potential Anti-AD agents

WDI 
DATABASE

59 K
compounds ~ 2 K

300 5-HT6 Binders 
Hits

Negative Connection 
HITSCOMMON

HITS

Cmap
DATABASE

~ 2 K 
compounds

Virtual Screening Results

52

Integrated 
Informatics QSAR

FILTER
CMAP
FILTER



WDI Name cmap Name No. of 
Models

Av. Pred. 
Value

cmap  
Score S1

cmap Score 
S2

CLOZAPINE clozapine 900 1.00 -0.398 -0.366
TAMOXIFEN tamoxifen 910 0.99 0.358 -0.507
FLUSPIRILENE fluspirilene 854 0.99 -0.493 -0.551
ZUCLOPENTHIXOL zuclopenthixol 883 0.98 -0.609 -0.746
BI-2 imipramine 898 0.98 -0.503 -0.415
CIDOXEPIN doxepin 908 0.97 -0.463 -0.777
NORTRIPTYLINE nortriptyline 883 0.96 -0.555 -0.410
BI-3 clomipramine 893 0.95 -0.768 -0.425
ENCLOMIFENE clomifene 899 0.91 -0.414 -0.611
DO-897 Prestwick-559 858 0.79 -0.741 -0.619
LY-294002 LY-294002 866 0.70 -0.351 -0.303
ACEFYLLINE-PRENYLAMINE prenylamine 679 0.69 -0.589 -0.457
NISOXETINE nisoxetine 899 0.68 -0.491 -0.408
IFENPRODIL ifenprodil 900 0.66 -0.541 -0.489
FENDILINE fendiline 765 0.66 -0.388 -0.683
NAFTIFINE naftifine 724 0.66 -0.790 -0.591
RALOXIFENE raloxifene 809 0.64 -0.378 -0.482
MEBEVERINE mebeverine 820 0.57 -0.543 -0.798
LOBELANIDINE lobelanidine 826 0.56 -0.508 -0.488
LOBELINE lobeline 882 0.55 -0.514 -0.750
AZACYCLONOL azacyclonol 840 0.54 -0.448 -0.556

Selected Common Hits from QSAR and 
the cmap

53

Clomiphene Tamoxifene

Toremifene

Raloxifene

Selective Estrogen Receptor Modulators (SERMs) predicted 
as 5-HT6 receptor ligands and potential therapeutics for AD:

A power of the integrated chemogenomic approach

Antipsychotics

Antidepressants

Calcium Channel Blockers

Selective Estrogen Receptor Modulators



Raloxifene is a 5-HT6 Binder and Potential 
Anti-Alzheimer’s

Raloxifene binds to 5-HT6
receptor with a Ki= 750 nM.
Raloxifene given at a dose 
of 120 mg/day led to 
reduced risk of cognitive 
impairment in post-
menopausal women. 
Yaffe, K. et al., Am J Psychiatry, 
162, 683–690 (2005) .

Raloxifene (blue triangle) and Chlorpromazine (square)
versus [3H] LSD competition binding at 5-HT6
receptors. Tested by our collaborators at PDSP.
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A Power of the Integrated Chemogenomic Approach
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Raloxifene is predicted to bind several 
receptor families using QSAR-based VS

Receptor 
family Type of model Number 

of models
Average 

score
Total number 

of models
CCR_models

(tr, ts &ex)
5-HT Classification 512 0.57 650 ≥0.7
Alpha 2 Classification 1686 0.76 2045 ≥0.9
Dopamine Classification 350 0.70 482 ≥0.7
Muscarinic Classification 444 0.66 500 ≥0.7
Sigma Classification 730 0.69 898 ≥0.7

Receptor Type of 
models

Number of 
models plogKi SD Ki

Alpha 2A Regression - - - -
Alpha 2B Regression 25 6.2 0.00 631
Alpha 2C Regression 1 6.8 0.42 158

Classification models used prospectively to predict raloxifene’s promiscuity

Regression models used retrospectively to predict raloxifene’s binding affinity



Comprehensive screening results

Ca-channel blocker (L-type “as neuronal”) And has high permeability through BBB
Could be a positive potentiator of GABAB  (to be tested: because derivatives are)
And has high permeability through BBB

CMPD PI Tier 5ht1a 5ht1b 5ht1d 5ht1e 5ht2a 5ht2b 5ht2c 5ht3 5ht4 5ht5a 5ht6 5ht7
13505 Hajjo Raloxifene 2,330.00 624 1,222.00 1,868.00 1,049.00 69 1,642.00 5,050.00 1,219.00 750 1,220.00
14821 Hajjo Fendiline 3,550.00 3,217.00 894 3,085.00

678 PDSP (MUL) Tamoxifen 3,477.00 1,618.00 2,596.00 4,282.00 2,123.00 931.1 1,077.00
10572 PDSP Tamoxifen >10,000 7,857.00 2,720.00 1,952.00 5,787.00 7,821.00 1,698.00 >10,000

Alpha1A Alpha1B Alpha1D Alpha2A Alpha2B Alpha2C Beta3 D1 D2 D3 D4 D5 DAT DOR EP4 GabaA
247.7 534.6 478.2 1,288.20 61 1,104.00 1,626.00 683 >10,000 3,023.00 3,803.00 928 3,158.00 >10,000

3,056.00 592.1 873.3 768.4 9,655.00 6,881.00
1,508.00 1,682.00 498 7,817.00 >10000 4,328.00

1,211.00 657 5,517.00 1,740.00 >10,000 2,820.00

H1 H2 H3 H4 KOR M1 M2 M3 M4 M5 MOR NET SERT Sigma 1 Sigma 2
5,356.00 1,436.00 7,072.00 186 >10,000 2,037.00 1,229.00 8,127.00 1,026.00 5,761.00 247.8
2,295.00 993 9,603.00 9,073.00 3,201.00 327.8 2,278.00 1,455.00 3,981.00 227.3 471.9

720
1,980.00 5,083.00 481 331
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Fendiline Raloxifene



Importance of hypothesis fusion

57

WDI Name cmap Name No. of 
Models

Av. Pred. 
Value

cmap  
Score S1

cmap Score 
S2

CLOZAPINE clozapine 900 1.00 -0.398 -0.366
TAMOXIFEN tamoxifen 910 0.99 0.358 -0.507
FLUSPIRILENE fluspirilene 854 0.99 -0.493 -0.551
ZUCLOPENTHIXOL zuclopenthixol 883 0.98 -0.609 -0.746
BI-2 imipramine 898 0.98 -0.503 -0.415
CIDOXEPIN doxepin 908 0.97 -0.463 -0.777
NORTRIPTYLINE nortriptyline 883 0.96 -0.555 -0.410
BI-3 clomipramine 893 0.95 -0.768 -0.425
ENCLOMIFENE clomifene 899 0.91 -0.414 -0.611
DO-897 Prestwick-559 858 0.79 -0.741 -0.619
LY-294002 LY-294002 866 0.70 -0.351 -0.303
ACEFYLLINE-PRENYLAMINE prenylamine 679 0.69 -0.589 -0.457
NISOXETINE nisoxetine 899 0.68 -0.491 -0.408
IFENPRODIL ifenprodil 900 0.66 -0.541 -0.489
FENDILINE fendiline 765 0.66 -0.388 -0.683
NAFTIFINE naftifine 724 0.66 -0.790 -0.591
RALOXIFENE raloxifene 809 0.64 -0.378 -0.482
MEBEVERINE mebeverine 820 0.57 -0.543 -0.798
LOBELANIDINE lobelanidine 826 0.56 -0.508 -0.488
LOBELINE lobeline 882 0.55 -0.514 -0.750
AZACYCLONOL azacyclonol 840 0.54 -0.448 -0.556



ToxRefDB:  >$1Billion Million Dollars Worth of In Vivo
Chronic/Cancer Bioassay Effects and Endpoints 

Effects & Endpoints
To
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http://www.epa.gov/ncct/toxrefdb/

• Chemical/Study-centric
• Detailed toxicity data
• Toxicity standards/Data model
• Exportable
• Compatible with multiple platforms

(ACCESS, xml, MySQL)



Toxicity Risk Assessment
NO2

increasing uncertainty

SAR
structure-activity

relationships

Chemocentric 
view of 
biological data

Slide courtesy of Dr. Ann Richard (EPA)



Chemical
Structure & 
Properties

Toxicity
Signature

Development

Genomic
Signatures

Cellular Assays

Biochemical
Assays

In silico Predictions

Toxicology
Endpoints



Poor global relationships between 
in vivo and in vitro assays in 
ToxCastTM (based on Matthew’s 
Correlation Coefficient, MCC*) 
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75 (49+26) in vivo and 409 in vitro endpoints

*



Toxicity testing

Human health risk

Chemical Structure – in vitro – in 
vivo Toxicity Data Continuum.

Slide is courtesy of Dr. Ivan Rusyn (UNC)



Quantitative
Structure
Property 
Relationships
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Use of hybrid descriptors for structure - in vitro – in vivo modeling
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Zhu et al, EHP, 2008, (116): 506-513 



Use of HTS based biological descriptors 
improves predictive power of QSAR Models 

of chemical carcinogenicity*

0
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Sensitivity Specificity Overall Predictivity

Chemical (MolConnZ)
Descriptors 

Chemical (MolConnZ)
Descriptors + Biological (HTS)
Descriptors

Zhu H, Rusyn I, Richard A, Tropsha A.* Use of cell viability assay data improves the prediction accuracy of conventional quantitative 
structure-activity relationship models of animal carcinogenicity. Environ Health Perspect 2008; (116): 506-513



A new “hierarchical QSAR” approach* 
relying on the relationship between in 

vitro and in vivo ToxCast assays results 
affords highly predictive models

Zhu H, Ye L, Richard A, Golbraikh A, Wright FA, Rusyn I, Tropsha A.  A novel two-step hierarchical quantitative structure-activity 
relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environ Health Perspect. 2009, 117(8):1257-64



Quantitative
Nanostructure
Toxicity 
Relationships

Introducing QNTR modeling
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Experimental measurements
(size, relaxivities, zeta potential etc.)
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- Building of models using 
machine learning methods 
(NN, SVM etc.);

- Validation of models 
according to numerous 
statistical procedures, and 
their applicability domains.

Nanoparticle fingerprints Nanoparticle

High-throughput cellular-
based assays



Case Study 1
Recently1, 51 diverse NPs were tested in-vitro
against 4 cell lines in 4 different assays at 4 different 
concentrations ( 51x64 data matrix).

1 Shaw et al. Perturbational profiling of nanomaterial biologic activity. PNAS, 2008, 105, 7387-7392

 cross-linked iron oxide (CLIO)-based  (23 NPs)
 pseudocaged nanoparticle (PNP)-based (19 NPs) 
monocrystalline iron oxide nanoparticle (MION)-based (4 

NPs)
 quantum dot-based with a CdSe core, a ZnS shell, and a  

polymer coating (3 NPs)
 two other iron-based MNPs: Feridex IV (approved for in vivo 

imaging) and Ferrum Hausmann (approved for iron 
supplementation)

NANOPARTICLES



Is it possible to predict whether a given particle will induce low or
high biological effects using QNTR models?

CS1. QNTR matrix

NP-01    High    0.4865  0.5278  0.2941  0.3986
NP-02 Low     0.4054  0.7222  0.4837  0.6476
NP-03 High    0.4324  0.5833  0.3529  1.0000
NP-04 Low     1.0000  0.5833  1.0000  0.7991
NP-05    High    0.3649  0.4722  0.2353  0.9403
NP-06    High    0.3919  0.6111  0.3333  0.9079
NP-07    High    0.5135  0.5833  0.4052  0.6270

For 44 NPs, size, zeta potential and relaxitivities were available, 
and then normalized between 0 and 1, to form the QNTR matrix. 



Fold

MODELING SETS EXTERNAL SETS

n # 
models

% 
accuracy
internal 

5-fold CV

% accuracy n
% 

accurac
y

% 
CCRa

% 
Sensitiv

ity

% 
Specificit

y

1 35 11 51.4 – 60.0 71.4 – 82.9 9 78 83 67 100

2 35 13 51.4 – 60.0 71.4 – 77.1 9 78 75 50 100

3 35 16 57.1 – 62.9 74.3 – 82.9 9 78 78 80 75

4 35 11 60.0 – 62.9 77.1 – 88.6 9 56 55 50 60

5 36 4 66.7 83.3 – 86.1 8 75 67 33 100

aCCR – Correct Classification Rate. 44 73 73 60 86

Prediction performances are surprisingly good : the overall
prediction accuracy for those 44 NPs is equal to 73 %

CS1. QNTR modeling results of 44 diverse NPs
using MML-WinSVM and a 5 fold external cross-validation



QSAR and toxicity prediction: QSAR Modeling* of 
the TETRATOX aquatic toxicity

• Schultz, T.W. TETRATOX: Tetrahymena
pyriformis population growth impairment 
endpoint-A surrogate for fish lethality. Toxicol. 
Methods (1997) 7: 289-309  

• A short-term, static protocol using the common 
freshwater ciliate Tetrahymena pyriformis (strain 
GL-C) to test aquatic toxicity.

• The 50% impairment growth concentration 
(IGC50) is the recorded endpoint.

• Website: http://www.vet.utk.edu/TETRATOX/
*Zhu et al, JCIM, J Chem Inf Model 2008; (48): 766-784



International Virtual Collaboratory* of 
Computational Chemical Toxicology 

• USA: UNC-Chapel Hill (UNC) - H. Zhu and A. 
Tropsha

• France: University of Louis Pasteur (ULP) – D. 
FOURCHES and A. VARNEK

• Italy: University of Insubria (UI) – E. PAPA and 
P. GRAMATICA

• Sweden: University of Kalmar (UK) – T. ÖBERG
• Germany: Munich Information Center for Protein 

Sequences/Virtual Computational Chemistry 
Laboratory (VCCLAB)– I. TETKO

• Canada: University of British Columbia (UBC) –
A. CHERKASOV

*a new networked organizational form that also includes social processes; 
collaboration techniques; formal and informal communication; and 
agreement on norms, principles, values, and rules



Different countries, different groups, 
different tools – shared basic principles

• Explore and combine various QSAR approaches
• Use extensive model validation and applicability 

domains
• Consider external prediction accuracy as the 

ultimate criteria of model quality 
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Overview of the Approaches (15 
methodologies total)

Group 
ID

Modeling 
Techniques 

Descriptor 
Type

Applicability Domain

UNC kNN, SVM MolConnZ, 
Dragon

Euclidean distance threshold between a test 
compound and compounds in the modeling set

ULP MLR, kNN, 
SVM

Fragments Euclidean distance threshold between a compound 
and compounds in the modeling set; bounding box

UI OLS Dragon Leverage approach

UK PLS Dragon Residual standard deviation and leverage within 
the PLSR model

MIPS ASNN E-state Maximal correlation coefficient of the test 
molecule to the training set molecules in the space 
of models

UBC MLR, 
ANN,  
SVM, PLS

IND_I Descriptor variability



Individual vs. Consensus Models for 
the Modeling Set

 

Modeling Set (n=644) 
Model  Group ID q2 SE Coverage 

kNN-Dragon UNC 0.93 0.23 100% 
kNN-MolconnZ  UNC 0.92 0.26 99.8% 
SVM-Dragon  UNC 0.93 0.26 100% 

SVM-MolconnZ UNC 0.89 0.33 100% 
kNN-Fragmental ULP 0.77 0.44 100% 
SVM-Fragmental ULP 0.95 0.23 100% 

MLR ULP 0.94 0.25 100% 
MLR-CODESSA ULP 0.72 0.47 100% 

OLS UI 0.86 0.35 92.1% 
PLS UK 0.88 0.34 97.7% 

ASNN MISP 0.92 0.27 83.9% 
PLS-IND_I UBC 0.76 0.39 100% 
MLR-IND_I UBC 0.77 0.39 100% 
ANN-IND_I UBC 0.77 0.39 100% 
SVM-IND_I UBC 0.79 0.31 100% 

Consensus 
Model 

- 0.92 0.22 100% 



Which model is best?
• Observation: Models that afford most accurate 

predictions for the validation sets are not 
necessarily ranked as top models for the modeling 
set.

• Back to choices and practices: So how do we 
choose “the best” models?

Should we choose!?
• Consensus Prediction

– Only predict compounds within the applicability 
domain of most models

– For each compound, exclude predictions that have high 
deviations from the mean value 

– Final predicted value is the average over all predictions.



Consensus Model gives the lowest 
MAE of prediction (Validation Set)



Principles of “Safe” QSAR modeling

• Establish an SAR database (target property, 
descriptor set).

• Rationally divide the dataset into training and test sets
• Develop training set models and characterize them 

with internal validation parameters.
• Validate training set models using external test set 

and calculate the external validation parameters
• Finally, explore and exploit validated QSPR models 

for possible mechanistic interpretation and 
prediction.*

*Tropsha, Gramatica, Gombar. The Importance of Being Earnest: Validation is 
the Absolute Essential for Successful Application and Interpretation 
of QSPR Models. Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69-77.)



Important vs. Less Important  Directions in 
QSAR modeling (it is about PREDICTIONS)

• Less important (model development)
– Descriptor development and/or integration (some exceptions)
– “novel” data analytical techniques
– Training set statistics
– (Harmonizing) definitions (SAR, QSAR, etc.)
– Mechanistic interpretation (except for validated models)

• More important (model validation)
– Quality and representation of biological data
– Analysis of common descriptors and most successful combinations (of descriptors and 

data modeling techniques) that increase the experimental hit rate
– Training vs. test vs. evaluation set selection (three-way)
– Outlier analysis (experimental accuracy or descriptor incapability)
– Applicability domain (in the context of modeling technique AND TEST SET 

STATISTICS)
– The real power of QSAR models is in their ability to design novel active compounds 

or identify such compounds in databases or virtual libraries
• Independent model evaluation in competitive fashion: CoErPA (similar to CASP) 

and benchmark dataset depository



Final Word

• Best time ever to be a cheminformatics scholar
– Growth of databases

– Tool development

– Collaborations with computational and experimental scientists 

• Extending cheminformatics approaches to new areas
– Structure based virtual screening

– “-omics” data analysis

– Structure – in vitro – in vivo correlations

– Toxico-cheminformatics

• Focus on Knowledge Discovery (accurate testable 
predictions!) in Chemical Databases

Nothing that worth knowing can be taught.
Oscar Wilde
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