

Scoring functions: Tasks and types Application tasks: A) Identification of the correct binding mode for a given ligand Pose prediction in docking B) Identification of new active ligands Virtual screening C) Affinity ranking for compound series Ligand design, lead optimization Available approaches: Force field-based methods Knowledge-based scoring functions Empirical scoring functions

II. Scoring

Application tasks:

- A) Identification of the correct binding mode for a given ligand *Pose prediction in docking*
- B) Identification of new active ligands *Virtual screening*
- C) Affinity ranking for compound series Ligand design, lead optimization

Available approaches:

- Force field-based methods
- Knowledge-based scoring functions
- Empirical scoring functions

SFCscore	fraining sets	s: Regre	ssion	statistics			
Function	Method	N	k	r	r ²	S	F
sfc_290m	MLR	290	7	0.843	0.711	1.085	99.2
sfc_229m	MLR	229	7	0.842	0.709	1.098	76.9
sfc_frag	MLR	130	4	0.810	0.656	0.973	59.8
sfc_855	PLS	855	6	0.770	0.593	0.994	205.9
sfc_ser	PLS	466	4	0.843	0.711	0.952	284.0
sfc_met	PLS	341	4	0.844	0.713	1.046	208.9
sfc_290p	PLS	290	5	0.867	0.751	1.005	171.3
sfc 229p	PLS	229	6	0.875	0.766	0.982	121.2

N, number of complexes in the training set; *k*, number of components for PLS functions, number of variables for MLR functions; *r* and r^2 , correlation coefficient and its square; *s*, standard error; *F*, *F*-value.

Sotriffer et al., Proteins 73 (2008), 395

II. Scoring: What is possible and what is not?						
SFCscore Training sets: Internal cross validation						
5						
Function	Q^2	S PRESS				
sfc_290m	0.692	1.121				
sfc_229m	0.683	1.147				
sfc_frag	0.627	1.015				
sfc_855	0.572	1.033				
sfc_ser	0.692	1.028				
sfc_met	0.688	1.135				
sfc_290p	0.722	1.080				
sfc_229p	0.723	1.086				

For the functions derived by MLR, leave-one-out (LOO) cross-validation was used (lines highlighted in italics); for PLS functions, 10-fold cross-validation (20 runs) was applied and the average Q^2 and s_{PRESS} of the 20 runs are reported.

Sotriffer et al., Proteins 73 (2008), 395

	R	R ²	S	F	Q ²	S _{PRESS}
SFCscore: sfc_290m (k = 7, n = 290)	0.843	0.711	1.09	99.2	0.692	1.12
X-CSCORE eq3 (Wang 2002): (k = 4, n = 200)	0.756	0.571	1.41	70.4	0.551	1.47
Chemscore (Eldridge 1997): (k = 4, n = 82)	0.843	0.710	1.40	47.1	0.658	1.52
Score2 (Böhm 1998): (k = 7, n = 82)	0.890	0.792	1.27	40.3		
Score1 (Böhm 1994): (k = 4, n = 45)	0.873	0.762	1.38	32.0		

II. Scoring: What is possible and	d what is not?)			
Function	R_{P}	SD	ME	Testing on external data set and	
SFCscore:: sfc met	0.585	1.80	1.37	comparison with other functions	
SFCscore:: sfc_ser	0.572	1.82	1.40	·	
SFCscore:: sfc_855	0.570	1.82	1.40	900 DDD complexes with even pl	
X-Score::HMScore	0.566	1.82	1.42	$600 \text{ PDB complexes with exp. pr_i}$	
SFCscore:: sfc_290p	0.564	1.83	1.39	Wang et al	
SFCscore:: sfc_229p	0.553	1.85	1.41	J. Chem. Inf. Comp. Sci. 44 (2004). 2114	
SFCscore:: sfc_229m	0.534	1.87	1.44		
SFCscore:: sfc_290m	0.525	1.89	1.45	improvement but still	
SFCscore:: sfc_frag	0.523	1.89	1.46		
X-Score::HPScore	0.514	1.89	1.47	only moderate correlation	
X-Score::HSScore	0.506	1.90	1.48		
Sybyl::ChemScore	0.499	1.91	1.50	Now corofully compiled test est of	
DrugScore:Pair/Surf	0.476	1.94	1.50	New, calefully complied test set of	
DrugScore: Pair	0.473	1.94	1.51	195 PDB complexes with exp. pK_i :	
DrugScore: Surf	0.463	1.95	1.53	Chang at al	
Cerius2:: PLP1	0.458	1.96	1.52	Cheng et al., L Chem. Inf. Model 49 (2009) 1079	
Sybyl:: G-Score	0.443	1.98	1.56	5. Chem. mi. Wodel. 49 (2009), 1079	
Cerius2:: LigScore	0.406	2.00	1.57	Best functions:	
Cerius2:: LUDI2	0.379	2.04	1.62		
GOLD:: GoldScore_opt	0.365	2.06	1.63	R _P SD	
HINT	0.330	2.08	1.65	SFCscore:: sfc_met 0.646 1.82	
Cerius2:: PMF	0.253	2.13	1.71	X-Score::HMScore 0.644 1.83	
Sybyl:: F-Score	0.141	2.19	1.77		
•					

II. Scoring: What is possible and what is not?

Why did many functions in the past appear more successful than they are?

Very small external test sets of limited diversity

cf. how many of the now available complexes are well predicted by SFCscore!

	Residual < 1.5						
Function	N	R _P	r ² pred	SEpree			
sfc_290m	551	0.874	0.763	0.809			
sfc_229m	546	0.879	0.769	0.803			
sfc_frag	417	0.915	0.818	0.835			
sfc_855	555	0.850	0.720	0.820			
sfc_ser	558	0.876	0.765	0.806			
sfc_met	553	0.872	0.759	0.790			
sfc_290p	559	0.875	0.765	0.796			
sfc_229p	531	0.887	0.784	0.790			

