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Some definitions

• Clint Eastwood is the "good" 
(slow to anger, but quick on 
the trigger)

• Lee Van Cleef is the bad (an 
elegant exemplar of absolute 
evil) and 

• Eli Wallach is the "ugly" (a 
menacingly funny, totally 
amoral bandido whose 
relationship with the 
Eastwood character consists 
largely of betrayals).



OUTLINE
• Introduction: The need for developing 

externally validated predictive models of 
biological data

• Why do models fail (bad practices)
• Predictive QSAR Modeling Workflow (good 

practices)
• Examples of the Workflow applications 

– QSAR based virtual screening and hit identification
– Consensus QSAR modeling of chemical toxicity

• Conclusions: “best” QSAR modeling is a 
decision support science focus on accurate 
predictions



Large fraction are 
confirmed actives

Small number of 
computational hits

SAR dataset External 
database/library

Key point: Focus on Externally Validated 
Predictions

QSAR 
Magic

Input

Output

Real Test



QSAR Modeling is easy…

Chemistry Biology
(IC50, Kd...)

Cheminformatics
(Molecular Descriptors)

Comp.1 Value1 D1 D2 D3 Dn

Goal: Establish correlations

Comp.2 Value2 " " " "
Comp.3 Value3 " " " "

Comp.N ValueN " " " "
- - - - - - - - - - - - - - - - - - - - - -

between descriptors and the target 
property capable of predicting activities of novel compounds 

BA = F(D) {e.g., …}
(e.g., -LogIC50 = k1D1+k2D2+…+knDn)

∑ −
∑ −

−=
2

2
2

)(
)ˆ(1

i

ii

yy
yyq

|

|
|

|



y = 0.5958x + 2.3074

R2 = 0.2135
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EXTERNAL TEST SET PREDICTIONS
y = 0.4694x + 2.9313

R2 = 0.1181
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But … the unbearable lightness of model building 
for training sets…

…leads to unacceptable prediction accuracy. 
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Choices and Practices
• Descriptors (thousands and counting)
• Data-analytical methods (dozens and 

counting)
• Validation approaches (unfortunately (!) 

only a handful but counting)
• Experimental validation as part of model 

building (very rare)
BUT

• We typically use one (or at best very few) 
modeling techniques

• Publish successes only 
• Compete but (mostly) indirectly



BEWARE OF q2!!!
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Golbraikh & Tropsha, J. Mol. Graphics Mod. 2002, 20, 269-276. 

•Only a small fraction of “predictive” training set models with
LOO q2 > 0.6 is capable of making accurate predictions (r2 > 0.6)
for the test sets.



Some reasons as to why QSAR fails 

• No external validation
• Incorrect selection of an external test set
• Incorrect division of a dataset into training and test sets
• Incorrect measure of prediction accuracy
• Not all statistical criteria are used to estimate predictive 

power of a model
• No applicability domain
• Incorrectly defined applicability domain
• No Y-randomization
• Leverage (structure) and activity outliers are not removed
• Modeling set is too small



No external validation
• It is still a problem, particularly in toxicity studies.

A typical paper:
A small dataset of congeneric compounds: n~10-20 
QSAR as a linear regression in the form:

log(1/EC50)=a*log P + b
(sometimes, additional 1-2 descriptors like ELOMO or the number of H-bond 
donors in a molecule are included)
The only validation method used: Leave-group-out cross-validation
Relatively high q2 (not always) and R2:

Typical model acceptance criteria: q2>0.5, r2-q2>0.3 
(some use R instead of R2, because R>R2)
No true validation using compounds not included in the training set
(in some cases the model is tested on just 2-3 compounds)



Artificial Improvement of Predictive 
Ability of a QSAR Model

• Johnson, S.R. The Trouble with QSAR (or How I Learned To Stop Worrying 
and Embrace Fallacy). J. Chem. Inf. Model. 2008, 48, 25-26:
"The common practice has been to select the model with the best fitness 
function score and predict a small group of observations that were withheld at 
the beginning. All too often, the model development process stops here, or, 
worse, the validation set is poorly predicted and models are iteratively tested 
until one predicts this set of compounds well."

A typical example:
A dataset is divided into a training and test set
Multiple QSAR models with high q2 values are built using training set
QSAR model with the highest R2 for the test set is selected 

Selected model might have poor predictive ability for other compounds

Another EXTERNAL EVALUATION SETS are necessary



• Typical division of a dataset into training and test sets: 
random
– Undesired outcome: 

• some compounds of the test set can be out of the applicability domain of the 
training set

• large gaps of activity in the training or the test set and activity outliers in them

• Requirements for training and test sets:
– Compounds with maximum and minimum activities of the dataset should 

be included into the training set (important for methods that cannot 
extrapolate).

– Large gaps of activities is not allowed neither in training nor in test set.
– Compounds of the training set should be distributed within the entire area 

of the descriptor space occupied by the dataset.
– Each compound of the test set should be close to at least one compound of 

the training set. 

Incorrect division of a dataset into training 
and test sets



• A typical example of the target function:
CCR=N(classified correctly)/N(total)

A dataset:
Class 1: 80 compounds
Class 2: 20 compounds
Model: assign all compounds to Class 1.
Target function: CCR=0.8 
The model has high classification accuracy

Classification QSAR for Biased Datasets: 
Incorrect Target Function

• Better target function:
CCR=0.5(Sensitivity+Specificity)

∑
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• General formula:

K – the number of classes

Nk
corr – the number of compounds of 

class k assigned to class k

Nk
total – total number of compounds 

of class k

• For category response variable, target functions can depend also on the absolute 
errors (differences between predicted and observed classes).



Not all statistical parameters are used to estimate 
predictive power of a model

• Sometimes, cross-validation q2 for the training set 
and R2 for the test set are the only criteria used 
There are other important criteria which are not 
always used such as coefficients of determination 
and slopes for regressions through the origin 
(predicted vs. observed and observed vs. predicted 
activities), etc.

• Standard error of prediction alone is not a good 
statistical parameter, if it is not compared with the 
standard deviation of activities.     



No Applicability Domain for the Model

• Compounds which are highly dissimilar from all 
compounds of the training set (according to the set of 
descriptors selected) cannot be predicted reliably
Lack of the AD: 

unjustified extrapolation
wrong prediction

Typical situation:
a compound of the test set for which error of prediction is high
is considered as outlier
HOWEVER: a compound of the test set dissimilar from all 
compounds of the training set can be by chance predicted 
accurately



Applicability Domain is Too Large 

• Typical AD:
Rectangular hyper-parallelepiped in the descriptor space with edges equal to 
intervals of change for each descriptor.
This hyper-parallelepiped can be mostly empty with points concentrated only
along certain directions (it is particularly true, if descriptors are linearly 
dependent).
Too large AD can lead to the same consequences as not having it at all.
AD should be defined as a union of relatively small areas around all points of 
the training set. For example, currently we define it as

Dcutoff=<dnn>+Zσnn,
where <dnn> and σnn are the average of distances between K nearest neighbors 
in the training set and their standard deviation, and  Z is a user-defined value 
(default is 0.5), which can be adjusted.



Y-randomization test is not carried out

• Y-randomization test:
– Scramble activities of the training set
– Build models and get model statistics.
– If statistics are comparable to those obtained for models built with 

real activities of the training set, the last are unreliable and should 
be discarded.

Frequently, Y-randomization test is not carried out.

Y-randomization test is of particular importance, if 
there is: 

- a small number of compounds in the training or 
test set
- response variable is categorical



Outliers detection and removal
• Many potential outliers can be detected in the dataset 

prior to QSAR studies, but typically it is not done.

• Two types of outliers
Leverage outliers: compounds dissimilar from all 
other compounds in a dataset.
Activity outliers: compounds similar to some other 
compounds in the dataset, but their activities are quite 
different from those of their nearest neighbors.



Detection of Leverage Outliers

• Calculate distance/similarity matrix in the entire 
descriptor space.

• For each compound, find its nearest neighbor/most 
similar compound.

• Find compounds which are out of the cutoff 
distance from their nearest neighbors or have 
similarity to the most similar compound lower 
than a predefined threshold. These compounds are 
leverage outliers for this predefined distance or 
threshold.



Detection of Leverage Outliers using 
a Sphere-Exclusion algorithm
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PROBE SPHERE RADIUS R:

• Calculate distances between nearest 
neighbors.

• Find mean       and standard 
deviation σ of these distances.

• R=    + Zσ,

where Z is a user defined parameter 
Z-cutoff.

• Calculations with multiple Z-cutoff 
values can be carried out.
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Example of “misinformation”: Optimal (left panel) 
and traditional (right panel) orientations of androgen 
(DHT shown in gold) and estrogen (estradiol shown 
in green) within the human SHBG steroid-binding 

site.

A. Cherkasov, JMC, in press

Identical q2 (CoMFA*) of 0.53

*CoMFA – Completely Misleading Famous Aberration



Why can’t we get it Right? Have not 
we tried enough? 

• Descriptors? No, we have plenty (e.g., 1000’s in 
Dragon)

• Datamining methods? No, we also have plenty (e.g., 
SAS)

• Training set statistics? NO, it does not work
• Test set statistics? Maybe, but it is still insufficient

So…what else can we do?????
• Change the success criteria! Leave behind the phase of 

“narcissistic” modeling and focus on external
predictivity and experimental validation. 

• Recognize QSAR as an empirical data modeling 
approach: just do it any (all) way you like but 
VALIDATE on independent datasets!



Revising QSAR Modeling Process : 
Predictive QSAR Modeling Workflow*

• Model Building: Combination of various 
descriptor sets and variable selection data 
modeling methods (Combi-QSAR)

• Model Validation
– Y-randomization
– Training, test, AND evaluation set selection
– Model sampling and selection criteria
– Applicability domain

• Consensus prediction using multiple models
*Tropsha, A., Gramatica, P., Gombar, V. The importance of being earnest:…
Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69-77. 



Only accept models 
that have a 

q2 > 0.6
R2 > 0.6, etc.

Multiple 
Training Sets

Validated Predictive 
Models with High Internal 

& External Accuracy

Predictive QSAR Workflow*

Original 
Dataset

Multiple 
Test Sets

Combi-QSAR 
ModelingSplit into 

Training, Test, 
and External 

Validation Sets

Activity 
Prediction

Y-Randomization

External validation
Using Applicability 

Domain

Database 
Screening

Using
Applicability 

Domain
*Tropsha, A., Gramatica, P., Gombar, V. The importance of being earnest:…
Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69-77. 

Experimental 
Validation



DATASET

EXTERNAL VALIDATION SETMODELING SUBSET

TRAINING SET TEST SET

DIVISION OF A DATASET IN THREE 
SUBSETS AND EXTERNAL VALIDATION

"PREDICTIVE" MODELS 

Rational division

MODELS Model Validation

External Validation

Random division

PREDICTIVE MODELS 



COMBINATORIAL QSAR

C-Qics
KNNKNN

BINARY QSAR,…BINARY QSAR,…

COMFA descriptorsCOMFA descriptors

MolconnMolconn Z Z 
descriptorsdescriptors

Chirality descriptorsChirality descriptors

VolsurfVolsurf descriptorsdescriptors

Comma descriptorsComma descriptors

MOE descriptorsMOE descriptors

Dragon descriptorsDragon descriptors

SAR Dataset

Compound representation 

Selection of best models

Model validation 

and external test sets 
using  Y-Randomization

QSAR modeling
g SVMSVM

DECISION TREEDECISION TREE

Lima, P., Golbraikh, A., Oloff, S., Xiao, Y., Tropsha, A. Combinatorial QSAR Modeling of P-Glycoprotein 
Substrates. J. Chem. Info. Model., 2006 46, 1245-1254.
Kovatcheva, A., Golbraikh, A., Oloff, S., Xiao, Y., Zheng, W., Wolschann, P., Buchbauer, G., Tropsha, A. 
Combinatorial QSAR of Ambergris Fragrance Compounds. J Chem. Inf. Comput. Sci. 2004, 44, 582-95



DEFINING THE APPLICABILITY DOMAIN

Distribution of distances between points and 
their nearest neighbors in the training set
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/ N

Training set
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Training set: 60 compounds
Test set: 35 compounds

MODEL:
Two nearest neighbors
The number of descriptors: 8
Q2(CV)=0.57      R2 =0.67

DISTANCES:
<D>train=0.287
StDev(D)train=σ =0.149

Closest nearest neighbors  of 
test set compounds:

Dtest ≤ <D>train+ σ   ZCutOff
(ZCutOff=0.5)

N is the total number of distances 
( Ntrain=60     2=120; Ntest=70 )

Ni is the number of distances in each 
category (bin)

× ×

*Tropsha, A., Gramatica, P., Gombar, V. The importance of being earnest:…
Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69-77. 



Applicability domain vs. prediction 
accuracy (Ames Genotoxicity dataset)

80

82

84

86

88

90

92

0.5 1 2 3 5 10

kNN Z-Score Used for Prediction Cutoff

Te
st

 S
et

 %
A

cc
ur

ac
y



Application of the Predictive QSAR 
Workflow to HDAC Inhibitors*

59 HDAC 
Inhibitors

Validation Set
(9 compounds)

Multiple
Training Sets

Multiple 
Test Sets

Remaining Subset 
(50 compounds)

Y-Randomization

Variable Selection 
QSAR Models

1385 accepted 
models that have a

R2Train > 0.60
R2Test > 0.60

70 Validated Predictive 
Models with High Internal 

& External Accuracy

Screen 
3,100,000 

Compounds

27 Hits predicted 
as HDAC 
inhibitors

4 validated 
experimentally*

2 are mkM
inhibitors

*collaboration with Bryan Roth, UNC



Experimental validation of HDAC 
computational hits (data from Bryan 

Roth’s lab, UNC-Pharmacology))



Training:
48 GGTI compounds (from -log 3.8 to 7.6)
274 descriptors (MolconnZ)
611 models generated
best q2 = 0.77             best r2 = 0.94
104 models pass cutoff (0.6 for q2&r2)

Database Search:
~9 million small molecules (ZINC + 
Raw Database)

79 predicted actives using linear 
consensus kNN (0.5 cutoff)
range   = 4.51 to 5.96 (1.45 log)
56 cmpds > 5.5 predicted activity

7 selected for further analysis based 
on high predicted activity, uniqueness 
of structure (divergent from training 
set), & availability

Distribution of Training Set Activities
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Application  to GGTase-I Inhibitors

*collaboration with Y. Peterson & P. Casey, Duke



GGTI QSAR Hits GGTI QSAR Hits –– GGTaseGGTase--I in vitro Activity AssayI in vitro Activity Assay
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As1   68.55 +/- 26.54      -4.16

As2   18.91 +/- 6.84        -4.723 

En1   122.6 +/-76.4         -3.912

En2   30.118+/- 8.473     -4.521

Sig 1  139.6 +/- 76.69     -3.855

Sig2   3.12 +/- 1.61        -5.506

Sig3   3.85 +/’- 1.12        -5.415
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2 Training Set Scaffolds

GGTIDUx Series
Pyrazoles

Peterson & Casey

GGTIx Series
Peptidomimetics

Hamilton & Sebti

Novel Scaffolds Discovered
Database Mining Reveals Unique Chemical EntitiesDatabase Mining Reveals Unique Chemical Entities
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Characteristic AmpC Ligands and Decoys and Their Ranks by Different Scoring 
Functions. Blue = DOCK, magenta = ScreenScore, yellow = FlexX, cyan = PLP, purple 
= PMF, and red = SMoG (SMoG ranks are based on a ranking, which does not include 
halogenated compounds).

*J. Med. Chem. 2005, 48, 3714-3728

Decoys are frequently 
indistinguishable from binders 

using typical SB scoring 
functions.*

Application of Cheminformatics Approaches to 
Binding Decoys



Recent examples of experimentally 
validated QSAR-based predictions

• Anticonvulsants: Shen, M. et al, J. Med. Chem. 2004, 47, 
2356-2364.   

• HIV-1 reverse transcriptase inhibitors: Medina-Franco, J., 
et al, J. Comput. Aided. Mol. Des., 2005, 19, 229–242

• D1 receptor antagonists: Oloff et al, J. Med. Chem., 2005,
48, 7322-32

• Anticancer agents: Zhang et al, J. Comp. Aid. Molec. Des.,  
2007, 21, 97-112. 

• Amp inhibitors: Zhang L. et al, J. Comp. Aid. Molec. Des.,  
2008 (ASAP)

• HDAC inhibitors: Wang, S. et al,  (unpublished)
• GGT-I inhibitors: Wang, Peterson, et al (provisional 

patent)



PubChem NCGC AmpC Dataset Reexamined by 
QSAR and Docking based Virtual Screening

ASAP March 13, 2008

ASAP March 12, 2008



QSAR modeling of binders vs. binding decoys 
and structure-less virtual screening

[blue:DOCK, magenta: ScreenScore, yellow: FlexX, cyan: PLP, purple: PMF, and red: SMoG]

(Graves AP; et al. J. Med. Chem. 2005, 48, 3714)



Classification QSAR modeling of binders vs. 
apparent non-binding decoys.*

T4 lysozyme
L99A 

AmpC
β-lactamase

Inhibitors 55 21

Non-binders 65 80

Total 120 101

Inhibitors: (AmpC) compounds can inhibit competitively

(T4) compounds are known to bind to T4 lysozyme L99A

Non-binders: (AmpC) compounds do not inhibit at 1 mM

(T4) compounds can’t detect binding at high concentrations 

*http://shoichetlab.compbio.ucsf.edu/take-away.php



Study Design

80 nonbinders21 inhibitors

Modeling Set
51 compounds

Binary kNN QSAR
Model Building

(MolConnZ descr)

342
Predictive Models

Database Mining

50 nonbinders
dissimilar to 

inhibitors
10 compounds

64 HTS ‘hits’
(non-binders)

Similarity Search

Class 1 Class 2

Correct Classification Rate (CCR) =  0.5 * (TP/N1+TN/N0)

N1: Total number of inhibitors
N0: Total number of nonbinders



External Validation Results

Experimental

Predicted
Inhibitor Nonbinder Total

Inhibitor 5 0

5

5

5

Nonbinder 0 5

Total 5 10

Experimental

Predicted
Inhibitor Nonbinder Total

Inhibitor 0 6

41

47

6

Nonbinder 0 41

Total 0 47

10 randomly excluded compounds

CCR = 0.5 * (5/5 + 5/5) = 1

50 nonbinders dissimilar to inhibitors

Accuracy = 41/47 =  0.87



The QSAR models do not predict the majority 
of the 64 HTS ‘Hits’ as binders

Z = 0.5;  Accuracy = 20/25 = 0.8
Z = 3.0;  Accuracy = 47/55 = 0.85

No. of models for prediction 
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Virtual Screening of a PubChem AMPc
HTS dataset of 69,653 Compounds

Database mining of 69653 compounds (Z-cutoff = 0.5)

No. of models in prediction
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Hit selection criteria:
- Within AD of at least 
50% of models
- 80% of those predict a 
compound as an 
inhibitor

This leads to 15 Hits



5 Compounds Selected for Experimental 
Testing

S

S

OO

O

O

N H

H
H

H H

H

H

H

HH

H

Cl

S

F

OO

O O

N
H

H H

H H

H

H

H

H

ClSO O

O

O

N
H

H H

H

H

H

H

H

H

H

S

F

OO

O

O

N
H

H

H

H

H

H

H

H

H

H

Cl

S

O

O

O

O

N
H

H

H

H

H

H

H

H

H

H

H
H

H

H



One compound (CID 69951) Shows Micro-molar 
Inhibitory Activity

Kd = 18μM, Ki = 135μM

Log[I](Log(mM)
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CID: 699751

Experiments done by Dr. D. Teotico at UCSF
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Descriptor Interpretation
Rank Descriptor ID Frequency Interpretation

1 nHCsatu 32.2

28.4

27.5

27.2

26.3

26.3

26.0

26.0

26.0

25.4

24.3

24.3

24.0

23.7

23.7

2 Hsulfonamide

CHn
(unsatuaed)

:O:(aromatic)

:S: (aromatic)

:CH:

-CH2-

3 nnitrile

4 Hmin

5 naaO

6 naaS

7 SaaCH

8 n3Pad24

9 SssCH2

10 SHBint5

11 Xvch5

12 n2Pag23

13 IDW

14 htets2

15 nimine
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Comparison between QSAR and Docking Hits
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QSAR Consensus Prediction of VS Hits

# of models for prediction 
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QSAR Modeling* of the TETRATOX 
aquatic toxicity endpoint

• Schultz, T.W. TETRATOX: Tetrahymena
pyriformis population growth impairment 
endpoint-A surrogate for fish lethality. Toxicol. 
Methods (1997) 7: 289-309  

• A short-term, static protocol using the common 
freshwater ciliate Tetrahymena pyriformis (strain 
GL-C) to test aquatic toxicity.

• The 50% impairment growth concentration 
(IGC50) is the recorded endpoint.

• Website: http://www.vet.utk.edu/TETRATOX/

*Zhu et al, JCIM, 2008, in press



International Virtual Collaboratory* of 
Computational Chemical Toxicology 

• USA: UNC-Chapel Hill (UNC) - H. Zhu and A. 
Tropsha

• France: University of Louis Pasteur (ULP) – D. 
FOURCHES and A. VARNEK

• Italy: University of Insubria (UI) – E. PAPA and P. 
GRAMATICA

• Sweden: University of Kalmar (UK) – T. ÖBERG
• Germany: Munich Information Center for Protein 

Sequences/Virtual Computational Chemistry 
Laboratory (VCCLAB)– I. TETKO

• Canada: University of British Columbia (UBC) –
A. CHERKASOV

*a new networked organizational form that also includes social processes; 
collaboration techniques; formal and informal communication; and
agreement on norms, principles, values, and rules



Different countries, different groups, 
different tools – shared basic principles

• Explore and combine various QSAR approaches
• Use extensive model validation and applicability 

domains
• Consider external prediction accuracy as the 

ultimate criteria of model quality 
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Overview of the Approaches (15 
methodologies total)

Group 
ID

Modeling 
Techniques 

Descriptor 
Type

Applicability Domain

UNC kNN, SVM MolConnZ, 
Dragon

Euclidean distance threshold between a test 
compound and compounds in the modeling set

ULP MLR, kNN, 
SVM

Fragments Euclidean distance threshold between a compound 
and compounds in the modeling set; bounding box

UI OLS Dragon Leverage approach

UK PLS Dragon Residual standard deviation and leverage within 
the PLSR model

MIPS ASNN E-state Maximal correlation coefficient of the test 
molecule to the training set molecules in the space 
of models

UBC MLR, 
ANN,  
SVM, PLS

IND_I Descriptor variability



Individual vs. Consensus Models for 
the Modeling Set

 

Modeling Set (n=644) 
Model  Group ID q2 SE Coverage 

kNN-Dragon UNC 0.93 0.23 100% 
kNN-MolconnZ  UNC 0.92 0.26 99.8% 
SVM-Dragon  UNC 0.93 0.26 100% 

SVM-MolconnZ UNC 0.89 0.33 100% 
kNN-Fragmental ULP 0.77 0.44 100% 
SVM-Fragmental ULP 0.95 0.23 100% 

MLR ULP 0.94 0.25 100% 
MLR-CODESSA ULP 0.72 0.47 100% 

OLS UI 0.86 0.35 92.1% 
PLS UK 0.88 0.34 97.7% 

ASNN MISP 0.92 0.27 83.9% 
PLS-IND_I UBC 0.76 0.39 100% 
MLR-IND_I UBC 0.77 0.39 100% 
ANN-IND_I UBC 0.77 0.39 100% 
SVM-IND_I UBC 0.79 0.31 100% 

Consensus 
Model 

- 0.92 0.22 100% 



Which model is best?
• Observation: Models that afford most accurate 

predictions for the validation sets are not 
necessarily ranked as top models for the modeling 
set.

• Back to choices and practices: So how do we 
choose “the best” models?

Should we choose?
• Consensus Prediction

– Only predict compounds within the applicability 
domain of most models

– For each compound, exclude predictions that have high 
deviations from the mean value 

– Final predicted value is the average all predictions.



Consensus Model gives the lowest 
MAE of prediction (Validation Set I)



Consensus Model gives the lowest 
MAE of prediction (Validation Set II)



Data visualization (ROI is filed)
Calculations using 74 Dragon descriptors
normalized between 0 and 1.

The three first components are visualized.

Distance cutoff : 0.7

Training Set
Test Set 1
Test Set 2



Conclusions of the aquatic toxicity 
modeling

• Training set modeling is insufficient to guarantee 
externally predictive models

• The use of AD is critical to achieve respectable 
external predictivity of individual models BUT 
one should keep in mind the balance between 
predictivity and space coverage

• Consensus prediction 
– affords high predictive power
– has lowest MAE
– stable against relatively inefficient individual models
– avoids the problem of making a choice!!!



Emerging approaches: Combining chemical 
and biological descriptors in QSAR  

modeling of chemical carcinogenicity.



NTP-HTS Content Summary of 1408 Compounds

• Chemical Structure Types:
- Organic: 1,348
- Inorganic: 27
- Organometallic: 19
- No structure: 14

• 1348 Organic compounds contain:
- Unique: 1,279
- Complex: 51
- Salt: 20
- Duplicates: 53

• Curated subset: 1,289 unique organic compounds



Additional biological data on 
1,289 NTP/HTS compounds*

NTP-
HTS

NTPBSI NTPGTZ HPVCSI CPDB IRISSI

1,289 1,153 1,053 423 270 181

NTPBSI: National Toxicology Program Chemical Structure Index file
NTPGTZ: National Toxicology Program genotoxicity
HPVCSI: High Production Volume Chemicals
CPDB: Carcinogenic Potency Data Base All Species
IRISSI: EPA Integrated Risk Information System

*Based on the DSSTox project of Dr. Ann Richard at EPA.



The relationship between HTS activity and rodent 
carcinogenicity of 270 compounds

 HTS actives HTS inconclusives HTS inactives 

CPDB actives 30 12 136 

CPDB Inactives 7 11 74 

Correlation 81% - 35% 

 



Comparison between Predictive Power 
of QSAR Models using Conventional 

vs. Hybrid Descriptors.
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Relative contributions of HTS 
descriptors to 34 acceptable models
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Final Thoughts

• Best time ever to be a cheminformatics scholar
– Growth of databases
– Tool development
– Collaborations with computational and experimental scientists 

• Extending cheminformatics approaches to new areas
– Structure based virtual screening
– “-omics” data analysis
– Genotype - phenotype correlations

• Focus on Knowledge Discovery (accurate testable 
predictions!) in Biomolecular Databases

• Practice best practices! Collaborate!!!

Nothing that worth knowing can be taught.
Oscar Wilde
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