

What Crystal Structure Databases Tell us about Conformations of Drug-like Molecules Martin Stahl, Roche Basel, June 2008

Conformational Energies Matter

Strained Bioactive Conformations Affect Binding Energy

bioactive conformation

global minimum In solution

- $\Delta G = 0.5 \text{ kcal/mol} \rightarrow$
- $\Delta G = 1.0 \text{ kcal/mol}$ -
- $\Delta G = 2.0 \text{ kcal/mol}$
- $\Delta G = 3.0 \text{ kcal/mol}$
- factor 2.3 affinity reduction
- \rightarrow factor 5.4 affinity reduction
- \rightarrow factor 30 affinity reduction
- \rightarrow factor 160 affinity reduction

Required Generalizations

Coverage of Relevant Substructures In Crystal Structure Databases

Cis or Trans? From Amides to Electrostatic Repulsion

Generalized Allylic Strain

The Sulfonyl Group

Properties of Aniline Derivatives

Project Example: New F.VIIa Inhibitors

Amides

Planar Systems with trans Configuration

Examples of Cis Amide Bonds *Protein-Ligand Complexes*

In both cases the cis amide conformation allows the formation of significant lipophilic contacts.

Examples of *Cis* **Amide Bonds** *Imides*

"normal" case: Note deviation from planarity

Acylated Aminopyrimidines

Cis Amide Conformations in the Absence of H-Bonds

Electrostatic Repulsion Determines Equilibria

Alkoxypyridines

with monomeric CDK2 (2c6t, green) and in CDK2/cyclin A complex (2c6m, cyan).

Electrostatic Repulsion Determines Equilibria

Benzylic ortho Substituents at Pyridines

Cis or Trans? From Amides to Electrostatic Repulsion

Generalized Allylic Strain

The Sulfonyl Group

Properties of Aniline Derivatives

Project Example: New F.VIIa Inhibitors

Preferred Conformations of Allylic Systems

Energy Minima at 120° to Double Bond

For 1-butene, the *skew* conformation is favored by ~0.2 kcal/mol over *syn* (gas phase).

ZIZCOA

Preferred Conformations of Allylic Systems

Allylic 1,3-Strain: Syn-Rotamer Strongly Avoided

Preferred Conformations of Allylic Systems

Allylic 1,2-Strain: Syn-Rotamer Preferred

Allylic Strain in Action *The Example of Mycophenolic Acid*

1jr1 (IMPDH Complex Structure)

MYCPHA

Mycophenolic Acid Analogs *Torsion Histograms of Alternative Linkers*

Translating Allylic 1,3-Strain to Related Systems *Amide Analogies*

Tertiary Amides

Substituents Point out of Plane

Acylated Piperidines

Enforcement of Axial Substituents

Acylated Piperidines and Related Structures *PDB Examples*

MQPA – thrombin complex (1etr)

DPPIV complex, J. Med. Chem. **2008**, 51, 589–602

Acylated Piperidines *Analogous Effects with Sulfonamides*

FKBP12 complex structure (1j4i)

Cis or Trans? From Amides to Electrostatic Repulsion

Generalized Allylic Strain

The Sulfonyl Compounds

Properties of Aniline Derivatives

Project Example: New F.VIIa Inhibitors

Sulfonamides are not Amide Isosteres!

Preferred Conformations of Sulfonamides

p Orbitals and Lone Pairs Bisect the O=S=O Angle

Aryl-Sulfonyl Compounds

Ortho Substituents Shift the Torsion Angle Distribution

Aryl-Sulfonyl Compounds *Extreme Cases of* ortho *Substitution*

PKA fivefold mutant model of Rho-Kinase complexed with fasudil (2gni, left) and an analog (2gnh, right).

Alternate Sulfonamide Conformations

Nitrogen Hybridization and Inversion

Aryl-Sulfonyl Compounds

Preferred S-N Torsion leads to Axial N Substituents

Sulfonamide Special Effects

Longer Bond Distances Allow Folding Back

Farnelyltransferase complex (1sa5)

Stromelysin complex (1ciz)

Cis or Trans? From Amides to Electrostatic Repulsion

Generalized Allylic Strain

The Sulfonyl Compounds

Properties of Aniline Derivatives

Project Example: New F.VIIa Inhibitors

Aryl Rings - Aniline Derivatives

Interplay between N Hybridization and Rotation

Aniline Derivatives *Varyin Degrees of Pyramidalization*

Cyclic Aniline Derivatives

Pyramidalization Strongly Affects Molecular Shape

Benzamides and Acylated Anilines

Planar or Nonplanar?

Local energy maximum at 0°, but PDB structures mostly planar Global energy minimum at 0°, PDB structures mostly planar

Cis or Trans? From Amides to Electrostatic Repulsion

Generalized Allylic Strain

The Sulfonyl Group

Properties of Aniline Derivatives

Project Example: New F.VIIa Inhibitors

New F.VIIa Inhibitors *Design of a New Scaffold, First Iteration*

Roch

New F.VIIa Inhibitors

Conformations of Cabon and Oxygen Derivatives

Roche

New F.VIIa Inhibitors *Design of a New Scaffold, Second Iteration*

Roche

New F.VIIa Inhibitors *Confirmed Binding Mode of Mandelic Acids*

1.7 μM

Alkoxymethyl Amides – The General Case

Secondary Amides: Syn - Tertiary Amides: Trans

Alkoxymethyl Amides *PDB Examples*

HCV polymerase palm site complex (2qe5)

locked: 11bHSD-1 complex (2irw)

Acknowledgments

- Scientists worldwide contributing to CSD and PDB
- Ken Brameld, Deborah Reuter, Roche Palo Alto
- Bernd Kuhn, Roche Basel
- Prof. Klaus Müller, Roche Basel
- Prof. François Diederich, ETH

We Innovate Healthcare