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Lessons learned from modelling bioactivity -

what works and what doesn't

- dynamic pharmacophores

- Property vs. activity data models
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The fundamental idea is that
the use of models, built from
experimental data and theory,
can profoundly influence our
philosophy of science

— this is what we spend most
of our time doing with chemical
data, and it's easier now with
computers — especially as data
IS available as never before...
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5-HT Receptors

m Bind 5-hydroxytryptamine, 5-HT (Serotonin)
= Natural hormone

= Controls mood, muscle tone, blood pressure etc.

m /-transmembrane helix structure, Monoamine G-
coupled protein receptor (GPCR)

= Cell signaling device
m 14+ receptor subtypes (5-HT, )
m Excellent drug targets

= Migraine, depression, blood pressure
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Methysergide — constrained analog

Useful to help determine pharmacophoric points

Approximate heteroatomic distances for low energy

conformers of methysergide (Angstroms) — plus many analogs, gives rise to
a pharmacophore




End point — a topological model for affinity — distances between
binding groups used to fit old and new structures

A
-~

Protonated amine

\\ \H

\ \\"\H\
\E ~_
ey
H-\und acceptor —
P .

/ H-bond
/f donor/acceptor

Selectirvity volune
for SHT1B/0

a>»
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Distances used to define pharmacophore

Glen, R. C. et al. I Med Chem 1995, 38, 3566-3580.




Evaluating the Pharmacophore

m Pharmacophore successfully used to develop anti-
migraine drug Zolmitriptan

m Strong evidence that the amine to aromatic ring
distance is accurate

m However there are several issues:
®= Most subsequent 5-HT,; ligands don’t fit well

m Several binding regions were inferred from very flexible
compounds

= Overlaying the H-bond acceptor requires high-energy
conformations and conflicting H-bond directions

m It doesn’t accommodate serotonin...




Updating the Model

m Same 3-point scheme was used with distances
generated by:

m Selection of ligands with different constrained
substructures

= Systematic searches of the distances

= Minimum necessary intersection of distances used

m Database of 800+ diverse known 5-HT,; ligands

m UNITY 3D flex searches used to compare model
performance




Protonated Nitrogen

. . 1-7.1
Aromatic Region >

All distances in Angstroms

m New Model Old Model

® 69 % recall 52 % recall
m Tighter Ar-Acceptor

constraint

What about the missing 30 %?

And how can such different H-bond acceptor
positions be rationalised?




Virtual-Site Pharmacophores
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Hydrogen bonds are highly directional

Less important where the acceptor is than whether it can form the H-

bond

Conversely, identically positioned acceptors may only be able to H-
bond completely different donor locations

Multiple acceptor positions and orientations satisfy the ideal H-bond
requirements

Instead of predicting the position of the acceptor, identify the donor
location and require the acceptor to be able to H-bond it




Predicted Protein
DonaoL, Site

m Ligand lone pairs extended to 3A

m Molecules overlaid so the lone pairs
coincided to bond a single H-bond donor




m Updated model now fits 88% of ligands

m Structurally diverse ligand classes all fit the
same pharmacophore

® H-bond problems solved and serotonin fits!

m Suggests a single H-bond donor is

responsible and even locates it...

B So how can we ‘validate’ this ?




Receptor-Based Approaches

m Homology modelling of 5-HT,; based upon
rhodopsin

m Molecular dynamics used to refine model

m Inserted into an explicit DPPC membrane

m GROMACS with the 53a6 forcefield, modified
lipid charges and SPC water used

m Equilibration (30ns), then 3x100ns simulations




Rhodopsin-Based Homology Model

m Several problems arose:
= No significant loop homology
= Helices started unwinding

No binding crevice observed

N
m Ligand docking failed
N

‘Best’ binding mode for ligands
had the longer ones binding
sideways towards the membrane

Poor homology and rhodopsin’s
endogenous ligand make it
insufficiently close to use as an
effective template
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Beta-2 Model

m Advantages:
= Much higher transmembrane homology: 40% vs 22%
= Functionally similar
m Shares several key residues in the binding site

= Higher loop homology makes them suitable as a template too

m Disadvantages:
= Crystals are incomplete and have foreign entities attached
® Lower resolution crystals

= Only became available in November!

m 2RH1 chosen: Higher res, more complete, functional

Cherezov et al. 2007 Nov 23;318(5854):1258-65




Sequence analysis shows conserved Cxx(x)C in ECL3 —

disulfide formed in model

Two cysteines in N-terminus were also bridged

ICL1,2 and ECL1 and the 7 helices were homology

modelled

ECL2 and 3 were built using loop searches, conserving

the TM3-ECI1.2 disulfide link

N- and C-termini were ‘self assembled’ from straight-

chain by 20ns of MD

ICL3 was built by secondary structure prediction methods
and loop searches to be as compact as possible

20ns of Positioned-restrained helix backbone MD was
used to ‘settle’ the model
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The binding site 1s
clearly much larger
and exposed to the
extracellular side of
the membrane

Aspl129 (red) 1s
accessible at the
bottom of the pocket

Aromatic residues
(blue) cover the side
of the cavity

Thr355, the potential
H-bond donor 1s in
cyan




Depth Probe (shows binding
crevice)




Binding Site Electrostatics: blue = neg, red = pos
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Binding Site Lipophilicity: blue = hydrophilic, brown = hydrophobic
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GR127935 in binding site
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Asp129 1s known to bind
the protonated amine

A shelf of aromatic
residues pointing in/out
of the receptor can bind
the aromatic groups (blue)

Phe330 is suspected to
form the main aromatic
interaction

Inserting the
pharmacophore (red)
suggests Thr355 1s the
hydrogen bond donor

Thr355 is slightly too
‘low’, but it is within the
margin of error

T355N mutant receptors
(as in rats) show very
significantly different
pharmacology

Phe330  Thr3s5

Pharmacophore




" m GR127935 in the
binding site

m Aspl29 in orange,
aromatic residues

in blue, Thr355 in




Dynamic Pharmacophores

The pharmacophore fits the homology model’s
residues and the shape of the binding crevice

Aspl129, Phe330 and Thr355 appear to produce the

pharmacophore

How can we use the receptor model to study the
pharmacophore?

= Proteins are dynamic, especially their sidechains

= [owest energy conformations are not necessarily the
binding conformations for either ligands or proteins

= Pharmacophore points are virtual sites of the protein

Multiple protein conformations must be studied and
the changes in the virtual sites followed

Conformations where key residues are inaccessible
must also be avoided




Virtual sites were covalently attached and parameterised for the
53a6 force-field

Bond lengths, angles and torsions were derived from ideal
hydrogen bonding and pi-pi interaction parameters

NH,* was attached to Asp129
C=0 was likewise attached to Thr355

To form the T-stacked aromatic virtual site, the C-H bond of the key
hydrogen of Phe330 was lengthened

The fragments’ bulk keeps residues pointing towards the binding
crevice

Using these ‘extended’ amino acids, molecular dynamics was
carried out, with position restraints on the protein backbone
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Molecular dynamics of pharmacophore fragments associated with binding

Protonated
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Every effort taken to minimise variation:
m Ideal interactions heavily favoured in parameterization
= Protein backbone restrained

m ‘Bulky’ virtual sites

Yet each distance shows 1.5-2.0A ‘background’

fluctuation

Thr355 shows two possible conformations altering
one distance by an additional 2A

Other significant deviations observed of up to 4A

Pharmacophore RMSD from starting structure
averaged 0.6A and peaked at 1.5A




m 2 of the 3 distances fit the ligand-generated
pharmacophore

m Thr355 appears too low’ by about 2.5A

= Helix 7 may be slightly incorrect in the homology
model

m Some constrained ligands such as GR127935 find
it hard to form the hydrogen bond

m The less constrained indoles still fit the homology
model pharmacophore




Efficacy Prediction

Determinents of agonism - can we design
selective 5HT,z antagonists
Useful in angina, vasospastic disease

-the Efficacy part of the drug action

Efficacy

ﬂ

Partial
Agonist




Through analysis of the efficacy of analogues and
the computation of a large number of molecular
properties,

The best descriptors for a fitted molecule

which separated agonism and antagonism were :

=>The principal axes of the 3-subsitiuent (if on indole)

=>The electrophilic superdelocalizability of atoms 1,2,3,9
on the indole (or nearest atoms)

Jandu et al. J Med Chem 2001, 44, 681-693.




For antagonists,
Simple interpretation of the results :

— Displacement/reduction
of the pi-electron
density of the d.b.
gives antagonism —
maintains affinity, selectivity




Howevet...

® Original data was skewed by a large number of

2-substituted esters and amides which were all
antagonists. ..




Efficacy: Ligands and Receptors

m 5-HT, ; ligands without the indole ring are generally
antagonists or weak partial agonists

m Those with the indole ring are usually agonists
m Adding a 2-substituent to the ring mostly creates
antagonists

m The substituent may displace the ring (sterics)

= Alternatively, removing the hydrogen may disrupt a pi-p1 T-
shaped interaction
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Flexible sidechains allow indoles such as sumatriptan to adopt multiple
conformations

An extended conformation can shift the molecule as much as one ring
ACrOSS compared to other conformations

Both positions satisfy the N+ to Ar distance constraint of the
pharmacophore, but with different rings




m 2-substituents appear to cause a steric clash and force the
molecule into an extended conformation

m Fixing the conformation of the amine chain as a trans-
cyclobutane ring mimics the extended conformation and gives
antagonists




Extended chain conformations also mimic that of piperazine

Arylpiperazine antagonists cannot easily fit an aromatic ring
in the site occupied by indole agonists

This indicates there is a second aromatic binding site present
only in the acttve receptor conformation




T-acceptor

Pi-stacking
Substituents on aromatic

rings affect pi-pi interaction
energies.

Our own ligands show a 2-4x
preference for methoxy over
fluoro substitution

— ligands appear to be acting

Sinnokrot et al. JACS 2004, 126, 7690-7697
as T-acceptors




m Binding site has a row
of aromatics all
‘ orientated with
Position and plane of ‘ hydrogens pointed
ligand aromatic rings tOWﬂl’dS potential

ligands

Homology model 1s
based upon an inactive
conformation of Beta-2

m All antagonist pi-pi
interactions will be T-
shaped with the ligand

as the ‘acceptor’




Phe331

Phe331

m Antagonists:
m Shifted ‘right’

m Indole interacts with Phe330
and Phe351

® Room for 2-substituents

/

Phe330 ' Phe351

m Agonists:
m Indole sits over Phe330

m Phe331 relatively moves
upwards to T-accept for the
ligand

m Causes/caused-by a clockwise
turn and movement of TM6
seen in the activation of

rhodopsin

| m Ligand stabilises protein active
Phe330  Phe351/ conformation

Dunham et al J Biol Chem 1999, 274, 1683-1690



Evidence for Pi-Pi Based
Activation

Phe330-Phe331 pair is fully conserved amongst serotonin, dopamine
and adrenaline receptors

Adjacent Pro329 is fully conserved in GPCRs and implicated in
amplifying conformational change by altering the angle of the bend it
induces in the alpha helix

Substituting a cyano group for a methoxy group in an arylpiperazine
has been shown to convert partial agonism into full agonism, and to
increase binding affinity, consistent with strengthening the ligand as a
T-donor

Substituting N for C-H in napthylpiperazines resulted in position-
dependent 20x loss of binding affinity combined with loss of partial
agonism (electrostatic repulsion ?)

Sansom et al. TiPS 2000,21, 445-451
Kling et al. Bioorg Med Chem Lett 2005, 15, 5567-5573




How to Cause Antagonism...

m Stabilise the extended ligand conformation
= [onger inflexible protonated amine sidechain
= Altering H-bond acceptor orientation and chain length
= Suitable aromatic substituents
m Destabilise the protein active conformation
= Steric bulk at the 2-position (or equivalent)
= Replace aromatic hydrogens involved in pi-pi interactions

m Suitable aromatic substituents

m Does it work ? Yes, we have used this to create a
new antagonist class, being patented.




Conclusions

Introducing virtual sites into pharmacophores
makes them more realistic

Dynamic pharmacophores demonstrate the
huge variation of binding within the site

The new 2RH1 beta-2 crystal structure is a
superior starting point for monoamine
receptor homology modelling

Ligand and receptor-based approaches are
much more powerful when combined

Efficacy models must consider conformational
changes in the protein




Moving on to Structure-
Activity /Property models
- some observations

m The objective here is to relate measured or computed
parameters to some new property, e.g. bioactivity at a
target, absorption, melting point, solubility...

m The first issue is data quality.

= Biological data is always problematic as it 1s often not
possible to reliably reproduce, isolate the variables, combine
data. Physical data 1s easier to measure (in general) and there
is a lot more of it.

= Our experience with a common physical property, solubility




How reliable are solubility data ?

Caftfeine solubility

Temperature  Solubility g/1 Year

25 2.132 1926 [1]
25 896.2 1985 [2]
25 21.0 2002 [3]
25 49.79 Merck Index
25 18.67 2005 [4]

25 21.6 SRC PhysProp
Database

[1] Oliveri-Mandala, E. (1926), Gazzetta Chimica Italiana 56, 896-901
[2] Ochsner, A. B., Belloto, R. J., and Sokoloski, T. D. (1985), Journal of Pharmaceutical Sciences 74, 132-135

[3] Al-Maaieh, A., Flanagan, D. R. (2002), Journal of Pharmaceutical Sciences 91, 1000-1008
[4] Rytting, Erik, Lentz, Kimberley A., Chen, Xue-Qing, Qian, Feng, Venkatesh, Srini.
AAPS Journal (2005), 7(1), E78-E105.




‘Solubility’ in the literature

Katritzky observed for a diverse set of 411 compounds an average standard deviation
of 0.58 log units. Jorgensen and Duffy suggested the average uncertainty of 0.6 log
units. For even simple compounds such as chlorobenzenes, measured solubility values
vary by ca. 1.5 log units.

= data can have wide ranges in the literature : guanine has -3.58 and 1.86 — take your pick.
Recent study by Dearden, re-measured 113 organic drug-like compounds,

m 22 differed by >0.5 log unit

= 9 differed by >1.0 log unit

= 1 differed by >2.0 log units
Thus, any computational method that gives estimates (usually based on SAR) better

than 0.5 log units is over fitted — many are!
Deatden J.C. Expert Opin. Drug Discov. (2006), 1(1).

The lit. data usually has no information on the experimental method, the material
whose solubility is being studied, or the definition of the reported solubility — and
commonly, many datasets are combined to build models.

In this case, we have decided to create our own data and not to combine it with
other literature data.




Potentiometric cycling method for very accurate and controlled
measurement of solubility

Precipitate
appeared at
pH 4.96

25 30
Time (minutes)
0.2 0.4 06 08
mL of Titrant HCI

Stuart, M., Box, K. Chasing equilibrium:

ﬂhul_, "
measuring the intrinsic solubility of weak fl:_ V\IleKu;ﬁwstijlrrrI]ii -
acids and bases. Anal. Chem. 2005, 77(4), _ e gip
With a DPAS detector
983-990. > E




Random Forest Models To Predict Aqueous Solubility. Palmer, David S.; O'Boyle, Noel M.; Glen, Robert
C.; Mitchell, John B. O.. Journal of Chemical Information and Modeling (2007), 47(1), 150-158.

FOREST MODELS J. Chem. Inf. Model., Vol 47, No. I, 2007 155
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Predicting Intrinsic Aqueous Solubility by a Thermodynamic Cycle (published in Molecular Pharmaceutics)
David S. Palmer, Antonio Llinas, Ifaki Morao, Graeme M. Day, Jonathan M. Goodman, Robert C. Glen, John B. O. Mitchell
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So, we have created a Solubility Challenge

m [CIM Solubility Challenge: Coming Soon! Please

check Journal of Chemical Information and
Modeling for more details.

m We deposited 100 accurate measurements of
intrinsic solubility of drug-like molecules.

® You predict 40 unknowns
m JCIM publish the ‘best” attempts.




Before beginning

m This is obvious, but....Even if you use a pre-computed
model, check the data sources

= Are data compatible, and can they be combined

m [t often the case that non-compatible data are merged to create a
database ‘large enough’ to do statistics on

= [s there sufficient background information to determine the
model’s relevance

m The ‘ontology’ of the information can be vital — what were the units
of measurement ? (in the solubility example, some have mixed up
ug/ml and umol/ml

= Do they cover the ‘chemical property space’ required

m Are my compounds very different from those used in the model ?




So, If we have accurate data,

what’s 1n a model ?
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What’s in a model ?

The objective 1s usually (in drug discovery) to select a molecule
(e.g. molecular similarity) ot predict a propetty of a molecule and
even explain the properties observed in another experiment.

R All models rely on the variance of the data***
9+ All models are susceptible to database bias***

That 1s, the range of data values and their distribution.

= If the points all had the same value, they would be easy to look up, there
would be no model and one prediction for everything

= The point is to extract a relationship between calculable parameters and
the property of interest

m The design of the experiment to obtain the data is therefore very
important (and often ignored) — experimental design (Chemometrics can

help)




Methods to discover models

m Models are generated using statistical or machine

learning methods

m Statistical methods usually rely on a normal
distribution of the data and provide a fit to the data
while minimising the error in the fit.

= Are either supervised (e.g. regression) or
unsupervised (e.g. principal components)

= Machine learning methods are usually heuristic based
and nearly all depend on local clustering
(classification) — There are lots of flavours.....




Methods for Machine Learning

Modeling conditional probability density

functions: regression and classification
m Artificial neural networks
mDecision trees

mGene expression programming

mGenetic algorithms

mGenetic programming
mDynamic programming

mGaussian process regression

m[.inear discriminant analysis

mK-nearest neighbor

mMinimum message length
mPerceptron

mQuadratic classifier

mRadial basis function networks
mSupport vector machines

Modeling probability density functions

through generative models

mExpectation-maximization algorithm

mGraphical models including Bayesian
networks and Markov Random Fields
mGenerative Topographic Mapping

....there are many

Approximate inference techniques
mMarkov chain

mMonte Carlo method
mVariational Baves

mVariable-order Markov models
mVariable-order Bavesian networks

Optimization
mMost of methods listed above either use
optimization or are instances of optimization

algorithms

Meta-learning (ensemble methods)
mBoosting

mBootstrap aggregating aka bagging
mRandom forest

mWeighted majority algorithm

Inductive transfer and learning to learn
mInductive transfer

mReinforcement learning

mTemporal difference
mMonte-Carlo method

They can be traced back to the ID3 method of Ross Quinlan — worth a look




Some comments about making models
(includes QSAR, SAR, QSPR...)

m The parameters used to predict a physical property
(like solubility and logP) compared to e.g. a binding
affinity must often behave in a fundamentally
different way.

m Reason: a property like logP in octanol/water is
consistent in that the medium doesn’t change.
However, both the medium (the receptor) and the
ligand change upon binding and different
ligand/receptor combinations really require

different models!




Property behaviour

m So, in property space, we should expect behaviour that was
consistent in that it was : linear, exponential, parabolic — 1.e.

predictable

However, in SAR space — it’s disjointed and, if we’re lucky,
clustered e.g. depending on the mode of binding (if you look at
SAR predicted/measured plots in the literature, many join

clusters and not compounds)

m So, parameters must have the following ‘property’

= Small changes in the parameter should produce small changes in the bio-
activity (e.g. atfinity)

Large changes in the parameter can produce large or small changes in the

atfinity

This 1s exactly how medicinal chemists optimise compounds

Neighborhood Behavior: A Useful Concept for Validation of "Molecular Diversity" Descriptors
Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; Weinberger, L. E.
. Med. Chem.; (Expedited Article); 1996; 39(16); 3049-3059. DOI: 10.1021/im960290n




This is neatly summed up in this paper, which
analysed diversity and similarity

Difference,
Bicactivity

o ™ —-— MAXdiversity;

defining the MAX bioactivity

neighborhood
radius — —¢

O
O

e l particular datapoint

defining the diagonal

0.0 K Difference,
0.0 Divarsity Descriptor
B m—

Neighborhood
Radius

sNeighborhood Behavior: A Useful Concept for Validation of "Molecular Diversity"
Descriptors

Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; Weinberger, L. E.
J. Med. Chem.; (Expedited Article); 1996; 39(16); 3049-3059. DOI:
10.1021/jm960290n




So — does (Q)SAR work ?

Yes, for localised sets of compounds — often simple parameters, if spatially
localised and functionally dependant, will e.g. provide a useful regression

A mistake 1s often to use a dataset of molecules and their activities that
actually requires multiple models (see our 5-HT example eatrlier)

Another is to rely on vast numbers of parameters and model selection such as
cross validation. I’'m not a great fan of ‘lets use all the available parameters
and cross-validation will save the day’ — the variance of a large number of
parameters will often match the variance of the data — just put in enough
variables.

Cross validation can be tricky. We need enough ‘similar’ molecules to perform
cross validation, which again raises the problem of memorising subsets.




Overfitting and cross validation
- three papers to read by Douglas Hawkins

The Problem of Overfitting

Hawkins, D. M.
J. Chem. Inf. Comput. Sci.; (Petspective); 2004; 44(1); 1-12. DOI: 10.1021/c¢i0342472

Assessing Model Fit by Cross-Validation
Hawkins, D. M.; Basak, S. C.; Mills, D.
J. Chem. Inf. Comput. Sci.; (Article); 2003; 43(2); 579-586. DOI: 10.1021/ci025626i

QSAR with Few Compounds and Many Features

Hawkins, D. M.; Basak, S. C.; Shi, X.
J. Chem. Inf. Comput. Sci.; (Article); 2001; 41(3); 663-670. DOI: 10.1021/ci0001177

Which leads on to another problem, database bias...a particular problem with
The kind of limited molecular diversity we typically deal with




Database bias. ‘Sophisticated models’ are sometimes little better than
simple models. The ‘Database bias’ in activity databases is simply that the
active molecules are generally very similar classes and are memorised !

Put another way, the information content of many common structure-based

descriptors for virtual screening purposes is, in some cases, nhot higher than
the nonstructural information about the number of atoms per element in the
structure.

Below, is an example using only compared to more complex
similarity descriptors. Note the high performance of the ‘dumb descriptors’
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Figure 2. Fraction of acti
counts, in comparison
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based methods, in principle, are able to exploit a wealth of
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A simple model example, again using
solubility — putting in parameters that
relate to the phenomenon

The failure to account for the influence of the solid state on solubility

The General Solubility Equation is a rare examples that does.
LogS = 0.8 - logP - 0.01(IMP-25)

log$ (M) log$ (M) logS (M)

(from Wassvik, C. Uppsala Pharmaceutical Profiling Conference)

But, accounting for the solid state requires an understanding of the dissolution

process, and our earlier slide showed that this is still missing a fundamental property
(or two)




Conclusions

m The data is king — comprehensive, in an
extensible format 1s best (XML)

B Parameters in a model should relate to the
phenomenon being studied. If not, smell a rat.

m Machine learning methods have the property of
local models — best for discontinuous SAR data

m Combining pattern recognition and
phenomenological modelling with experiment 1s
best

m Design the testing regime for the model before
creating it — can it be properly tested ?




Acknowledgements

Jonathan Goodman, John Mitchell, Peter Murray-Rust,
Tony Llinas,

James Bell, Max Macaluso, Andreas Bender, David
Palmer

EPSRC, BBSRC, Gates Trust, Tripos, Unilever




