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Outline
• Diversity Analysis

– Measuring diversity
– Selecting diverse subsets
– Computational filtering

• Combinatorial Library Design
– Designing libraries optimised on multiple properties

• Reduced Graphs as Molecular Descriptors



High-Throughput Technologies
• High-throughput screening has massively increased the 

rate at which compounds can be tested for activity

• Combinatorial synthesis allows parallel synthesis of large 
numbers of compounds

• Have these increased numbers resulted in more hits?



The Combinatorial Explosion
• The Available Chemicals Directory (www.mdli.com) 

contains the following:
– 85000 carboxylic acids
– 44000 primary alkyl amines
– 12000 aldehydes
– 2000 fmoc amino acids

• So we could make…
– 3.7×109 monoamides (acid + amine)
– 5.3×108 secondary amines (reductive amination)
– 7.5×1012 diamides (fmoc amino acid + amine + acid)
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10120 virtual compounds available via 
combinatorial chemistry: 
reagents + chemistry → libraries

The Chemical Universe

Number of seconds since big bang = ca. 1017
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Increasing Throughput is not Enough!

• Chemical space is huge!

• Success rates of large libraries have been low
– Insoluble; high molecular weight; too flexible; etc; etc
– Costs are high: $1 per compound = $1 million for library of 106 

compounds

• Assay does not always permit HTS

• Despite initial enthusiasm for large numbers the current 
trend is towards smaller carefully designed libraries 



Virtual Screening
• Virtual screening

– In-silico prioritisation of compounds 

• Virtual screening can be used to 
– Select compounds for screening from in-house databases
– Choose compounds to purchase from external suppliers 
– Design combinatorial libraries

• The technique applied depends on the aim and on the 
knowledge available, for example, about the particular 
disease target
– Usually there are multiple criteria to consider



Virtual Screening: Focused Libraries

• Targeted/focused libraries
– Selection of compounds that are similar to a lead compound or 

that fit a QSAR 
– Selection of compounds focused on a single therapeutic target 

using structure-based drug design
– Selection of compounds focused on a family of related targets

• Even with focused libraries still need to have some 
diversity



Virtual Screening: Diversity
• Lead generation

– Selection of compounds when little is known about a particular 
target

– Selection of compounds for screening against several targets

• Compound acquisition 
– Selection of compounds to purchase to augment an existing 

collection



Similarity and Diversity

• Similarity
– If we have a known active 

(literature, competitor compound 
etc) then compounds that are 
similar to it are likely to show 
similar activity
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• Similar Property Principle
– Structurally similar compounds tend to exhibit similar properties

Similarity is the property of a pair of compounds
Diversity is the property of a library of compounds
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• Diversity
– A diverse subset of compounds 

should maximise the coverage of 
biological activity and minimise
redundancy



Measuring the Diversity of a 
Compound Library: 1

• Calculating (dis)similarities
– Dissimilarity = 1 – Similarity
– Euclidean distance

• Requires molecular descriptors and 
similarity coefficient
– Whole molecule properties; 2D fingerprints; 

3D pharmacophores
– Tanimoto coefficient

• Example diversity measures
– Sum of pairwise (dis)similarities/distances
– Average NN dissimilarity/distance
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Measuring the Diversity of a 
Compound Library: 2

• Coverage of a pre-defined 
chemistry-space

• Requires definition of a low (1D to 
6D) dimensional chemistry-space
– Physicochemical properties 
– BCUTs
– pharmacophore coverage
– scaffold coverage (number of unique 

scaffolds)
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Selecting a Diverse Subset of Compounds

• Selecting a subset of size n from dataset of size N
requires evaluation of subsets 

There are ~2x1013 ways of selecting 10 cmpds from 100!

• Computationally efficient methods are required
– Distance-based methods

• Dissimilarity-based compound selection; sphere exclusion; 
clustering 

– Coverage-methods
• Partitioning-schemes; optimisation-methods (maximise or minimise 

diversity measure)
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DBCS: General Algorithm
1. Select a compound and place in subset (random, centroid, most 

diverse)
2. Calculate dissimilarity between each remaining compound and 

compounds in subset
3. Choose next compound that is most dissimilar to compounds in subset 

(MaxMin, MaxSum)
4. If less than n compounds in subset, return to 2
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• Characteristics
– fast enough to be applied to large 

dataset 
– based on (dis)similarities therefore 

can be used with high 
dimensionality data e.g.
fingerprints 

– have a tendency to select outliers



Clustering
• Group molecules

– molecules within a cluster are similar
– molecules from different clusters are 

dissimilar

• Choose one or more from each 
cluster

• Characteristics
– good for high dimensionality data 

(fingerprints) 
– reveals natural clustering in dataset
– limited to small(ish) datasets
– difficult to add new compounds



Sphere Exclusion
1. Define a threshold similarity t
2. Select a compound and place in subset 
3. Remove all compounds with dissimilarity < t
4. If compounds left in data set, return to 2
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• Characteristics
– fast but restricted to low dimensional 

descriptors 
– diversity voids are easily identified
– easy to add new compounds 
– cell boundaries are arbitrary

Partitioning/Cell-Based
• Define a low dimensional space

– e.g. physicochemical properties (logP, MW,…); BCUT 
descriptors

– assign each compound to a cell
– choose one or more from each cell



NH2

A Diverse Set of Compounds!
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Drug-likeness
• The early approaches to designing HTS experiments 

based on large diverse sets of compounds gave 
disappointing hit rates
– low numbers of hits
– hits unattractive for lead optimisation: 

• Poor ADME properties - insoluble; lipophilic; too flexible; high 
molecular weight

• Whether designing diverse or focused libraries 
molecules should also be constrained to have "drug-like" 
physicochemical properties



Computational Filters
• Set of computational 

techniques to eliminate 
molecules that have 
inappropriate characteristics

• Reduce the number of 
compounds that need to 
perform calculations on

• “Badlist” of reactive or toxic 
substructures (cf “goodlist” of 
“privileged substructures”)

reactive or toxic fgs

molecular weight

lipophilicity

flexibility



Drug-like and Lead-like
• Drug-likeness: eliminate compounds with non-drug-like 

physicochemical properties
– Lipinski “Rule Of Five”, in which a molecule is assumed unlikely 

to be orally absorbed if at least two of the following conditions 
are met 

• MW>500, ClogP>5, HBD>5, HBA>10

• Lead-likeness
– “leads” tend to be smaller and less complex than “drugs”



Combinatorial Library 
Design



Building Block Selection
• Compromise:  Select reagents for the “real” library that 

satisfy the layout but whose products perform well in the 
virtual screen
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Combinatorial chemistry imposes an important 
constraint on building block selection

N

M
Cherry pick for
best subset

Select m × n for best
combinatorial 
subset

There are 4 × 1054 ways to select a 36 × 36 library 
from 100 × 100 possible building blocks  (NCn. MCm)

The optimal library cannot usually be derived
by considering the reagents alone: product-based library design
Gillet et al J. Chem. Inf. Comput. Sci. (1997), 37(4), 731-740
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Combinatorial Library Design
• Library design is a multi-objective optimisation problem

– Diverse or focused or both 
– Cheap, small, combinatorially efficient 
– Drug-like, good ADME properties, 

• Many in-silico methods exist for calculating the various 
properties

• Applying computational filters sequentially can lead to 
sub-optimal designs

• How do we find a good balance in the objectives? 



Weighted-Sum Approach

• Limitations
– Setting of weights is difficult 

especially for different types of 
objectives

– The objectives are often in 
competition

– A single compromise solution 
is found when usually a family 
of alternative solutions exist 
that are all equivalent (trade-
offs)
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Multiobjective Optimisation using a 
MOEA

• Multiple objectives and handled independently 
• Pareto optimality is used to explore the search space
• Multiple equivalent solutions are explored in parallel 

(exploiting the population nature of an EA)
• MOEA for combinatorial library design

– Combinatorial subsets selected from virtual library of possible 
products

– The objectives can include any property that can be calculated 
for a library of compounds, 

• Chemical properties: e.g. diversity; drug-like profiles; in-silico ADME 
properties

• Physical properties: size, configuration, number of subsets, cost



Pareto Ranking

• Each objective is optimised 
independently

• One solution dominates another if 
it is better in both objectives

• Solutions are ranked according to 
dominance value

• Solutions where no other 
solutions are greater in all 
objectives are non-dominated 
and form the Pareto frontier
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Combinatorial Library Design:
Focused Libraries

• 100 × 100 virtual library
– 104 potential products

• MOEA used to design 10 × 10 
subsets

• Objectives
– Similarity to a target

•Sum of similarities using Daylight 
fingerprints

– Predicted bioavailability
•Each compound rated from 1 to 4
•Sum of ratings

– Hydrogen bond donor profile
– Rotatable bond profile
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Aminothiazole Library 

Combinatorial Library Design:
Diverse Libraries 

400

0

100

200

300

0 1000 2000
Library Size

O
cc

up
ie

d
C

el
ls

MOGA

1395 products

364 cells

Virtual library of 12850 products
170 thioureas × 74 α-bromoketones

Occupies 364 of 1134 cells (Cerius2 
topological and physicochemical 
descriptors followed by PCA)

R1 N NH2

S

R2

Br

R3

O

R4 N

S
N

R1

R2

R4

R3

+

Exploring the trade-off in diversity and library size



Incorporating Constraints
• Practical limits are often imposed on library design so 

that restricted regions of the search space are of interest
• Constraints can be applied to restrict the search to 

pertinent regions
– Library size
– Combinatorial efficiency

• Number of reactants required to generate given number of products
• 20×20; 40×10; 80×5; etc 

– Plate coverage



Combinatorial Efficiency
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Selecting Multiple Combinatorial Subsets

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

B1 B1

B2 B2

B3 B3

B4 B4

B5 B5

B6 B6

B7 B7

B8 B8

B9 B9

B10 B10

24 products constructed 
from one 4 × 6 subset

24 products constructed from
two subsets: 2 × 6 and 4 × 3



Design of Test Cases
• A cost value of 1 is assigned to various subsets of 

compounds in the virtual library, all other compounds 
assigned a cost of 0

• Design criteria
– Identify libraries with maximum sum of cost and minimum size
– Ideal solutions: sum of cost = library size
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Test Case 1
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Test Cases 2 and 3
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Aminothiazole Library
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Using Pareto Ranking to Profile 
Compounds Synthesised in Lead 

Optimisation
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Profiles of High Scoring Compounds
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Reduced Graphs as 
Molecular Descriptors



Reduced Graphs
• Emphasise functional over structural similarity

Morphine Codeine Heroin

Daylight similarity: 0.99 0.95

Methadone

0.20

• Applications
– Identify compounds with similar activities but different skeletons
– Cluster representation
– Analysis of HTS to identify SAR



Fitness Evaluation

– Recall(R)=TA/(TA+FI)
• Proportion of the total number of dataset actives retrieved

– Precision(P)=TA/(TA+FA)
• Proportion of retrieved molecules that are actually active

– F-measure=2PR/(P+R)
• Equally weighted “average” of precision and recall

A = Actives   I = Inactives   
F = False     T = True

• For each query: search through a 
dataset containing active and 
inactive molecules represented 
as RGs:



hERG Dataset
• IC50 data (5727 mols) for developability assay
• Continuous to binary data conversion

– 3 activity cut-offs
• low (>4.3) 1684 mols, med (>5) 937 mols, high (>6) 269 mols

– “Inactives” all those below activity cut-off!
• E.g. Medium “inactives” incorporate  747 low “actives”

• Train, test and validation sets, with 5 EA runs

Low Activity 
Cut-off Query

Medium Activity 
Cut-off Query

High Activity Cut-off Query

= Aromatic +ve ionisable
= Aliphatic +ve ionisable
= Acyclic +ve ionisable

= Aromatic donor
= Aliphatic donor
= Acyclic donor

= Aromatic ring (no feature)
= Aromatic donor/acceptor
= Aromatic acceptor



Medium Activity Query Performance
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Evolving Multiple Queries
• Combine results from two or more queries

– RG retrieved if found by query A or query B …
– Potential increases in recall, precision and diversity

• Several different types of RG can exist within an activity class due to high 
structural variability or different binding modes

Active

Active

Inactive

Different queries



Evolving Multiple Queries
• Queries must be complementary

– Uniqueness score
•Higher uniqueness for queries retrieving actives found by few   (or 
no) other queries

• Queries must be specific
– To prevent large numbers of 

false actives resulting from the 
combination of several queries

– Typically increased specificity necessitates lower recall
• Pareto ranking used to evolve queries that maximise 

recall, precision and uniqueness
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Extracting Multiple SARs
5HT1A agonists



Summary: Library Design
Amount of Focus and/or Diversity Needed 

is Knowledge-Based
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Summary: II
• There are more compounds available for testing than ever before 

and therefore there is a great need to design screening sets and
combinatorial libraries carefully

• HTS means that obtaining information about the activities of 
compounds is easier than it has ever been but it is still time 
consuming and expensive if done on a very large scale

• Virtual screening and computational filters provide a variety of ways 
of prioritising compounds

• Pareto ranking provides a useful way of exploring trade-offs in 
different properties to be optimised

• A wide range of molecular descriptors have been devised for 
similarity searching and diversity analysis

• Careful selection of descriptors and method is required
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