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Outline

* Diversity Analysis
— Measuring diversity
— Selecting diverse subsets
— Computational filtering

« Combinatorial Library Design
— Designing libraries optimised on multiple properties

 Reduced Graphs as Molecular Descriptors



High-Throughput Technologies

High-throughput screening has massively increased the
rate at which compounds can be tested for activity

Combinatorial synthesis allows parallel synthesis of large
numbers of compounds

Have these increased numbers resulted in more hits?



The Combinatorial Explosion

 The Avallable Chemicals Directory (www.mdli.com)
contains the following:

— 85000 carboxylic acids

— 44000 primary alkyl amines
— 12000 aldehydes

— 2000 fmoc amino acids

e S0 we could make...
— 3.7x10° monoamides (acid + amine)
— 5.3x108 secondary amines (reductive amination)
— 7.5x1012 diamides (fmoc amino acid + amine + acid)
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The Chemical Universe

10120 virtual compounds available via
combinatorial chemistry:
reagents + chemistry — libraries

. Compound Corporate
Chemical Abstracts .
Suppliers Database WDI

35m
i 100K

Number of seconds since big bang = ca. 10/




Increasing Throughput is not Enough!

Chemical space is huge!

Success rates of large libraries have been low
— Insoluble; high molecular weight; too flexible; etc; etc

— Costs are high: $1 per compound = $1 million for library of 10°
compounds

Assay does not always permit HTS

Despite initial enthusiasm for large numbers the current
trend is towards smaller carefully designed libraries



Virtual Screening

Virtual screening
— In-silico prioritisation of compounds

Virtual screening can be used to
— Select compounds for screening from in-house databases
— Choose compounds to purchase from external suppliers
— Design combinatorial libraries

The technique applied depends on the aim and on the
knowledge available, for example, about the particular
disease target

— Usually there are multiple criteria to consider



Virtual Screening: Focused Libraries

o Targeted/focused libraries

— Selection of compounds that are similar to a lead compound or
that fit a QSAR

— Selection of compounds focused on a single therapeutic target
using structure-based drug design

— Selection of compounds focused on a family of related targets

 Even with focused libraries still need to have some
diversity



Virtual Screening: Diversity

 Lead generation

— Selection of compounds when little is known about a particular
target

— Selection of compounds for screening against several targets

 Compound acquisition

— Selection of compounds to purchase to augment an existing
collection



Similarity and Diversity
o Similar Property Principle

— Structurally similar compounds tend to exhibit similar properties

o Similarity .
— If we have a known active ol e o .
(literature, competitor compound 0; o
etc) then compounds that are L . .
similar to it are likely to show Q | e e o
.. - et (o)
similar activity 5 * . o
 Diversity . e e
. [ [
— A diverse subset of compounds >
should maximise the coverage of Property P,
biological activity and minimise
redundancy

Similarity is the property of a pair of compounds
Diversity is the property of a library of compounds




Measuring the Diversity of a
Compound Library: 1

Calculating (dis)similarities

— Dissimilarity = 1 — Similarity

— Euclidean distance

Requires molecular descriptors and
similarity coefficient

— Whole molecule properties; 2D fingerprints;
3D pharmacophores

»
»

— Tanimoto coefficient

Descriptor d,
[

Example diversity measures

— Sum of pairwise (dis)similarities/distances
— Average NN dissimilarity/distance

Descriptor dlr



Measuring the Diversity of a
Compound Library: 2

 Coverage of a pre-defined
chemistry-space

* Requires definition of a low (1D to
6D) dimensional chemistry-space

— Physicochemical properties
— BCUTs
— pharmacophore coverage

— scaffold coverage (number of unique
scaffolds)

Descriptor B

Descriptor A



Selecting a Diverse Subset of Compounds

e Selecting a subset of size n from dataset of size N

requires evaluation of N! subsets
NI(N —n)!

There are ~2x1013 ways of selecting 10 cmpds from 100!

« Computationally efficient methods are required

— Distance-based methods

» Dissimilarity-based compound selection; sphere exclusion;
clustering

— Coverage-methods

 Partitioning-schemes; optimisation-methods (maximise or minimise
diversity measure)



DBCS: General Algorithm

1. Select a compound and place in subset (random, centroid, most
diverse)

2. Calculate dissimilarity between each remaining compound and
compounds in subset

3. Choose next compound that is most dissimilar to compounds in subset
(MaxMin, MaxSum)

4. If less than n compounds in subset, return to 2

3 o o e Characteristics
S ® o o? — fast enough to be applied to large
S * . o dataset
= i — based on (dis)similarities therefore
O [ ) ® . .
%, * . can be used with high
b o . . :
0 | o o 4 dimensionality data e.g.

1 e °s fingerprints

Descriptor d, — have a tendency to select outliers



Clustering

Group molecules
— molecules within a cluster are similar

— molecules from different clusters are
dissimilar

Choose one or more from each

cluster

Characteristics

— good for high dimensionality data
(fingerprints)

— reveals natural clustering in dataset
— limited to small(ish) datasets
— difficult to add new compounds




hwnNE

Sphere Exclusion

Define a threshold similarity t

Select a compound and place in subset
Remove all compounds with dissimilarity <t
If compounds left in data set, return to 2
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Partitioning/Cell-Based

 Define a low dimensional space

— e.g. physicochemical properties (logP, MW, ..

descriptors
assign each compound to a cell
choose one or more from each cell

Characteristics

fast but restricted to low dimensional
descriptors

diversity voids are easily identified
easy to add new compounds
cell boundaries are arbitrary

): BCUT

MW

250 500 >750




A Diverse Set of Compounds!
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Drug-likeness

 The early approaches to designing HTS experiments
based on large diverse sets of compounds gave
disappointing hit rates
— low numbers of hits

— hits unattractive for lead optimisation:

* Poor ADME properties - insoluble; lipophilic; too flexible; high
molecular weight

* Whether designing diverse or focused libraries
molecules should also be constrained to have "drug-like"
physicochemical properties



Computational Filters

o Set of computational
techniques to eliminate

molecules that have ’

Inappropriate characteristics

 Reduce the number of \ reactive or toxic fgs /
compounds that need to \ o - /
perform calculations on rmolecuiar welg

« “Badlist” of reactive or toxic \ lipophilicity /
substructures (cf “goodlist” of \ flexibility /

“privileged substructures”)

e



Drug-like and Lead-like

* Drug-likeness: eliminate compounds with non-drug-like
physicochemical properties

— Lipinski “Rule Of Five”, in which a molecule is assumed unlikely
to be orally absorbed if at least two of the following conditions
are met

« MW>500, ClogP>5, HBD>5, HBA>10

o Lead-likeness
— “leads” tend to be smaller and less complex than “drugs”



Combinatorial Library
Design



Building Block Selection

Compromise: Select reagents for the “real” library that
satisfy the layout but whose products perform well in the

virtual screen
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Alternative Library -
fewer “virtual hits”
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Combinatorial chemistry imposes an important
constraint on building block selection

Select m x n for best
combinatorial
subset

Cherry pick for
best subset

There are 4 x 10> ways to select a 36 x 36 library
from 100 x 100 possible building blocks (NC,. MC )

The optimal library cannot usually be derived

by considering the reagents alone: product-based library design
Gillet et al J. Chem. Inf. Comput. Sci. (1997), 37(4), 731-740
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Combinatorial Library Design

Library design is a multi-objective optimisation problem
— Diverse or focused or both

— Cheap, small, combinatorially efficient

— Drug-like, good ADME properties,

Many in-silico methods exist for calculating the various
properties

Applying computational filters sequentially can lead to
sub-optimal designs

How do we find a good balance in the objectives?



Weighted-Sum Approach

f (n) = w,.diversity + w,.cost + w,. property1+w,.property2 +....

L 0 Q
([ ] /H
leltatlpns | - N )J\RZ RL A,
— Setting of weights is difficult H v
especially for different types of o
objectives f (n) = w,.diversity + w,. AMW
— The objectives are often in Radl A,
competition . A i’ 2 WI=L.0: w2=1.0
— Asingle compromise solution  z! ;5 N
is found when usually a family & Awl1=1.0; w2=0.5
of alternative solutions exist = g | AA, ,
that are all equivalent (trade- ' 0.50 - A A‘lelo? w2=1.0
offs) v A
0.58 0.6 0.62 0.64



Multiobjective Optimisation using a
MOEA

Multiple objectives and handled independently
Pareto optimality is used to explore the search space

Multiple equivalent solutions are explored in parallel
(exploiting the population nature of an EA)

MOEA for combinatorial library design

— Combinatorial subsets selected from virtual library of possible
products

— The objectives can include any property that can be calculated
for a library of compounds,
« Chemical properties: e.qg. diversity; drug-like profiles; in-silico ADME
properties
* Physical properties: size, configuration, number of subsets, cost



Pareto Ranking

Each objective is optimised

Independently

One solution dominates another if fz
It is better in both objectives

Solutions are ranked according to

dominance value

Solutions where no other
solutions are greater in all
objectives are non-dominated
and form the Pareto frontier

...............................




Combinatorial Library Design:
Focused Libraries

100 x 100 virtual library

— 104 potential products
MOEA used to design 10 x 10
subsets
Obijectives

— Similarity to a target
*Sum of similarities using Daylight
fingerprints

— Predicted bioavailability
sEach compound rated from 1 to 4
«Sum of ratings

— Hydrogen bond donor profile
— Rotatable bond profile

: i o L
R1
R1—N, + o7 NRo > R2

H

0.7

0.6 //\\
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Combinatorial Library Design:
Diverse Libraries

Exploring the trade-off in diversity and library size

Aminothiazole Library

i Br O R, S Ry
w4 el
I?I e R4 R3 /N‘QN R
R> RS 3
400
364 cells mmp Y
Virtual library of 12850 products é?’oo /
170 thioureas x 74 o-bromoketones 2
3200 # A MOGA
Occupies 364 of 1134 cells (Cerius2 © 1005
topological and physicochemical A
descriptors followed by PCA) 0 ; ‘ ‘
0 1000 2000

1395 products -Pravy Size



Incorporating Constraints

* Practical limits are often imposed on library design so
that restricted regions of the search space are of interest

e Constraints can be applied to restrict the search to
pertinent regions
— Library size

— Combinatorial efficiency
* Number of reactants required to generate given number of products
o 20x20; 40%x10; 80x5; etc

— Plate coverage



Number a-bromoketones

Combinatorial Efficiency

Size constraint: 400 to 600 products
Combinatorial efficiency constraint: 20 <= a-bromoketones >= 25
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Selecting Multiple Combinatorial Subsets
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Design of Test Cases

e A cost value of 1 is assigned to various subsets of

compounds in the virtual library, all other compounds
assigned a cost of O

e Design criteria

— ldentify libraries with maximum sum of cost and minimum size
— ldeal solutions: sum of cost = library size

Cost
400 -

300 -
200 -

100 -

0 T T T T
0 100 200 300 400
Library Size
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Test Case 1

R2
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Test Cases 2 and 3
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Number of Occupied Cells
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Using Pareto Ranking to Profile
Compounds Synthesised in Lead
Optimisation
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Profiles of High Scoring Compounds

Good solutions
can be missed if
property filters are
applied
sequentially
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Reduced Graphs as
Molecular Descriptors



Reduced Graphs

 Emphasise functional over structural similarity

OH e

Heroin Methadone

Codeine
Daylight similarity: 0.99 0.95 0.20

Morphine

* Applications
— ldentify compounds with similar activities but different skeletons
— Cluster representation
— Analysis of HTS to identify SAR



Fitness Evaluation

 For each query: search through a

dataset containing active and
Inactive molecules represented
as RGs:

Inactives
True

Actives I
False T

Actual Class

— Recall(R)=TA/(TA+FI)

Predicted Class

Active Inactive

Active

Inactive

TA FI

FA Tl

» Proportion of the total number of dataset actives retrieved

— Precision(P)=TA/(TA+FA)

» Proportion of retrieved molecules that are actually active

— F-measure=2PR/(P+R)

« Equally weighted “average” of precision and recall



e IC50 data (5727 mols) for developability assay

hERG Dataset

e Continuous to binary data conversion
— 3 activity cut-offs

* low (>4.3) 1684 mols, med (>5) 937 mols, high (>6) 269 mols

— “Inactives” all those below activity cut-off!

* E.g. Medium “inactives” incorporate 747 low “actives”

e Train, test and validation sets, with 5 EA runs

Low Activity
Cut-off Query

OR

OR

O

@ = Aromatic +ve ionisable
= Aliphatic +ve ionisable
= Acyclic +ve ionisable

AND

OR

Medium Activity
Cut-off Query

.4
O

AND

High Activity Cut-off Query

OR | AND .

(:®

AND

OR [AND . AND @ AND @

@ = Aromatic donor
@ = Aliphatic donor
= Acyclic donor

@ = Aromatic ring (no feature)
@ - Aromatic donor/acceptor



Medium Activity Query Performance

Percentage of Actual Class

Inactive Active
Active Inactive
Predicted Class Actual Class
Precision = 52% F-measure = 61%
Recall = 75% Enrichment = 2.9



Evolving Multiple Queries

 Combine results from two or more queries
— RG retrieved if found by query A or query B ...

— Potential increases in recall, precision and diversity

» Several different types of RG can exist within an activity class due to high
structural variability or different binding modes

Active g
O

Inactive
Active g“’)
O

Different queries



Evolving Multiple Queries

* Queries must be complementary -0 1
Uniqueness (Q) = (Z ]/a

— Unigueness score =

*Higher uniqueness for queries retrieving actives found by few  (or
no) other queries

. . U=0.3 U~0.75
e Queries must be specific

— To prevent large numbers of
false actives resulting from the O

. : . U~0.9
combination of several queries

— Typically increased specificity necessitates lower recall

o Pareto ranking used to evolve queries that maximise
recall, precision and uniqueness



Extracting Multiple SARS
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Summary: Library Design

Amount of Focus and/or Diversity Needed

Protein
X-ray

Pharma-
cophore

Known
Ligands

Zero
Knowledge

Target Knowledge

IS Knowledge-Based

Need for diversity is
Structure-based related to the
~ _ Design Inverse of the

N iInformation that you
S o Pharmacophore-based haye

~ .
~ DPesign

S~ Focused Sets

S 1° Libraries
S \Diverse Sets

~

Focused Diverse

A.R. Leach GSK



Summary: |

There are more compounds available for testing than ever before
and therefore there is a great need to design screening sets and
combinatorial libraries carefully

HTS means that obtaining information about the activities of
compounds is easier than it has ever been but it is still time
consuming and expensive if done on a very large scale

Virtual screening and computational filters provide a variety of ways
of prioritising compounds

Pareto ranking provides a useful way of exploring trade-offs in
different properties to be optimised

A wide range of molecular descriptors have been devised for
similarity searching and diversity analysis

Careful selection of descriptors and method is required
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