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Multiple Linear Regression
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Topless: M < N/5 for good models



Mistery of the "Rule of 5”
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J.H.Topliss & R.L.Costello, JMC, 1972, Vol. 15, No. 10, P. 1066-1068.



Mistery of the "Rule of 5”

C.Hansch, K.W.Kim, R.H.Sarma, JACS,
1973, Vol. 95, No.19, 6447-6449
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Topliss and Costello? have pointed out the danger of finding meaningless
chance correlations with three or four data points per variable.

The correlation coefficient is good and there are almost five data points
per variable.




Model Overfitting for the Multiple Linear
Regression
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Partial Least Squares (PLS)

Projection to Latent Structures
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Principal Component Analysis (PCA)
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Partial Least Squares (PLS)
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Dependence of R?,Q% upon the Number
of Selected Latent Variables A
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Herman Wold (1908-1992)



Swante Wold




Model Overfitting for the Partial Least Squares
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Support Vector Regression.
e-Insensitive Loss Function

Only the points outside the e-tube are
penalized in a linear fashion

ff{ 0 iflé<e

£|-&  otherwise




Linear Support Vector Regression.
Primal Formulation

Penalty term
Complexity term Y

T

Points should lie : N
below the upper—___ arg min Z
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Regression function f (X) =< W, X > +b

C - trade-off between the flatness (and complexity) of f and the
amount up to which deviations larger than € are tolerated



Linear Support Vector Regression.
Dual Formulation
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In reality, only several objects, for which ¢, —ai* >0 take part in this summation.
Such points are called support vectors.



Dualism of QSAR/QSPR Models

Ordinary method
Primal formulation f (X) :< W, X > _|_b
N
Dual formulation f (X) = Z (OCi — O(i*) < ﬁ, X > +b
=1

/

Similarity-based method



Dualism of QSAR/QSPR Approaches

Vector-Based Methods | Similarity-Based Methods

Multiple linear regression, K nearest neighbours, RBF
partial least squares, neural networks
backpropagation neural
networks, regression trees,

etc.
Support vector regression | Support vector regression
In primal formulation in dual formulation

The Lagrange’s methods builds a bridge between both types of approaches



Kernel Trick

Input Space Feature Space

Any non-linear problem (classification, regression) in the
original input space can be converted into linear by

making non-linear mapping @ into a feature space with
higher dimension




Kernel Trick

f(x)zle(oci —a; )< X, X>+b

In high-dimensional / _ / In low-dimensional
feature space — < CI)(X),CI)(X ) > = K(X, X ) <— Input space

f(X)ZZN:(Oli _ai*)K(Xi,X)-I—b Kernel

In order to convert a linear statistical method to a
powerful non-linear kernel-based counterpart it is
sufficient to substitute all dot products in the dual
formulation of the linear method for a kernel




Common Kernel Functions

Gaussian RBF K(X,X") =exp( )
20°
Polynomial K(X,X") = (< X, X' > +6)°
Sigmoidal K(x,X") =tanh(x < X, X" > +6)
, 1
Inverse multi-quadratic K(X,X) = 2
\/ (X—X)"+cC

So, all these kernel functions are functions of dot products or distance between points.

Therefore, kernels can be viewed as nonlinear similarity measures between objects



Function Approximation with SVR
with Different Values of ¢

€=0.2

line — regression function f(x) J
¥ 'r,l i 1 i .mh__lf*-'
small points — data points / { %

big points — support véctors '

So, the number of support vectors increases with the decrease of ¢



Model Overfitting for the Support Vector
Regression
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Multilayer Neural Network

/

Input Layer

Hidden Layer

Output Layer

Neurons in the input layer correspond to descriptors, neurons in the output layer
— to properties being predicted, neurons in the hidden layer — to nonlinear latent
variables




Generalized Delta-Rule

This is application of the steepest descent method to training backpropagation
neural networks

oR df . (e)

AW, = —17 av(\elmp =—1nY;0, lee :_in5}

ij

n — learning rate constant

David Jameé

Paul Werbos Rummelhard McClelland ~ >€ffrey Hinton




Multilayer Neural Network

/

Input Layer

Hidden Layer

V¢

Output Layer

The number of weights corresponds to the number of
adjustable parameters of the method




Origin of “Rule of 2”

The number of weights (adjustable parameters) for the case of one hidden layer

W = (I+1)H + (H+1)0

N

Parameterp: 0O = —

W

1.8< p<2.2
T.A. Andrea and H. Kalayeh, J. Med. Chem., 1991, 34, 2824-28306.

End of “Rule of 2”

|.V. Tetko, D.J. Livingstone, Luik, A.l. J. Chem. Inf. Comput. Sci., 1995, 35, 826-833.
Baskin, L.I. et al. Foundations Comput. Decision. Sci. 1997, v.22, No.2, p.107-116.



Overtraining and Early Stopping
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Model Overfitting for the Backpropagation Neural
Network
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K Nearest Neighbours
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Overfitting by Variable Selection in
KNN

0.8 -

06 -

04 -

0.2 -

Golbraikh A., Tropsha A. Beware of g2! JIMGM, 2002, 20, 269-276



Model Overfitting for the k Nearest Neighbours
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A decision tree splits a set of objects into subsets (usually 2 subsets in so-called
binary trees) that are purer in composition. After that splitting is applied

recursively to these subsets. Splitting starts from a root, and the tree growth
continues while some statistical criterion allows it.




Overfitting and Early Stopping of Tree Growth
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Decision trees can overfit data. So, it is necessary to use an external test set in
order to stop tree growth at the optimal tree size




Decision Tree for Biodegradability
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Tasks for Decision Trees

 Classification — in accordance with the
class of objects dominating at the leaves
of decision trees (classification trees)

» Regression — in accordance with the
average values of properties or MLR
model built at the leaves of decision trees
(regression trees)



Model Overfitting for the Decision Trees
Regression

" «— underfitting overfitting —m

model complexity marches
svatemn complexity

!

onl-ol-taniple

Error

fr-sae e

model complexity

Model complexity ~ the number of nodes



Conclusions

There are many machine learning
methods

Different problems may require different
methods

All methods could be prone of overfitting

But all of them have facilities to tackle this
problem



Exam. Question 1

What is it?

1. Support Vector
Regression

2. Backpropagation
Neural Network

3. Partial Least Squares
Regression




Exam. Question 2

Which method is not prone to overfitting?

Multiple Linear Regression

. Partial Least Squares

Support Vector Regression

. Backpropagation Neural Networks
K Nearest Neighbours

. Decision Trees

. Neither

~NOoO N WN =
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