Tutorial on Machine Learning. Part 2. Descriptor Selection Bias.

Igor Tetko, Igor Baskin and Alexandre Varnek

1. Introduction

The *n*-fold cross-validation technique is widely used to estimate the performance of QSAR models. In this procedure, the entire dataset is divided into *n* non-overlapping pairs of training and test sets. Each training covers $(n-1)/n^{\text{th}}$ of the dataset while the related test set covers the remaining $1/n^{\text{th}}$. Following developments of models with the training set, the predictions for the test set are performed. Thus, predictions are made for all molecules of the initial dataset, since each of them belongs to one of the test sets. This tutorial demonstrates how crucial unbiased descriptor selection is for correct assessment of the prediction performance of the models. In principle, two scenarios are possible:

- selection of descriptors using all molecules from the parent data set followed by *n*-fold cross-validation (*internal CV*);
- selection of descriptors is performed on each fold using $(n-1)/n^{\text{th}}$ of the dataset (*external CV*).

The models obtained on each fold of the *internal CV* are based on the same set of descriptors, whereas corresponding models for the *external CV* may involve different descriptors. Notice that frequently reported *Leave-One-Out* cross-validation typically represents the *internal CV*.

Here, we will show that only *external CV*, in which the information of test compounds is not used for the development of the models, can be used for reasonable assessment of accuracy of predictions (see also ¹⁻³). For this purpose, a set of random numbers will be used as molecular descriptors to develop a model for boiling points of alkanes. Thus, a procedure leading to "robust" QSAR models, e.g. models with high Pearson correlation coefficient R^2 , based on those descriptors is definitely not correct one.

The tutorial consists in 3 parts (sections 4.1 - 4.3):

- descriptors selection is performed before the model development (internal CV, Fig 1A);
- descriptors selection is used to optimize the model (internal CV, Fig 1B);
- descriptors are selected in parallel with the development of the model (external CV, Fig 1C).

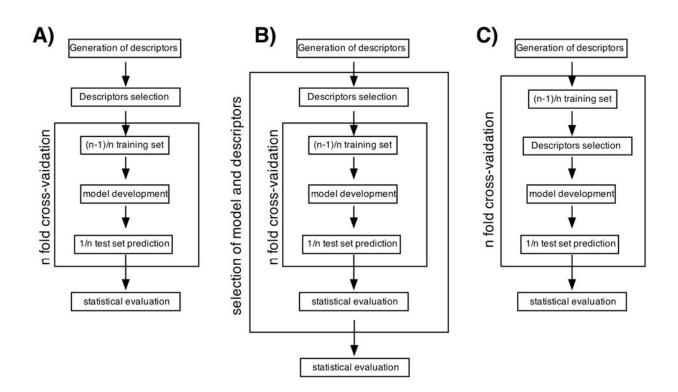


Figure 1. Internal (A, B) and External (C) cross-validation procedures.

2. Datasets and Descriptors

A database containing the values of the boiling points of 74 alkanes ⁴ is used. Two sets of descriptors are used: 100 and 1000 descriptors representing random numbers. The *k* Nearest Neighbors (kNN, or **IBk** in Weka's terminology) and Multi-Linear Regression (MLR) methods will be used for the modeling.

3. Files

- 1. alkan-bp-louse100.arff dataset with 100 descriptors taking random values
- 2. alkan-bp-louse1000.arff-dataset with 1000 descriptors taking random values
- 3. *preselected_descr.arff* dataset with preselected descriptors
- 4. *knn_descr.arff* dataset with descriptors selected by the kNN procedure

4. Modeling

4.1 Internal Cross-Validation using Preliminary Selected Descriptors

In *Weka*, in order to select descriptors (attributes in Weka's terminology), one should specify a **Search Method** and an **Attribute Evaluator**. The **Search Method** stands for a search algorithm (such as *ExhaustiveSearch*, *GeneticSearch*, *BestFirst*, etc), whereas the **Attribute**

Evaluator specify a way how to compute the value being optimized in the course of descriptors selection.

The default **Search Method** in *Weka* is **BestFirst**. It searches the space of descriptor subsets by greedy hill-climbing augmented with a backtracking facility. The **BestFirst** method may start with the empty set of descriptors and searches forward (default behavior), or starts with the full set of attributes and searches backward, or starts at any point and searches in both directions (by considering all possible single descriptor additions and deletions at a given point).

The default **Attribute Evaluator** in *Weka* is **CfsSubsetEval**. This method evaluates the worth of a subset of descriptors by considering the individual predictive ability of each one along with the degree of redundancy between the descriptors. Subsets of descriptors that are highly correlated with the property/activity values and having low intercorrelation are preferred (see 5).

For this problem, **BestFirst** (search method) and **CfsSubsetEval** (attribute evaluator) combination is as efficient as best variable selection techniques - genetic algorithm or simulated annealing - but it is much quicker. This is why these default settings were selected for the tutorial.

- Start Weka
- Select the item Explorer from the Applications menu
- Click on *Open file...* and load the file *alkan-bp-louse1000.arff*.
- Click on the *Select attributes* item

The following window appears:

🐦 Weka 3.5.7 - Explorer	1 4 m		
Program Applications Tools Visualization Windows Help			
🗳 Explorer			- 6 🐱
Preprocess Classify Clu	ister Associate	Select attributes	Visualize
Attribute Evaluator			
Choose CfsSubse	tEval		
Search Method			
Choose BestFirst	-D 1 -N 5		
Attribute Selection Mode		Attribute selection	n output
Ose full training set			^
Cross-validation	Folds 10		
	Seed 1		
(Num) class	•		=
Start	Stop		
Result list (right-click for o	ptions)		
			-
		•	4
Status			×0
OK		Log	

• Click on *Start*

Computation finishes after 2-3 seconds (application of the genetic algorithm to the same dataset would require hours).

- Click on the new line in the *Result list* with the right mouse button
- From the pop-up menu, select the item *Save reduced data...*

The program window looks as a following:

🌪 Weka 3.5.7 - Explorer			
Program Applications Tools Visualization Windows Help			
🖾 Explorer			
Preprocess Classify Cluster Associate	Select attributes	/isualize	
Attribute Evaluator			
Choose CfsSubsetEval			
Search Method			
Choose BestFirst -D 1 -N 5			
Attribute Selection Mode	Attribute selection o	putput	
Ose full training set	=== Run infor	mation ===	
Cross-validation Folds 10			
Seed 1	Evaluator:	weka.attributeSelection.CfsSubsetEval	
	Search:	weka.attributeSelection.BestFirst -D 1 =	
(Num) class 🗸 🗸	Relation: Instances:	C:\weka-work\alkan-bp-louse1000.libsvm 74	
	Attributes:	1001	
Start Stop		[list of attributes omitted]	
Result list (right-click for options)	Evaluation mo	de: evaluate on all training data	
14:37:23 - BestFirst + CfsS	and a second second		
	nain window		
	eparate window	Selection on all input data ===	
Save resu	ılt buffer	_	
Delete re:	sult buffer		
Visualize	reduced data	irst. set: no attributes	
	uced data)	direction: forward	
Savered	 ✓ ✓ 		
OK			
UK .			

• Save the dataset with 30 selected descriptors to file *preselected_descr.arff*

Selected descriptors are supposed to be used in the Multiple Linear Regression model.

• Switch to the **Preprocess** submode of the **Explorer** mode

- Click on *Open file...* and open the file *preselected_descr.arff*
- Switch to the *Classify* submode
- Click on *Choose*
- From the hierarchical list of machine learning methods choose *weka/classifiers/functions/LinearRegression*
- To change options for the MLR method, click on LinearRegression. A new window with parameters of MLR appears.
- Change attributeSelectionMethod to No attribute selection

All settings are shown on the snapshot below

🋓 weka.gui.GenericObject	tEditor		
weka.classifiers.functions.LinearRegression			
About			
Class for using linear regression for prediction. More			
		Capabilities	
attributeSelectionMethod	No attribute selection	▼	
debug	False	•	
eliminateColinearAttributes	True	_	
ridge	1.0E-8		
Open	Save OK	Cancel	

- Press the *OK* button in this window
- Press the Start button in order to test MLR on the subset with selected descriptors. The obtained results are:

Correlation coefficient	0.8214
Mean absolute error	22.2335
Root mean squared error	27.3909
Relative absolute error	67.1857 %
Root relative squared error	58.9268 🕉
Total Number of Instances	74

Thus, this study shows that the correlation coefficient between predicted in cross-validation values of property and their experimental value is **0.8214**. This indicates a statistical significance of the model based on random numbers. One can show that the similar situation is observed for some other popular machine learning methods (PLS, kNN, etc.). Hence, the whole procedure of building the model using a set of preliminary selected descriptors is erroneous.

4.2 Internal cross-validation using descriptors selected in course of model building

In this section, the k Nearest Neighbor approach will be used both to optimize the k parameter and to select an optimal set of descriptors by minimizing the cross-validation error of the method.

- Start or restart Weka
- Select the item **Explorer** from the **Applications** menu
- Click on *Open file...* and load the file *alkan-bp-louse100.arff*.
- Click on the label *Select attributes*

The following window appears.

Weka 3.5.7 - Explorer	
Program Applications Tools V	isualization Windows Help
🛎 Explorer	- 6 🔀
Preprocess Classify Cluster A	Associate Select attributes Visualize
Attribute Evaluator	
Choose CfsSubsetEval	
Search Method	
Choose BestFirst -D 1 -N	15
Choose Descring of 14	
Attribute Selection Mode	Attribute selection output
Ose full training set	×
Cross-validation Folds	10
Seed	1
	=
(Num) class	·
Start Stop	
Result list (right-click for options)	
	< <u> </u>
Status	
ок	Log 🗸 🔨 X O

Under these settings, the minimization of the cross-validation error of kNN models is used to guide the descriptors selection.

- Click on the *Choose* button under the label **Attribute Evaluator**
- Choose menu item WrapperSubsetEval
- Click on *WrapperSubsetEval*

The following window pops up.

🛓 weka.gui.GenericObjectEditor			
weka.attributeSelection.WrapperSubsetEval			
About			
WrapperSubsetEval:	More		
Evaluates attribute sets by using a learning scheme.	Capabilities		
classifier Choose ZeroR			
folds 5			
seed 1			
threshold 0.01			
Open Save OK	Cancel		

The default method ZeroR should be changed to kNN.

- Click on the *Choose* button near the **classifier** label
- Select from the hierarchical list of machine learning methods *weka/classifiers/lazy/IBk*.

The settings are shown on the snapshot below.

실 weka.gu	ui.GenericObjectEditor				
weka.attrib	weka.attributeSelection.WrapperSubsetEval				
About					
Wrappe	rSubsetEval:	More			
Evaluate	es attribute sets by using a learning scheme.	Capabilities			
classifier	Choose IBk -K 1 -W 0 -A "weka.core.neighboursea	rch.LinearNNSearch			
folds	5				
seed	1				
threshold	0.01				
Oper	n Save OK	Cancel			

• Click on **IBk**

A window with default parameters of the kNN method (fixed value of k = 1) appears on the screen. In order to search an optimal value of k in the range from 1 to 10:

- Change **kNN** to 10
- Select *True* for **crossValidate**

The corresponding window is:

	실 weka.gui.GenericObjectEditor	
	weka.classifiers.lazy.IBk	
l	About	
1	K-nearest neighbours classifi	er. More
		Capabilities
	KNN	10
	crossValidate	True
	debug	False 🔹
	distanceWeighting	No distance weighting 🔹 👻
	meanSquared	False 🗸
	nearestNeighbourSearchAlgorithm	Choose LinearNNSearch - A "weka.core.Euclid
	windowSize	0
	Open Save.	OK Cancel

- Click on the **OK** button in the window with k-Nearest Neighbors classifier
- Click on the *OK* button in the window with WrapperSubsetEval
- In the remaining window click on the *Start* button

Computations may take 1-2 minutes depending on the speed of computer. The resulting window is:

🐦 Weka 3.5.7 - Explorer			
Program Applications Tools Visualization Windows Help			
🗳 Explorer 💼 💼			
Preprocess Classify Cluster Associate	Select attributes Visualize		
Attribute Evaluator			
Choose WrapperSubsetEval -B w	veka.classifiers.lazy.IBk -F 5 -T 0.01 -R 1K 10 -W 0 -X -A "weka.core		
Search Method			
Choose BestFirst -D 1 -N 5			
Attribute Selection Mode	Attribute selection output		
Ose full training set	Wrapper Subset Evaluator		
Cross-validation Folds 10	Learning scheme: weka.classifiers.lazy Scheme options: -K 10 -W 0 -X -A weka.		
Seed 1	Accuracy estimation: RMSE		
	Number of folds for accuracy estimation		
(Num) class 👻			
	Selected attributes: 14,21,32,63,69,71 : 6		
Start Stop	att_14		
Result list (right-click for options)	att_21 att 32		
16:47:27 - BestFirst + WrapperSubsetEv	att 63		
	att 69		
	att_71		
	•		
4 III >			
Status			
ок	Log 💉 ×0		

One can see that 6 attributes (descriptors) have been selected.

In order to save the selected descriptors,

- Click on corresponding line in the *Result list* (left side, on the bottom) with the right mouse button
- From the pop-up menu, select the item *Save reduced data...*
- Save the dataset with 6 selected descriptors to file *knn_descr.arff*

Selected descriptors are supposed to be used in the k Nearest Neighbors model.

- Switch to the **Preprocess** submode of the **Explorer** mode
- Click on the *Open file...* button and open the file *knn_descr.arff*
- Switch to the *Classify* submode
- Click on the *Choose* button near the **classifier** label
- Select from the hierarchical list of machine learning methods *weka/classifiers/lazy/IBk*.
- Click on **IBk**

- Change **kNN** to 10
- Select *True* for **crossValidate**
- Click on the OK button in the window with K-nearest neighbors classifier
- Click on the *Start* button

The following results are displayed:

Correlation coefficient	0.548
Mean absolute error	26.6253
Root mean squared error	39.8131
Relative absolute error	80. <u>457</u> 1 %
Root relative squared error	85.6509 🗞
Total Number of Instances	74

As in previous case, the correlation coefficient significantly deviates from zero. Hence, the descriptor selection bias takes place in the case of internal cross-validation procedures.

4.3. External cross-validation

Here, a separate set of selected descriptors is formed in each fold of the cross-validation procedure.

- Start the Weka program
- Select the item **Explorer** from the **Applications** menu
- Click on the button *Open file...* and load the file *alkan-bp-louse100.arff*.
- Switch to the Classify submode by clicking on label Classify
- Click on the *Choose* button near the **classifier** label
- Select from the hierarchical list of machine learning methods weka/classifiers/meta/AttributeSelectedClassifier.
- Click on the word *AttributeSelectedClassifier*

This method provides a correct external cross-validation and performs variable section for each cross-validation fold. The following window appears:

🛓 weka.gui.GenericObjectEditor			
weka.classifiers.meta.AttributeSelectedClassifier			
About			
Dimensionality of training and test data is reduced by More			
attribute selection before being passed on to a classifier.	Capabilities		
l			
classifier Choose J48 -C 0.25 -M 2			
debug False			
evaluator Choose CfsSubsetEval			
search Choose BestFirst -D 1 -N 5			
Open Save OK	Cancel		

Here, the kNN method will be used instead of J48 (default setting)

- Click on the *Choose* button near the **classifier** label
- Select from the hierarchical list of machine learning methods weka/classifiers/lazy/IBk.
- Click on **IBk**
- Change **kNN** to 10
- Select *True* for **crossValidate**
- Click on the OK button in the window with k-Nearest Neighbors classifier
- Click on the OK button in the window with parameters of AttributeSelectedClassifier
- In the remaining window click on *Start*

The obtained results are:

Correlation coefficient	-0.2858
Mean absolute error	38.4063
Root mean squared error	53.6368
Relative absolute error	116.057 %
Root relative squared error	(115.3901)
Total Number of Instances	74

These results show that the models are not predictive at all. This looks reasonable since those models involve random numbers as descriptors.

5. Conclusions

External cross validation should be used to assess predictive performance of QSAR models. Using test set compounds in descriptors selection procedure leads to erroneous or overfitted models.

6. References

Hawkins, D. M., The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44 (1), 1 12.

2. Tetko, I. V.; Sushko, I.; Pandey, A. K.; Tropsha, A.; Zhu, H.; Papa, E.; Öberg, T.; Todeschini, R.; Fourches, D.; Varnek, A., Critical assessment of QSAR Models to predict environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection. *J. Chem. Inf. Model.* **2008**, (*submitted*).

3. Tetko, I. V.; Solov'ev, V. P.; Antonov, A. V.; Yao, X.; Doucet, J. P.; Fan, B.; Hoonakker, F.; Fourches, D.; Jost, P.; Lachiche, N.; Varnek, A., Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores. *J. Chem. Inf. Model.* **2006**, *46* (*2*), 808-819.

4. Needham, D. E.; Wei, I. C.; Seybold, P. G., Molecular modeling of the physical properties of alkanes. *J. Am. Chem. Soc.* **1988**, *110* (*13*), 4186-4194.

5. Hall, M. A. Correlation-based Feature Selection for Machine Learning. Ph.D diss, Waikato University, Hamilton, NZ, 1998.