

Development of Multi Component Molecular Theory and its Application

Masanori Tachikawa

Quantum Chemical Physics group, Graduate school of Science, Yokohama-city University, Seto22-2, Kanazawa-ku, Yokohama 236-0027, Japan and JST PRESTO

Recently, our group has been developing some first-principles approaches which treat multi component systems including both electrons and nuclei (positron) quantum-mechanically: (I) Multi-component molecular orbital (MC_MO) [1] or density functional theory (MC_DFT) [2], (II) *ab initio* path integral molecular dynamics (PIMD) [3], and (III) multi-component quantum Monte Carlo (MC_QMC) [4] methods.

First, we will show the geometrical isotope effect (GIE) on H_3O_2^- (Figure 1) with extensive range of temperature by PIMD method. At 50K the distributions of both H^* for quantum H_3O_2^- and T^* for quantum T_3O_2^- have single peak. The $\langle R_{\text{OO}} \rangle$ of H species is longer than that of T species, due to

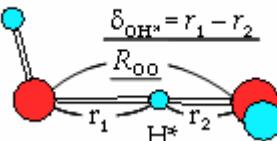


Figure 1. Schematic illustration of H_3O_2^- species.

the difference of zero point vibrational energy under anharmonic potential. At 400K the distribution of H^* has single peak, while that of T^* has double peaks. This means that the T^* is difficult to go over the “effective potential barrier” with respect to proton transfer coordinate, since it becomes higher as the R_{OO} becomes longer. Actually, the $\langle R_{\text{OO}} \rangle$ of T species is longer than that of H species at high temperature, due to the multidimensional effect which is influence of both δ_{OH^*} and R_{OO} coordinates.

We will also show some recent results for “positronic compounds” by using (I) MC_MO or MC_DFT, and (III) MC_QMC methods.

References

- [1] T. Ishimoto, M. Tachikawa, and U. Nagashima, **J. Chem. Phys.** in press (2008).
- [2] T. Udagawa and M. Tachikawa, **J. Chem. Phys.** 125, 244105 (9 pages) (2006).
- [3] H. Ishibashi, A. Hayashi, M. Shiga, and M. Tachikawa, **ChemPhysChem (Communication)**, 9, 383-387 (2008). M. Tachikawa and M. Shiga, **J. Am. Chem. Soc. (Communication)**, 127, 11908-11909 (2005).
- [4] Y. Kita, R. Maezono, and M. Tachikawa, **Lecture Series on Computer and Computational Sciences and Engineering**, 7, 1498-1501 (2006).